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Preliminaries

• Once a week, in person

• We might have one week over zoom when I am traveling

• Asking Questions During Lectures
• Please do. The more the better. There are no bad questions in this class 



Preliminaries

• All documents on Moodle

• Email for announcements/updates

• No textboooks

• These slides and your class notes will function like a textbook



Homework Assignments

• Assigned on Tuesday, due back on next Tuesday

• Do not wait until Sunday evening to start the homework

• A mix of problem sets and reading
• Problems sets will be graded

• Reading assignments will be discussed in class. We expect everyone will 
participate

• Suggest reading materials from your literature
• Send to us and we will decide when it is the right time



What This Course Is and Is Not

• What This Course Will NOT Do
• Give you skills of a data analyst or 

a statistician

• Make you proficient in statistical 
software

• We hope you do not become
• Someone who is overconfident in 

their knowledge and  
understanding of statistics

• What This Course Will Try to DO
• Provide Statistical Literacy

• Teach Critical Thinking from a 
Quantitative Perspective in Clinical 
Research

• We Hope You Will 
• Know what you know

• Know what you don’t know



How Is This Course Different Than Other 
Statistics Classes You Might Have Taken?

• Students are different
• Completed advanced medical training

• Already engaged in research

• (Some ?) respect for statistics as the language of empirical research

• Highly motivated to learn, not just to graduate



How Is This Course Different Than Other 
Statistics Classes You Might Have Taken?

• Teachers are different
• Combined experience of ~ 25 years in medical research

• First-hand experience with hundreds of clinical researchers

• Highly motivated to teach, not just go through the motions



How Is This Course Different Than Other 
Statistics Classes You Might Have Taken?

• Unique focus on cancer research

• Statistics is a field widely used in many disciplines

• Fundamental principles are the same, but details differ widely

• What is relevant to behavioral science or experimental physics, or 
even infectious diseases can be quite different than what is relevant 
to cancer 



Potential Pitfalls

• Diverse baseline knowledge of statistics

• Do not doze off thinking “I know this”
• You either do not know it

• Or you know it wrong

• Or at best, your knowledge is incomplete



Populations → Samples
Parameters → Estimates
• We need to recognize that our data is a sample from some 

populations

• It may not be (most likely is not) a random sample

• The population may not be so easy to define but it is there, at least 
conceptually

• Parameters are population quantities; samples give us estimates of 
parameters

• Many many concepts in statistics depend on this duality between 
population and samples



What is our population?

• Ideally, we should begin all clinical research studies with a definition 
of the population

• Clinical trials try to do this
• Inclusion/exclusion criteria in the protocols is an attempt to define the 

population

• In observational studies we too often start with the data (sample) and 
try to figure out the population from the data
• Exactly the opposite of what we should do

• We will come back to this over and over again in this course



But what is it?

• It is difficult to define your population

• Suppose we have a single-institution Phase II clinical trial

• All patients with stage IV colorectal cancer scheduled for liver 
resection and candidates for adjuvant chemotherapy

• This is our population, give or take some details such as sufficient liver 
function, no chronic GI disease etc etc

• So, the sample (patients who will enroll) is from this population



Not so quick

• All patients will be at MSK

• Does this mean our population is such MSK patients?

• Or do we mean such patients everywhere, but we think sampling 
MSK patients is enough
• Worth thinking

• Not entirely a statistical issue but has statistical consequences



Assuming we agreed on a population 

• And we were able to obtain a sample …

• Our conceptual problems have not ended

• There is almost never a random sample

• What we can hope for is a representative sample



Example: Phase II Trial



Population & Parameter

• CD19+ B-cell acute lymphoblastic leukemia (ALL)

• Relapsed of refractory disease

• Primary endpoint: response (complete remission)

• What is our parameter?

• Response rate: P(Response = 1) = r



Sample and Estimate

• 53 patients

• Table 1 of the paper describes 
the sample

• It is a subjective evaluation 
whether this is representative of 
the population

• 44 of 53 patients responded

• What can we do this with this 
information?



Things we can do

• Point estimate: produce a single number that represents our best 
guess at what the parameter value might be

• Interval estimate: produce an interval that is likely to contain the true 
value of the parameter

• Hypothesis testing: produce a yes/no answer to question about r 
(such as r<=r0 vs r>r0 where r0 is a pre-specified number)



Point Estimate

• Most of the time there is a sample analog of the population definition

• r is the proportion of responders in the population; can we use the 
proportion of responders in the sample to estimate r?

