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Preliminaries

* Once a week, in person
* We might have one week over zoom when | am traveling

* Asking Questions During Lectures
* Please do. The more the better. There are no bad questions in this class



Preliminaries

* All documents on Moodle

* Email for announcements/updates

* No textboooks

* These slides and your class notes will function like a textbook



Homework Assignments

* Assigned on Tuesday, due back on next Tuesday
* Do not wait until Sunday evening to start the homework

* A mix of problem sets and reading
* Problems sets will be graded
e Reading assignments will be discussed in class. We expect everyone will
participate
e Suggest reading materials from your literature
e Send to us and we will decide when it is the right time



What This Course Is and Is Not

* What This Course Will NOT Do * What This Course Will Try to DO

* Give you skills of a data analyst or * Provide Statistical Literacy
a statistician * Teach Critical Thinking from a
* Make you proficient in statistical Quantitative Perspective in Clinical
software Research
* We hope you do not become * We Hope You Will
* Someone who is overconfident in * Know what you know
their knowledge and  Know what you don’t know

understanding of statistics



How Is This Course Different Than Other
Statistics Classes You Might Have Taken?

e Students are different

 Completed advanced medical training
* Already engaged in research

* (Some ?) respect for statistics as the language of empirical research
e Highly motivated to learn, not just to graduate



How Is This Course Different Than Other
Statistics Classes You Might Have Taken?

* Teachers are different
 Combined experience of ~ 25 years in medical research
 First-hand experience with hundreds of clinical researchers
* Highly motivated to teach, not just go through the motions



How Is This Course Different Than Other
Statistics Classes You Might Have Taken?

* Unique focus on cancer research
e Statistics is a field widely used in many disciplines
* Fundamental principles are the same, but details differ widely

* What is relevant to behavioral science or experimental physics, or
even infectious diseases can be quite different than what is relevant
to cancer



Potential Pitfalls

* Diverse baseline knowledge of statistics

* Do not doze off thinking “I know this”
* You either do not know it
* Or you know it wrong
e Or at best, your knowledge is incomplete



Populations =2 Samples
Parameters =2 Estimates

* We need to recognize that our data is a sample from some
populations

* It may not be (most likely is not) a random sample

* The population may not be so easy to define but it is there, at least
conceptually

* Parameters are population quantities; samples give us estimates of
parameters

 Many many concepts in statistics depend on this duality between
population and samples



What is our population?

* |deally, we should begin all clinical research studies with a definition
of the population

e Clinical trials try to do this
* Inclusion/exclusion criteria in the protocols is an attempt to define the
population

* In observational studies we too often start with the data (sample) and
try to figure out the population from the data
e Exactly the opposite of what we should do
* We will come back to this over and over again in this course



But what is it?

* It is difficult to define your population
* Suppose we have a single-institution Phase Il clinical trial

* All patients with stage IV colorectal cancer scheduled for liver
resection and candidates for adjuvant chemotherapy

* This is our population, give or take some details such as sufficient liver
function, no chronic Gl disease etc etc

* So, the sample (patients who will enroll) is from this population



Not so quick

 All patients will be at MSK
* Does this mean our population is such MSK patients?

* Or do we mean such patients everywhere, but we think sampling
MSK patients is enough

* Worth thinking
* Not entirely a statistical issue but has statistical consequences



Assuming we agreed on a population

 And we were able to obtain a sample ...

e Our conceptual problems have not ended

* There is almost never a random sample

 What we can hope for is a representative sample



Example: Phase Il Trial

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Long-Term Follow-up of CD19 CAR Therapy
in Acute Lymphoblastic Leukemia

Jae H. Park, M.D., Isabelle Riviere, Ph.D., Mithat Gonen, Ph.D.,
Xiuyan Wang, Ph.D., Brigitte Sénéchal, Ph.D., Kevin J. Curran, M.D.,
Craig Sauter, M.D., Yongzeng Wang, Ph.D., Bianca Santomasso, M.D., Ph.D.,
Elena Mead, M.D., Mikhail Roshal, M.D., Peter Maslak, M.D.,

Marco Davila, M.D., Ph.D., Renier J. Brentjens, M.D., Ph.D.,
and Michel Sadelain, M.D., Ph.D.



