Cancer Bio Course Session 3: From observation to experimentation. Cancer evolution and the role of the tumor microenvironment. August 21st, 2024 Pablo Sánchez Vela, MD Senior Research Scientist Human Oncology and Pathogenesis Program sanchezp@mskcc.org ## Paper discussion #### Article ## Lung adenocarcinoma promotion by air pollutants https://doi.org/10.1038/s41586-023-05874-3 Received: 17 June 2022 Accepted: 21 February 2023 Published online: 5 April 2023 Check for updates William Hill^{1,126}, Emilia L. Lim^{1,2,126,127}, Clare E. Weeden^{1,126}, Claudia Lee^{1,2,3}, Marcellus Augustine^{1,2,3,4}, Kezhong Chen^{2,5}, Feng-Che Kuan^{6,7}, Fabio Marongiu^{8,9}, Edward J. Evans Jr8, David A. Moore 12,10, Felipe S. Rodrigues 11, Oriol Pich 1, Bjorn Bakker 1, Hongui Cha^{2,12}, Renelle Myers¹³, Febe van Maldegem^{14,15}, Jesse Boumelha¹⁴, Selvaraju Veeriah², Andrew Rowan¹, Cristina Naceur-Lombardelli², Takahiro Karasaki^{1,2,16}, Monica Sivakumar², Swapnanil De², Deborah R. Caswell¹, Ai Nagano^{1,2}, James R. M. Black^{2,17}, Carlos Martínez-Ruiz^{2,17}, Min Hyung Ryu¹⁸, Ryan D. Huff¹⁸, Shijia Li¹⁸, Marie-Julie Favé¹⁹, Alastair Magness^{1,2}, Alejandro Suárez-Bonnet^{20,21}, Simon L. Priestnall^{20,21}, Margreet Lüchtenborg^{22,23}, Katrina Lavelle²², Joanna Pethick²², Steven Hardy²², Fiona E. McRonald²², Meng-Hung Lin²⁴, Clara I. Troccoli^{8,25}, Moumita Ghosh²⁶, York E. Miller^{26,27}, Daniel T. Merrick²⁸, Robert L. Keith^{26,27}, Maise Al Bakir^{1,2}, Chris Bailey¹, Mark S. Hill¹, Lao H. Saal^{29,30}, Yilun Chen^{29,30}, Anthony M. George^{29,30}, Christopher Abbosh², Nnennaya Kanu², Se-Hoon Lee¹², Nicholas McGranahan^{2,17}, Christine D. Berg³¹, Peter Sasieni³², Richard Houlston³³, Clare Turnbull³³, Stephen Lam¹³, Philip Awadalla¹⁹, Eva Grönroos¹, Julian Downward¹⁴, Tyler Jacks^{34,35}, Christopher Carlsten¹⁸, Ilaria Malanchi¹¹, Allan Hackshaw³⁶, Kevin Litchfield^{2,4}, TRACERx Consortium*, James DeGregori^{8,127}, Mariam Jamal-Hanjani^{2,16,37,127} & Charles Swanton^{1,2,37} ✓ ## Paper discussion - Explanation of the question under research why did they decide to do this? - **Discussion figure by figure** *is this paper not as good as authors think?:* - What is the point of each figure/panel? - Are there any missing experimental conditions? - Are results interpretable? - Do the results support the conclusions by the authors? - Would you have done anything differently? - Are there any missing experiments? - What are the limitations of the work? - What experiments could be done as a follow-up to the paper? # Fig. 1: Exploring the association between cancer and air pollution. ## Basics about preclinical validation #### Correlation versus causation ## Basics about preclinical validation Preclinical models ## Basics about preclinical validation Some pros and cons ### In vitro models #### **Cell lines** - Very easy to work with, quicker and cheaper - Allow easy genetic manipulation - Very simplified model, 2D, no tumor microenvironment (TME) #### Organoids - Relatively easy to work with, quick and cheap. - Allow relatively easy genetic manipulation - 3D system that reproduces fairly well the behavior of tumors - Simplified model, no TME ### In vivo models #### Patient-derived xenografts (PDXs) - Reproduce very well the behavior of tumors (specially in treatment response) - As close as you can get to an actual human tumor - No TME - Expensive, time-consuming - Very difficult genetic manipulation #### **GEMMs** - Can reproduce well the biology of human tumors - TME - Expensive and time-consuming - Not human! #### Cell line xenografts - Allow easy genetic manipulation (cell line) and in vivo study (xenograft) - No TME - Derived from a very simplified model (cell line) ### **GEMM** Figure 2: Cre-expressing and loxP-expressing mice are separately engineered, and then crossed to generate Cre-lox mice that express both Cre and a floxed gene segment. These mice can undergo recombination of the floxed gene segment to create knockouts or knockins. Image from Matthias Zepper. ### **GEMM** control ### Fig. 2: PM promotes lung tumorigenesis. # Fig. 3: Increased progenitor-like ability of EGFR mutant cells following PM exposure. ### The importance of context #### **The Reductionist View** #### A Heterotypic Cell Biology ### Fig. 4: Mutational landscapes of healthy lung tissue. ### Study design, DNA analysis & epidemiology. ## Thanks for your attention! Any questions?