• Yes!

• Sometimes sample analogs are not great estimates, but we will ignore 
that for now (famous example: standard deviation)



Maximum Likelihood Estimates

• This is a general method to generate point estimates

• It turns out that sample analogs are also maximum likelihood 
estimates

• We will not discuss what maximum likelihood estimates are in this 
class, but you should know that it is a generically good way of 
obtaining estimates to pretty much any parameter



Back to the Example

• 44/53 (= 0.83) responded

• We often say response rate is 83%

• Any time you hear this you should think in your mind “Our point 
estimate for response rate in this data set is 83%”

• The true response rate in the population is very unlikely to be exactly 
83% but we hope it is close

• It will be close if we did our homework: good sampling, good data 
collection and good statistical analysis



Why is the parameter not 83%

• Imagine we repeated the study, same inclusion/exclusion criteria, 
same everything but different individuals enrolling.

• It would be possible but unlikely to get 44 responders again. 

• Imagine we repeated the study 100 times. Many of these would not 
have 44 responders.

• So 44 responders and 83% is nothing special. It is somewhere in the 
vicinity of the right answer but it is not the right answer. Each 
repeated study will give a slightly different answer.



What then?

• Interval estimate: Can we produce an interval that is likely to contain 
the true value?

• Go back to imagining the repeated studies

• What if there is a way to say: here is a formula to produce an interval 
estimate from a given data set; do it for each of the 100 repeats and 
obtain 100 interval estimates. 95% of these intervals will contain the 
true value

• You have gotten yourself a confidence interval



Back to the Example

• 44 out of 53 → 95% confidence interval: 70% - 92% 

• What is the interpretation?

• There is a 95% chance that the true parameter value is between 70% 
and 92%?

• 95% of the intervals produced this way will contain the true value of 
the parameter

• Is this helpful? Maybe.



How is it helpful?

• Precise probabilistic interpretation is cumbersome

• But points out to why this is useful

• If most of the intervals will contain the true value, a single randomly 
selected one of them is likely to contain the true value

• Confidence intervals are a bridge between point estimation and 
hypothesis testing

• Single most underused statistical tool



Hypothesis Testing

• Suppose at the time of study design we thought 50% of patients in 
this population would respond to standard of care

• Then a reasonable hypothesis to test is r<=0.50 vs r>0.50

• This is the inverse of interval estimation

• We start with pre-defined intervals and ask which interval is more 
likely to contain the true value 



How Does One Test A Hypothesis?

• Produce a confidence interval and see if it is entirely contained in one 
of the hypothesized intervals or not.

• If it is then we rule in favor of that hypothesis

• IN this example, confidence interval is 0.7 – 0.92, entirely contained 
within r>0.5, hence we conclude r>0.5

• What is the interval spanned both intervals (say it was 0.4 - 0.6)?



Asymmetry of hypothesis testing

• r<=0.50 vs r>0.50 – each is a hypothesis. One of them we want to 
disprove (to be called the null hypothesis, or H0) and the other we 
want to prove (alternative hypothesis, H1).

• They are not symmetrical for reasons we will discuss later in this class

• As long as our interval estimate contains a shred of the null region we 
cannot rule in favor of the alternative
• For example, if the confidence interval here was 0.49-0.69



Another way of testing a hypothesis

• Generate a p-value (to be defined in the coming weeks) from the data

• If p < 0.05 the conclude alternative hypothesis is consistent with the 
data, otherwise conclude null hypothesis is still the best thing we 
have

• We have many discussions coming on this very popular and infamous 
method



More on Point 
Estimation

• Let’s use a continuous variable for 
illustration

• We have a (real) data set of 1231 
patients undergoing resection at MSK



Entire data as population

• Only for pedagogic purposes here

• Assume that the 1231 numbers we have as age is the entire 
population

• I have access to the entire population (i.e. all 1231 records); you don’t

• You want to estimate the mean age of the population and I agreed to 
give you a very small sample from the population, for the time being 
only 10 samples. 



Sample

• Here is a randomly chosen sample of 10 ages from this population
• 68 73 80 48 67 74 68 55 52 63

• How do you estimate the population mean from this sample?