Population & Parameter

* CD19+ B-cell acute lymphoblastic leukemia (ALL)
* Relapsed of refractory disease

* Primary endpoint: response (complete remission)
* What is our parameter?

* Response rate: P(Response=1) =r



Sample and Estimate

* 53 patients

* Table 1 of the paper describes
the sample

* It is a subjective evaluation
whether this is representative of
the population

* 44 of 53 patients responded

* What can we do this with this
information?

Table 1. Characteristics of the 53 Patients at Baseline.*

Characteristic
Age
Median (range) — yr
Distribution — no. (%)
18-30yr
31-60yr
>60 yr
No. of previous therapies — no. (%)
2
3
=4
Primary refractory disease — no. (%)
Yes
No
Previous allogeneic HSCT — no. (%)
Yes
No
Previous treatment with blinatumomab — no. (%)
Yes
No
Pretreatment disease burdent
Median bone marrow blasts (range) — %

Bone marrow blasts — no. (%)

=5%
<5% with extramedullary disease
=0.01% and <5%
<0.01%
Philadelphia chromosome—positive — no. (%)
Yes
No

Value

44 (23-74)

14 (26)
31 (58)
8 (15)

21 (40)
13 (25)
19 (36)

12 (23)
41 (77)

19 (36)
34 (64)

13 (25)
40 (75)

63 (5-97)

27 (51)
5(9)
15 (28)
6 (11)

16 (30)
37 (70)




Things we can do

* Point estimate: produce a single number that represents our best
guess at what the parameter value might be

* Interval estimate: produce an interval that is likely to contain the true
value of the parameter

* Hypothesis testing: produce a yes/no answer to question about r
(such as r<=ry vs r>ry where r; is a pre-specified number)



Point Estimate

* Most of the time there is a sample analog of the population definition

* r is the proportion of responders in the population; can we use the
proportion of responders in the sample to estimate r?

* Yes!

* Sometimes sample analogs are not great estimates, but we will ignore
that for now (famous example: standard deviation)



Maximum Likelihood Estimates

* This is a general method to generate point estimates

* It turns out that sample analogs are also maximum likelihood
estimates

* We will not discuss what maximum likelihood estimates are in this
class, but you should know that it is a generically good way of
obtaining estimates to pretty much any parameter



Back to the Example

* 44/53 (= 0.83) responded
* We often say response rate is 83%

* Any time you hear this you should think in your mind “Our point
estimate for response rate in this data set is 83%”

* The true response rate in the population is very unlikely to be exactly
83% but we hope it is close

* It will be close if we did our homework: good sampling, good data
collection and good statistical analysis



Why is the parameter not 83%

* Imagine we repeated the study, same inclusion/exclusion criteria,
same everything but different individuals enrolling.

* It would be possible but unlikely to get 44 responders again.

* Imagine we repeated the study 100 times. Many of these would not
have 44 responders.

* So 44 responders and 83% is nothing special. It is somewhere in the
vicinity of the right answer but it is not the right answer. Each
repeated study will give a slightly different answer.



What then?

* Interval estimate: Can we produce an interval that is likely to contain
the true value?

* Go back to imagining the repeated studies

* What if there is a way to say: here is a formula to produce an interval
estimate from a given data set; do it for each of the 100 repeats and
obtain 100 interval estimates. 95% of these intervals will contain the
true value

* You have gotten yourself a confidence interval



Back to the Example

* 44 out of 53 =2 95% confidence interval: 70% - 92%
* What is the interpretation?

* There is a 95% chance that the true parameter value is between 70%
and 92%?

* 95% of the intervals produced this way will contain the true value of
the parameter

* Is this helpful? Maybe.



How is it helpful?

* Precise probabilistic interpretation is cumbersome
* But points out to why this is useful

* If most of the intervals will contain the true value, a single randomly
selected one of them is likely to contain the true value

* Confidence intervals are a bridge between point estimation and
hypothesis testing

* Single most underused statistical tool



Hypothesis Testing

e Suppose at the time of study design we thought 50% of patients in
this population would respond to standard of care

* Then a reasonable hypothesis to test is r<=0.50 vs r>0.50
* This is the inverse of interval estimation

* We start with pre-defined intervals and ask which interval is more
likely to contain the true value



How Does One Test A Hypothesis?

