Breast Cancer

GSK Core Course

Sarat Chandarlapaty
Memorial Sloan Kettering Cancer Center
5/22/2024

Hormone Dependent Tissues and Cancer

Estimated New Cases Males Females Prostate 191,930 21% **Breast** 276,480 30% Lung & bronchus 116,300 13% Lung & bronchus 112,520 12% Colon & rectum 78,300 9% Colon & rectum 69,650 8% 7% Urinary bladder 62,100 Uterine corpus 65,620 7% Melanoma of the skin 60.190 7% **Thyroid** 40,170 4% Melanoma of the skin 40,160 4% Kidney & renal pelvis 45,520 5% Non-Hodgkin lymphoma 42.380 5% Non-Hodgkin lymphoma 34.860 4% 38,380 4% Kidney & renal pelvis 28,230 3% Oral cavity & pharynx Leukemia 35,470 4% **Pancreas** 27,200 3% 3% 3% 30,400 Leukemia 25,060 **Pancreas All Sites** 893,660 100% **All Sites** 912,930 100%

Siegel et al. 2020

2020 Estimated US Cancer Deaths in Women

276,480 New Cases of Breast Cancer

42,170
Breast Cancer
Deaths

22% Lung and bronchus 15% Breast 9% Colon and rectum 8% Pancreas 5% Ovary 3% Leukemia 4% Liver 4% Uterine corpus 2% Multiple myeloma 2% Brain 23% All other sites

Survival by stage and type of surgery

Ann Oncol. 2015;26(6):1161-1169. doi:10.1093/annonc/mdv107

Declining US Mortality

- Increased awareness and screening
- Early detection
- Improvements in treatment

Anatomy of the Breast

Normal Duct

Atypical Hyperplasia

DCIS

Invasive Ductal Carcinoma

Risk Factors for Breast Cancer

- Gender
- Age > 65
- Race
- Early onset of menses and late menopause
- Late or no pregnancies
- Family history (BRCA1, BRCA2, PALB2, TP53)
- Dense breast tissue
- Alcohol consumption
- Hormone supplementation
- Prior RT
- Prior lesions (ADH, ALH, LCIS, DCIS)

Staging of Breast Cancer

- Size and location of the tumor
- Determine if the cancer has spread beyond the breast
- Determine lymph node involvement
- Metastasis

Stage 0

- Noninvasive cancer
- Carcinoma in situ
 - Has not spread past the ducts or lobules of the breast
 - Ductal carcinoma in situ (DCIS)
 - Most common in situ breast cancer

Stage I

- Tumor is small
- Has not spread to lymph nodes

Stage IIA

- One of the following
 - Smaller tumor that has spread to the axillary lymph nodes
 - Medium-sized tumor that has not spread to the axillary lymph nodes

Stage IIB

- One of the following
 - Medium-sized tumor that has spread to the axillary lymph nodes
 - Larger tumor that has not spread to the axillary lymph nodes

Stage IIIA

 Any size tumor that has spread to the lymph nodes

Stage IIIB

 Cancer has spread to the chest wall, caused swelling or ulceration of the breast, or is diagnosed as inflammatory breast cancer

Stage IIIC

 Cancer has spread to distant lymph nodes but has not spread to distant parts of the body

Stage IV: Metastatic Breast Cancer

 Cancer of any size and has spread to distant sites in the body, usually the bones, lungs or liver, or chest wall

Incidence of Metastatic Breast Cancer

- ~6% of patients have MBC at the initial diagnosis of breast cancer in USA
- MBC is more frequently represented by recurrent disease.

