## Cancer Bio Course

Session 3: From observation to experimentation. Cancer evolution and the role of the tumor microenvironment.

August 21st, 2024



Pablo Sánchez Vela, MD
Senior Research Scientist
Human Oncology and Pathogenesis Program
sanchezp@mskcc.org

## Paper discussion

#### Article

## Lung adenocarcinoma promotion by air pollutants

https://doi.org/10.1038/s41586-023-05874-3

Received: 17 June 2022

Accepted: 21 February 2023

Published online: 5 April 2023

Check for updates

William Hill<sup>1,126</sup>, Emilia L. Lim<sup>1,2,126,127</sup>, Clare E. Weeden<sup>1,126</sup>, Claudia Lee<sup>1,2,3</sup>, Marcellus Augustine<sup>1,2,3,4</sup>, Kezhong Chen<sup>2,5</sup>, Feng-Che Kuan<sup>6,7</sup>, Fabio Marongiu<sup>8,9</sup>, Edward J. Evans Jr8, David A. Moore 12,10, Felipe S. Rodrigues 11, Oriol Pich 1, Bjorn Bakker 1, Hongui Cha<sup>2,12</sup>, Renelle Myers<sup>13</sup>, Febe van Maldegem<sup>14,15</sup>, Jesse Boumelha<sup>14</sup>, Selvaraju Veeriah<sup>2</sup>, Andrew Rowan<sup>1</sup>, Cristina Naceur-Lombardelli<sup>2</sup>, Takahiro Karasaki<sup>1,2,16</sup>, Monica Sivakumar<sup>2</sup>, Swapnanil De<sup>2</sup>, Deborah R. Caswell<sup>1</sup>, Ai Nagano<sup>1,2</sup>, James R. M. Black<sup>2,17</sup>, Carlos Martínez-Ruiz<sup>2,17</sup>, Min Hyung Ryu<sup>18</sup>, Ryan D. Huff<sup>18</sup>, Shijia Li<sup>18</sup>, Marie-Julie Favé<sup>19</sup>, Alastair Magness<sup>1,2</sup>, Alejandro Suárez-Bonnet<sup>20,21</sup>, Simon L. Priestnall<sup>20,21</sup>, Margreet Lüchtenborg<sup>22,23</sup>, Katrina Lavelle<sup>22</sup>, Joanna Pethick<sup>22</sup>, Steven Hardy<sup>22</sup>, Fiona E. McRonald<sup>22</sup>, Meng-Hung Lin<sup>24</sup>, Clara I. Troccoli<sup>8,25</sup>, Moumita Ghosh<sup>26</sup>, York E. Miller<sup>26,27</sup>, Daniel T. Merrick<sup>28</sup>, Robert L. Keith<sup>26,27</sup>, Maise Al Bakir<sup>1,2</sup>, Chris Bailey<sup>1</sup>, Mark S. Hill<sup>1</sup>, Lao H. Saal<sup>29,30</sup>, Yilun Chen<sup>29,30</sup>, Anthony M. George<sup>29,30</sup>, Christopher Abbosh<sup>2</sup>, Nnennaya Kanu<sup>2</sup>, Se-Hoon Lee<sup>12</sup>, Nicholas McGranahan<sup>2,17</sup>, Christine D. Berg<sup>31</sup>, Peter Sasieni<sup>32</sup>, Richard Houlston<sup>33</sup>, Clare Turnbull<sup>33</sup>, Stephen Lam<sup>13</sup>, Philip Awadalla<sup>19</sup>, Eva Grönroos<sup>1</sup>, Julian Downward<sup>14</sup>, Tyler Jacks<sup>34,35</sup>, Christopher Carlsten<sup>18</sup>, Ilaria Malanchi<sup>11</sup>, Allan Hackshaw<sup>36</sup>, Kevin Litchfield<sup>2,4</sup>, TRACERx Consortium\*, James DeGregori<sup>8,127</sup>, Mariam Jamal-Hanjani<sup>2,16,37,127</sup> & Charles Swanton<sup>1,2,37</sup> 

✓

## Paper discussion

- Explanation of the question under research why did they decide to do this?
- **Discussion figure by figure** *is this paper not as good as authors think?:* 
  - What is the point of each figure/panel?
  - Are there any missing experimental conditions?
  - Are results interpretable?
  - Do the results support the conclusions by the authors?
  - Would you have done anything differently?
  - Are there any missing experiments?
  - What are the limitations of the work?
  - What experiments could be done as a follow-up to the paper?

# Fig. 1: Exploring the association between cancer and air pollution.



## Basics about preclinical validation

#### Correlation versus causation







## Basics about preclinical validation

Preclinical models



## Basics about preclinical validation

Some pros and cons

### In vitro models

#### **Cell lines**

- Very easy to work with, quicker and cheaper
- Allow easy genetic manipulation
- Very simplified model, 2D, no tumor microenvironment (TME)

#### Organoids

- Relatively easy to work with, quick and cheap.
- Allow relatively easy genetic manipulation
- 3D system that reproduces fairly well the behavior of tumors
- Simplified model, no TME

### In vivo models

#### Patient-derived xenografts (PDXs)

- Reproduce very well the behavior of tumors (specially in treatment response)
- As close as you can get to an actual human tumor
- No TME
- Expensive, time-consuming
- Very difficult genetic manipulation

#### **GEMMs**

- Can reproduce well the biology of human tumors
- TME
- Expensive and time-consuming
- Not human!

#### Cell line xenografts

- Allow easy genetic manipulation (cell line) and in vivo study (xenograft)
- No TME
- Derived from a very simplified model (cell line)

### **GEMM**



Figure 2: Cre-expressing and loxP-expressing mice are separately engineered, and then crossed to generate Cre-lox mice that express both Cre and a floxed gene segment. These mice can undergo recombination of the floxed gene segment to create knockouts or knockins. Image from Matthias Zepper.

### **GEMM** control



### Fig. 2: PM promotes lung tumorigenesis.



# Fig. 3: Increased progenitor-like ability of EGFR mutant cells following PM exposure.



### The importance of context

#### **The Reductionist View**



#### A Heterotypic Cell Biology









### Fig. 4: Mutational landscapes of healthy lung tissue.



### Study design, DNA analysis & epidemiology.









## Thanks for your attention!

Any questions?