* Produce a confidence interval and see if it is entirely contained in one
of the hypothesized intervals or not.

* If it is then we rule in favor of that hypothesis

* IN this example, confidence interval is 0.7 — 0.92, entirely contained
within r>0.5, hence we conclude r>0.5

 What is the interval spanned both intervals (say it was 0.4 - 0.6)?



Asymmetry of hypothesis testing

* r<=0.50 vs r>0.50 — each is a hypothesis. One of them we want to
disprove (to be called the null hypothesis, or H,) and the other we
want to prove (alternative hypothesis, H,).

* They are not symmetrical for reasons we will discuss later in this class

* As long as our interval estimate contains a shred of the null region we
cannot rule in favor of the alternative

* For example, if the confidence interval here was 0.49-0.69



Another way of testing a hypothesis

* Generate a p-value (to be defined in the coming weeks) from the data

* If p < 0.05 the conclude alternative hypothesis is consistent with the
data, otherwise conclude null hypothesis is still the best thing we
have

* We have many discussions coming on this very popular and infamous
method



More on Point
Estimation

* Let’s use a continuous variable for
illustration

 We have a (real) data set of 1231
patients undergoing resection at MSK




Entire data as population

* Only for pedagogic purposes here

* Assume that the 1231 numbers we have as age is the entire
population

* | have access to the entire population (i.e. all 1231 records); you don’t

* You want to estimate the mean age of the population and | agreed to
give you a very small sample from the population, for the time being
only 10 samples.



Sample

* Here is a randomly chosen sample of 10 ages from this population
* 6873804867 74685552 63

* How do you estimate the population mean from this sample?



Sample Mean

* 89596044 658283725681
 Sample Mean: 64.8, our estimate of the population mean



89596044 658283725681 685157405258 696741 42
* 69.1 * 545

A sample for

everyone in . 6873 8048 67 74 68 55 52 €3 . 573681734429 64706077
: . 64.8 * 591
this class . 6222 856966 835566 6053 . 60522158756380747764
. 62.1 '
. 83666267 70 68 65 68 74 80
. 3854614878 317589 76 75 703
. 62.5
e 444867 508275707557 65
. 6973816672 2863577986 . 633

* 67.4




Distribution of the Sample Mean

* | want to understand how the sample mean behave
* | have 10 samples, | also have 10 sample means
* Can | use these 10 samples to see how sample mean is distributed?

 What happens to this distribution if sample size increases?
* | will continue to give everyone in the class additional rounds of samples
e At each round sample size will increase
* | will plot histograms of each round
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Law of Large Numbers

* As the sample size increases, the distribution of the sample mean
gets more and more concentrated

* This is called the law of large numbers

* Can we figure out the value around which the sample means gets
more concentrated?
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Why is this important?

* Look at the previous figure. For all of them the red line is in the
middle.

* So regardless of the sample size the distribution of the sample mean
is centered around the (true) population mean

* But in real like we will have only one sample, so this is nice but kind of
useless



The devil is in the tails

* If | will not give everyone a sample, but instead give only one sample
for everyone in the class to use ...

* Would you want a size of 10, 50, ..., 10007
* Why?

* If sample size is 10, which sample | get matters quite a lot. My
estimate of the mean can be 54 or 70

* If my sample size is 100, it matters less (between 61 and 70) but it still
does a little

* If my sample size is 1000, all the samples have a mean between 63.4
and 64.3



Summary of what we did

* We obtained multiple samples from a population
* Calculated the sample mean for each sample

* We looked at the distribution (via a histogram) of the means in a
sample

* We saw that each sample size gets larger, the means got concentrated
around the population mean

* This is called the law of large numbers



Why is it important?

* It provides a justification for the intuitive thought that large sample
sizes are better

* In practice we will be able to observe only one sample. If our sample
size is large, sample mean does not vary too much from one sample
to the other, hence we can rest assured having observed a single
sample is OK. If we had gotten another sample its sample mean
would be very close to the first one anyway

* But in a small sample, sample-to-sample variability is substantial.
With one sample we can be really off.