5-Year Survival Rates vs Breast Cancer Stage

Stage	Tumor Size	Lymph Node Involvement	Metastasis (Spread)	Survival Rate
0	N/A	No	No	100%
1	<2 cm	No	No	96%
II	2-5 cm	No or yes (on same side of breast only)	No	85%
III	>5 cm	Yes	No	52%
IV	N/A	N/A	Yes	27%

ACS

Breast Cancer Screening

- Mammogram
 - Annually 45-54 then annual or biennial >55
- Breast MRI for high risk (e.g. BRCA1/2, dense breast, etc)

Breast Cancer Local Therapy

- Surgery
- Radiation

Surgical Approaches to Breast Cancer

- Radical mastectomy
- Modified radical mastectomy
- Total mastectomy
- Partial mastectomy
- Lumpectomy
- Axillary lymph node dissection
- Sentinel lymph node biopsy (SLNB)

www.cancer.gov 2

Goals of Surgery in Breast Cancer Treatment

 Obtain the diagnosis and stage the patient.

 Achieve Local-Regional Control

- Contribute to longterm disease free state:
 - Stage O 98%
 - Stage I 80%
 - Stage IIa -75%
 - Stage IIb -30+%

Surgical Options

- Mastectomy (with Immediate Reconstruction?)
 - Tissue transfer vs. implant reconstruction
 - Skin sparing approach

- Breast Conservation Therapy
 - Tumor removal,
 Sentinel node
 biopsy,
 Radiation
 therapy.

Management of the Axilla

Axillary Dissection

- General anesthesia,
 Hospital admission
- Clearance of 15-40 lymph nodes
- Surgical drain week
- Lymphedema in 20%
- 5-15% false negative

Sentinel Node Biopsy

- Local anesthesia, outpatient surgery
- Clearance of 1-4 nodes
- No surgical drain
- No lymphedema
- 3-5% false negative
- 20-35% reduction in charges

Sentinel Node Mapping

- Enhanced evaluation of the axillary nodes.
 - Serial sectioning
 - H&E staining
 - Immunohistochemistry
 - Cam 5.2 and AE1/3

- Research Areas
 - PCR
 - EGFr, Muc1, ER
 - IHC Positive Nodes
 - Clonal derived from primary?
 - Viable/clonogenic?
 - Clinically significant?

Radiation

NSABP B-06

NSABP B-06 12 year results

	DFS	os	LR
Total Mast.	50%	60%	8%
Seg. Mast.		59%	
(- Nodes)			32%
(+ Nodes)			41%
Seg. Mast. + RT	50%	62%	
(- Nodes)			12%
(+ Nodes)			5%

Systemic therapy

Prognostic Factors

- Axillary nodes
- Tumor size
- Histologic grade
- Estrogen and progesterone receptors
- HER-2/neu
- So many more (Ki67, TILs,....)

Biological Markers May Predict Therapeutic Response

 ER status is used to select for patients to receive or not hormone therapy

Estrogen modulation as a therapy

1896 GT Beatson - Oophorectomy in premenopausal women

1944 A Haddow - Synthetic estrogen (stilbestrol) as treatment of breast cancer

1952 C Huggins - Adrenalectomy

(1966 Wins Nobel Prize for development of endocrine therapy in prostate cancer)

Central role for estrogen receptor in normal and cancerous breast

Rumi et al. Endocrinology 2014

Quaynor et al. N Engl J Med 2013

Physiologic actions of estrogen receptors – distribution of receptor expression

Drummond A E, and Fuller PJ J Endocrinol 2010;205:15-23

FOXA1 as key pioneer in breast/prostate cancer

Estrogens and the G1 Checkpoint

Prall et al, JBC 1997

wild-type

cyclin D1-/-

Sicinski et al, J Mammary Gland Biol 1997

Osborne et al, Can Res 1983

Targets of Inhibition

Premenopausal

LH, luteinizing hormone; SERM, selective estrogen receptor modulator; SERD, selective estrogen receptor down-regulator.

Benefit of hormone therapy for ER+ metastatic breast cancer

Mouridsen H et al. JCO 2003

 Re-targeting of ER with a different type of drug is often effective after 1st line failure. This highlights the dependence of the tumor.