Sample Mean

• 89 59 60 44 65 82 83 72 56 81

• Sample Mean: 64.8, our estimate of the population mean



A sample for 
everyone in 
this class

• 89 59 60 44 65 82 83 72 56 81

• 69.1

• 68 73 80 48 67 74 68 55 52 63

• 64.8

• 62 22 85 69 66 83 55 66 60 53

• 62.1

• 38 54 61 48 78 31 75 89 76 75

• 62.5

• 69 73 81 66 72 28 63 57 79 86

• 67.4

• 68 51 57 40 52 58 69 67 41 42

• 54.5

• 57 36 81 73 44 29 64 70 60 77

• 59.1

• 60 50 44 58 75 63 80 74 77 64

• 64.5

• 83 66 62 67 70 68 65 68 74 80

• 70.3

• 44 48 67 50 82 75 70 75 57 65

• 63.3



Distribution of the Sample Mean

• I want to understand how the sample mean behave

• I have 10 samples, I also have 10 sample means

• Can I use these 10 samples to see how sample mean is distributed?

• What happens to this distribution if sample size increases?
• I will continue to give everyone in the class additional rounds of samples

• At each round sample size will increase

• I will plot histograms of each round





Law of Large Numbers

• As the sample size increases, the distribution of the sample mean 
gets more and more concentrated

• This is called the law of large numbers

• Can we figure out the value around which the sample means gets 
more concentrated?





Why is this important?

• Look at the previous figure. For all of them the red line is in the 
middle.

• So regardless of the sample size the distribution of the sample mean 
is centered around the (true) population mean

• But in real like we will have only one sample, so this is nice but kind of 
useless



The devil is in the tails

• If I will not give everyone a sample, but instead give only one sample 
for everyone in the class to use …

• Would you want a size of 10, 50, …, 1000?

• Why?

• If sample size is 10, which sample I get matters quite a lot. My 
estimate of the mean can be 54 or 70

• If my sample size is 100, it matters less (between 61 and 70) but it still 
does a little

• If my sample size is 1000, all the samples have a mean between 63.4 
and 64.3



Summary of what we did

• We obtained multiple samples from a population

• Calculated the sample mean for each sample

• We looked at the distribution (via a histogram) of the means in a 
sample

• We saw that each sample size gets larger, the means got concentrated 
around the population mean 

• This is called the law of large numbers



Why is it important?

• It provides a justification for the intuitive thought that large sample 
sizes are better

• In practice we will be able to observe only one sample. If our sample 
size is large, sample mean does not vary too much from one sample 
to the other, hence we can rest assured having observed a single 
sample is OK. If we had gotten another sample its sample mean 
would be very close to the first one anyway

• But in a small sample, sample-to-sample variability is substantial. 
With one sample we can be really off.



Some generalizations

• Instead of sample mean you say “estimate” and this statement will be 
true

• In fact this is one definition of a good estimate (does it satisfy the law 
of large numbers?)

• So this idea is not limited to means



Works for binary data too!

• This idea is not limited to continuous variables either

• Sample proportion is like a sample mean

• If we repeat what we just did for a proportion we will observe a 
similar finding.

• In fact, “works” for all kinds of data



Can we say 
more about 
the 
distribution of 
these repeated 
samples?



100 Samples
Instead of 10









Summary of what we did

• We obtained a large number of samples from a population

• Calculated the sample mean for each sample

• We looked at the distribution (via a histogram) of the means in a 
sample

• We saw that each sample size gets larger, the means got concentrated 
around the population mean 

• We also saw that the distribution looks more and more like a bell 
curve

• This is called the Central Limit Theorem



Why is it important?

• This bell-shaped distribution turns out to be the normal distribution

• It is not exactly normal, only approximately

• But as  the size of each sample increases the approximation gets 
better better

• We can make “approximate” probability calculations using this fact



The interval between 
the red lines contains 
the sample means of 
950 of the 1000 
samples, i.e. 95% 
probability



But we only have one sample in real life

• Very true

• We cannot generate any of these histograms during a data analysis 

• But we can make these calculations using mathematical formulae 
even though we do not have repeated samples

• The learning goal for this class is not that, it is this concept of 
repeated sampling that underlies almost all statistics

• Anytime you are looking at data, close your eyes and imagine these  
histograms. 
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