Some generalizations

* Instead of sample mean you say “estimate” and this statement will be
true

* In fact this is one definition of a good estimate (does it satisfy the law
of large numbers?)

e So this idea is not limited to means



Works for binary data too!

 This idea is not limited to continuous variables either
e Sample proportion is like a sample mean

* If we repeat what we just did for a proportion we will observe a
similar finding.

* |n fact, “works” for all kinds of data



Can we say
more about
the
distribution of

these repeated
samples?
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100 Samples

Instead of 10

Frequency

Frequency

Frequency

20 30 40

10

15 20

5 10

0

20 30 40

10

Sample Mean (Each Size 10)

[ I I I I 1
50 55 60 65 70 75

allmeans

Sample Mean (Each Size 100)

[ T T T T 1
50 55 60 65 70 75

allmeans

Sample Mean (Each Size 500)

|

T T T T T 1
50 55 60 65 70 75

allmeans

Frequency

Frequency

Frequency

15 20

10

15 20 25

5 10

0

20 30 40

10

Sample Mean (Each Size 50)

—
I T T T T 1
50 55 60 65 70 75
allmeans
Sample Mean (Each Size 250)

I T T T T 1
50 55 60 65 70 75
allmeans
Sample Mean (Each Size 1000)

I T T T T 1
50 55 60 65 70 75
allmeans



Frequency

Frequency

Frequency

150 200

100

50

80 120

40

100 150

50

Sample Mean (Each Size 10)

50 55 60 65 70 75
allmeans
Sample Mean (Each Size 100)

[ [ | [ I 1
50 55 60 65 70 75
allmeans
Sample Mean (Each Size 500)

[ [ | [ I 1
50 55 60 65 70 75

allmeans

Frequency

Frequency

Frequency

0 20 40 60 80

60 100

20

0 20 40 60 80

Sample Mean (Each Size 50)

50 55 60 65 70 75
allmeans
Sample Mean (Each Size 250)

[ I | | I |
50 55 60 65 70 75
allmeans
Sample Mean (Each Size 1000)

[ I | | I |
50 55 60 65 70 75
allmeans



Frequency

Frequency

Frequency

100 200 300 400

0

150 250

50

100 150

50

Sample Mean (Each Size 10)

50 55 60 65 70 75
allmeans
Sample Mean (Each Size 100)
I T T T T 1
50 55 60 65 70 75
allmeans

Sample Mean (Each Size 500)

.

50

55

T
60

T T 1
65 70 75

allmeans

Frequency

Frequency

Frequency

100 150 200

50

0

200

50 100

0

150 200

100

50

Sample Mean (Each Size 50)

50 55 60 65 70 75
allmeans
Sample Mean (Each Size 250)

[ I | | I |
50 55 60 65 70 75
allmeans
Sample Mean (Each Size 1000)

[ I | | I |
50 55 60 65 70 75
allmeans



Frequency

200

150

100

50

Sample Mean (Each Size 1000)

63.0

63.5

64.0

64.5

65.0



Summary of what we did

 We obtained a large number of samples from a population
* Calculated the sample mean for each sample

* We looked at the distribution (via a histogram) of the means in a
sample

* We saw that each sample size gets larger, the means got concentrated
around the population mean

e We also saw that the distribution looks more and more like a bell
curve

* This is called the Central Limit Theorem



Why is it important?

* This bell-shaped distribution turns out to be the normal distribution
* It is not exactly normal, only approximately

e But as the size of each sample increases the approximation gets
better better

* We can make “approximate” probability calculations using this fact
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The interval between
the red lines contains
the sample means of
950 of the 1000
samples, i.e. 95%
probability



But we only have one sample in real life

* Very true
* We cannot generate any of these histograms during a data analysis

e But we can make these calculations using mathematical formulae
even though we do not have repeated samples

* The learning goal for this class is not that, it is this concept of
repeated sampling that underlies almost all statistics

* Anytime you are looking at data, close your eyes and imagine these
histograms.
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