Phase III trials showing superiority of third-generation aromatase inhibitors to megestrol acetate as second-line therapy for patients with metastatic breast cancer resistant to tamoxifen

Table 2. Phase III trials showing superiority of third-generation aromatase inhibitors to megestrol acetate as second-line therapy for patients with metastatic breast cancer resistant to tamoxifen

T								
Study	AI	n	ORR(%)a	Clinical benefit (%) ^a	Median TTP (mo) ^a	Median OS (mo) ^a	MDR ^a	
Jonat et al. [16]	Anastrozole	764	13 vs. 12	42 vs. 40	4.8 vs. 4.6	27 vs. 23 ($p = .02$)	-	
Buzdar et al. [14]	Anastrozole	378	-	34 vs. 33	_	N/A	-	
Dombernowsky et al. [15]	Letrozole	551	24 vs. 16 ($p = .04$)	24 vs. 15 ($p = .001$)	5.6 vs. 5.5	N/A	NR vs. 18 $(p = .02)$	
Kaufmann et al. [18]	Exemestane	769	15 vs. 12	37 vs. 35 ($p = .025$)	4.7 vs. 3.8 ($p = .037$)	NR vs. 29 $(p = .039)$	18 vs. 17	
Buzdar et al. [17]	Letrozole	602	16 vs. 15	27 vs. 23	3 vs. 3	N/A	25 vs. 30	

^aSecond value is for megestrol acetate.

Abbreviations: AI, aromatase inhibitor; MDR, median duration of response; N/A, not applicable; NR, not reached; ORR, overall response rate; OS, overall survival; TTP, time to progression.

Altundag, K. et al. Oncologist 2006;11:553-562

Genomic alterations in EGF signaling promote endocrine resistance

Memorial Sloan Kettering Cancer Center ESR1 mutations in metastatic breast cancer

ESR1 mutations promote E2-independent transcription and proliferation

Common LBD mutations locate to region key to ER activation

Agonist structure

Polyclonal Endocrine Resistance

Heterogeneity in resistance mechanisms

Razavi et al., unpublished

Mitogenic effects of estrogen via cell cycle regulation

Moghadam et al. J Carcinogen 2013

Combined ER and CDK4/6 inhibition in breast cancer

Primary Endpoint: PFS (ITT Population)

CI=confidence interval; HR=hazard ratio; ITT=intent-to-treat; NE=not estimable; PFS=progression-free survival.

Adjuvant Chemotherapy and Breast Cancer

- Adjuvant chemotherapy and/or hormonal therapy improve disease-free survival (DFS) and overall survival (OS)
- In an effort to improve outcome, further investigation has led to
 - Combination of agents
 - Sequencing of drug delivery
 - Dose escalation

Development Timeline: Breast Cancer Chemotherapy

1970s

1980s

1990s

2000s

- Pre-anthracyclines
 - CMF, CMFVP
- Anthracyclines
 - Combinations: AC, FAC, AVCMF, FEC, CEF
 - Sequence and alternating
 - Dose intensity, dose density, high-dose chemotherapy
- Taxanes (paclitaxel/docetaxel)
 - Sequential monotherapy
 - Combinations
- Biologic modifiers (trastuzumab)
 - Integration in chemotherapy strategies

15 years Follow-Up For Invasive Breast Cancer

Treatment:	Proportional Annual Recurrence Reduction:
Tamoxifen 5 yrs (ER +/Unk)	40% (+/- 3)
Combination Chemotherapy (CMF, AC, etc)	24% (+/- 2)
Ovarian Ablation	31% (+/-8) [7% +/- 4% w/ chemo]

Prognostic Factor Definition

- Reflect Natural History: predicts outcome in absence of systemic therapy
- Thus tell us when (not how) to treat a patient
- Reflect biological characteristics of the tumour such as ability to proliferate, invade, and induce angiogenesis

Routinely Accepted Prognostic Factors

Tumor

- Nodal status
- Tumor size
- Histology
- ER

Patient

Age

Ideal New Prognostic Factor

- Validated in prospective trials designed to address utility of prognostic factor in question
- Provides significant independent value on MVA including known prognostic factors
- Detectable by reproducible, feasible, standardized method
- Represents biologically plausible pathway

Molecular Portrait of Breast Cancers

DFS and OS by Subtype

Molecular Subtypes

70 Gene Signature: Mammaprint™

Derived from 295 tumors

- T<5cm, age ≤ 52 yrs
- 151 NO, 144 N+
- 90 CTX, 20 hormonal, 20 both
- Diagnosed 1984 1995

Overall Survival by Amsterdam Gene Signature

F Lymph-Node-Positive Patients

No. ATRISK

Good signature 55 55 54 43 30 19 11

Poor signature 89 81 68 50 29 19 9

D Lymph-Node-Negative Patients

No. ATRISK Good signature 60 59 58 48 35 24 12 Poor signature 91 86 66 50 33 21 10

Oncotype DX™

16 Cancer and 5 Reference Genes

250 Candidate Genes, 3 Studies, 447 Pts

PROLIFERATION

Ki-67 STK15 Survivin Cyclin B1 MYBL2

Stromolysin 3 Cathepsin L2

Best RT-PCR performance and most robust predictors HER2

GRB7 HER2 ER

ESTROGEN

PGR Bcl2 SCUBE2

INVASION

GSTM1 **CD68** BAG1

REFERENCE

Beta-actin **GAPDH RPLPO GUS** TFRC

Recurrence Score (RS) Algorithm

- + 1.04 x Proliferation Group Score
- + 0.47 x HER2 Group Score
- 0.34 x ER Group Score
- + 0.10 x Invasion Group Score
- 0.08 x GSTM1
- 0.07 x BAG1
- + 0.05 x CD68

Category	RS (0-100)	% Cases	
Low risk	< 18	51	
Inter risk	18 - 30	22	
High risk	≥ 31	27	

Prognosis vs Prediction

- Prognostic factors most useful if they identify patients with such a good prognosis that adjuvant treatment is NOT required
- A pure prognostic factor does not tell us how to best treat a patient in the poor prognosis group
- It is increasingly clear that multiple tumor factors impact upon the success of therapy

B-20 All Disease Free Survival

Paik S, JCO 2006; 24:3726-34

B-20 Low RS < 18 Disease Free Survival

Paik S, JCO 2006; 24:3726-34

B-20 High RS ≥ 31 Disease Free Survival

Clinical Application of Oncotype DX™

Clinical Application of Oncotype DX™

Multimodal data integration represents a frontier of Computational Oncology

Data Science -> Real World Data

- Combining information sources for increased predictive power
- Improving patient stratification & personalized medicine

Discovery of new Tumor Biology

- Uncovering critical cellular states
- Tumor microenvironment composition, architecture and dynamics
- Tumor evolution, drug resistance, new therapeutics

Measuring & modeling the 'whole patient'

Boehm et al Nat Rev Can 2021 Vanguri et al Nat Cancer 2022 Boehm et al Nat Cancer 2022 Kather et al **Nature Med**Sammut et al **Nature**Crispin-Ortuzar et al **Nature Comm**Truhn et al **NPJ Prec Oncology** Measuring & modeling the 'whole tumor'

Shi et al **Nature Comm** 2024 Vazquez-Garcia *et a*l **Nature** 2022

Predicting Oncotype ROR from H&E and path reports

https://www.biorxiv.org/content/10.1101/2024.02.23.581806v1

False Positive Rate

High and low risk strata cleanly modeled

Boehm, El Nahhas, Marra, Kather, et al https://www.biorxiv.org/content/10.1101/2024.02.23.581806v1

Impact of Oncotype DX™ On Therapy

In practice	43% low risk
	47% int risk
	10% high risk
CTX ── E	22.5%
E	3.4%
No Change	74.1%

HER2 and Breast Cancer

- Overexpressed in nearly 20% of metastatic breast carcinomas
- HER2-positive breast cancer associated with worse outcomes

HER2+

HER2 amplification

ErbB receptors and ligands

Breast Cancer Research

Activation of ErbB receptors

ErbB receptor signaling cascades

HER2+ breast tumors are driven by AKT

Strategies to target HER2 driven cancers

Target key downstream signaling molecules

Trastuzumab: Humanized Anti-HER2 Antibody

Trastuzumab = recombinant humanized monoclonal antibody to the extracellular domain of HER2. Antibody (shown in blue) contacts 3 extracellular loops of HER2.

Contacts =1:557-561, 2: 570-573, 3:593-603

Trastuzumab: Humanized Anti-HER2 Antibody

- High affinity & specificity
- 95% human, 5% murine
 - Decreases potential for immunogenicity
 - Increases potential for recruiting immune effector mechanisms

Trastuzumab First-Line Monotherapy in MBC: Response by HER2 status

(All Patients IHC 2+/3+)

(All Fallerits II IC 2+/3+)		
	3+ n (%)	2+ n (%)
No. of evaluable patients	84	27
ORR (%)	29 (35)	0 (0)
	FISH+	FISH-

	FISH+ n (%)	FISH- n (%)
No. of evaluable patients	79	29
ORR (%)	27 (34)	2 (7)

Vogel et al: JCO 2002 20(3):719-726

Trastuzumab Added To ChemoRx Improves Survival In MBC

Efficacy.... and resistance

HER2-Targeted Therapy with Pertuzumab

- Monoclonal antibody and pan-HER inhibitor
- Binds to a distinct epitope on the HER2 extracellular domain-prevents dimerization
- Pertuzumab is approved w/ trastuzumab and docetaxel in MBC-1st-line

Final OS Analysis

Median follow-up 50 months (range 0-70 months)

ITT population. Stratified by geographic region and neo/adjuvant chemotherapy.

CI, confidence interval; D, docetaxel; HR, hazard ratio; OS, overall survival; Pla, placebo; Ptz, pertuzumab; T, trastuzumab.

Prognosis in MBC by HER2 Status and by Therapy With Trastuzumab

Breast Cancer Subtype (1st Line Setting)	Median Survival
HER2-positive (Slamon et al, NEJM 2001)	20.3 mo
ER+/HER2-negative (Finn et al, ASCO 2017)	37.5 mo
HER2-positive — treated with TP (Baslega et al, CLEOPATRA)	56.5 mo

T= trastuzumab P=pertuzumab

Inhibition of PI3K/AKT/mTOR activates RTK signaling: AKT inhibition

BT-474(light exposure)

BT-474(dark exposure)

From Chandarlapaty, S. et al 2011 (Cancer Cell v19:58-71)

Relief of feedback limits antitumor efficacy

HER2 expression persists post-HER2 Tx:

96 patients with HER2+ BC s/p HER2 targeted therapy in the adjuvant or metastatic setting who underwent biopsies

IHC/FISH RESULTS	No. Cases	(%)
Positive	74	77%
Negative	21	22%
Equivocal	1	1%

26 patients s/p treatment with both pertuzumab-based therapy and T-DM1

IHC/FISH RESULTS	No. Cases	(%)
Positive	20	77%
Negative	6	23%

DS8201a: a novel anti-HER2 antibody drug conjugate (ADC)

Conjugation chemistry

The linker is connected to cysteine residue of the antibody

DS8201a compared to T-DM1

	DS-8201a	T-DM1
Antibody	Anti-HER2 mAb	Trastuzumab (Tmab)
Payload	Topoisomerase I inhibitor (DXd)	Tubulin inhibitor (DM1)
DAR*	7-8	3.5

ADC direct and bystander effect

Bystander effect of TDXd

Striking efficacy of TDXd in resistant models and patients

Smith et al., Nature Comm 2021

Response and Treatment Duration

