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Mitochondria play key roles in mammalian apoptosis, a highly

regulated genetic program of cell suicide. Multiple apoptotic

signals culminate in mitochondrial outer membrane

permeabilization (MOMP), which not only couples the

mitochondria to the activation of caspases but also initiates

caspase-independent mitochondrial dysfunction. The BCL-2

family proteins are central regulators of MOMP. Multidomain

pro-apoptotic BAX and BAK are essential effectors responsible

for MOMP, whereas anti-apoptotic BCL-2, BCL-XL, and MCL-1

preserve mitochondrial integrity. The third BCL-2 subfamily of

proteins, BH3-only molecules, promotes apoptosis by either

activating BAX and BAK or inactivating BCL-2, BCL-XL, and

MCL-1. Through an interconnected hierarchical network of

interactions, the BCL-2 family proteins integrate developmental

and environmental cues to dictate the survival versus death

decision of cells by regulating the integrity of the mitochondrial

outer membrane. Over the past 30 years, research on the BCL-

2-regulated apoptotic pathway has not only revealed its

importance in both normal physiological and disease

processes, but has also resulted in the first anti-cancer drug

targeting protein–protein interactions.
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1. Introduction
Apoptosis is the best-studied form of programmed cell

death, which is indispensable for the development and

maintenance of homeostasis within multicellular organ-

isms [1]. Dysregulation of apoptosis incurs a wide variety

of human illness ranging from neurodegenerative disor-

ders to cancer [1]. Apoptosis can be initiated through

either intrinsic or extrinsic pathways, both of which acti-

vate caspases that are executioners of apoptosis; proces-

sing of cellular substrates by these enzymes leads to the

characteristic morphological and biochemical features of

apoptosis [1]. The intrinsic pathway is activated by a wide

variety of cellular stresses including DNA damage, endo-

plasmic reticulum (ER) stress, and deprivation of cyto-

kines, growth factors, or nutrients, whereas the extrinsic

pathway is initiated by the engagement of cell surface

‘death receptors’ such as FAS and TRAIL receptors

(Figure 1). The intrinsic death signals culminate in

MOMP, resulting in the release of apoptogenic factors

including cytochrome c and SMAC [2]. Upon binding to

cytochrome c and dATP, APAF-1 oligomerizes into a

heptameric complex known as the apoptosome, which

recruits and activates caspases [3]. Death receptor

engagement can lead to initiator caspase-8 and subse-

quent effector caspase-3/7 activation in so-called ‘type I’

cells, such as T-lymphocytes. However, in ‘type II’ cells,

such as hepatocytes, effector caspase activation requires a

mitochondrial amplification loop to alleviate XIAP-medi-

ated caspase inhibition through mitochondrial release of

SMAC (Figure 1).

The BCL-2 family proteins are central regulators of

MOMP [1]. The founding member BCL-2 was cloned

from the t(14;18)(q32;q21) breakpoint, pathognomonic of

human follicular lymphoma. The discovery that BCL-2

promotes cellular survival rather than proliferation initi-

ated a new category of oncogenes [4]. Over the years, at

least 15 members of the BCL-2 family have been identi-

fied that either prevent or promote apoptosis. They are

now divided into three subfamilies: first, multidomain

anti-apoptotic BCL-2, BCL-XL (BCL2L1), MCL-1,

BCL-W (BCL2L2), and A1 (BCL2A1); second, multi-

domain pro-apoptotic BAX and BAK; and third, pro-

apoptotic BH3-only molecules (BH3s). Multidomain

members share sequence homology with all four con-

served BCL-2 homology domains (BH1-4), whereas

BH3s only contain the BH3 domain. Most BCL-2 family

members also harbor a C-terminal transmembrane anchor
Current Opinion in Physiology 2018, 3:71–81
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Figure 1
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The intrinsic and extrinsic pathways of apoptosis. The intrinsic pathway is initiated by death stimuli including DNA damage, ER stress, anoikis, and

deprivation of cytokines, growth factors or nutrients, resulting in transcriptional or post-translational activation of BH3-only molecules (BH3s).

Activator BH3s, including BID, BIM, PUMA, and NOXA, directly activate BAX and BAK to induce the homo-oligomerization of BAX and BAK,

leading to mitochondrial outer member premeabilization (MOMP) and release of cytochrome c and SMAC from the mitochondrial intermembrane

space to the cytosol. Upon binding to cytochrome c and dATP, APAF-1 oligomerizes into a heptameric complex known as the apoptosome,

resulting in the recruitment and activation of caspase-9 and subsequent activation of effector caspase-3/7. The extrinsic pathway of apoptosis is

initiated by engagement of cell surface death receptors, such as FAS or TRAIL receptors, resulting in the recruitment of adaptor proteins such as

FAS-associated death domain (FADD). FADD then dimerizes with procaspase-8 to form the death-inducing signaling complex (DISC) and promote

the auto-activation of procaspase-8. In ‘type I’ cells with low expression of the caspase inhibitor XIAP, such as T-lymphocytes, death receptor

mediated caspase-8 activation is sufficient to activate effector caspase-3/-7. In ‘type II’ cells with high expression of XIAP, such as hepatocytes,

effector caspase activation requires a mitochondrial amplification loop to alleviate XIAP-mediated caspase inhibition through mitochondrial release

of SMAC. Caspase-8 mediated proteolytic cleavage of cytosolic BID into truncated BID (tBID) activates BAX and BAK-dependent MOMP,

connecting the extrinsic pathway to the intrinsic mitochondrial apoptosis pathway.
that targets these proteins to the mitochondrial outer

membrane (MOM). Although BOK shares significant

sequence homology with BAX and BAK, it neither res-

cues the apoptotic defects of Bax�/�Bak�/� double

knockout (DKO) cells nor is regulated by other BCL-2

members, and is considered as a non-canonical BCL-2

member [5].

Since the discovery of BAX and BAK, it was known that

anti-apoptotic and pro-apoptotic BCL-2 members form

heterodimers [1]. This led to a major debate in 1990s

regarding whether multidomain anti-apoptotic or pro-
Current Opinion in Physiology 2018, 3:71–81 
apoptotic BCL-2 members are downstream effectors in

controlling apoptosis. The generation of Bax�/�Bak�/�

DKO mice provided convincing evidence that BAX and

BAK are the essential downstream effectors of mitochon-

drial apoptosis [6–8]. However, BAX and BAK are kept

inactive in viable cells and need to be activated upon

death signaling to trigger MOMP. Hence, the next major

debate was how BAX and BAK are activated and whether

the ‘activator’ subgroup of BH3s are required for their

activation. The generation of

Bid�/�Bim�/�Puma�/�Noxa�/� quadruple knockout

(QKO) mice deficient for all activator BH3s provided
www.sciencedirect.com
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in vivo evidence supporting direct activation of BAX and

BAK by BID, BIM, PUMA, and NOXA. It also concur-

rently revealed that BH3-independent autoactivation of

BAX and BAK can occur when BCL-2, BCL-XL, and

MCL-1 are simultaneously downregulated, but with

slower kinetics compared to BH3-mediated activation

[9��]. Here, we summarize recent advances in how the

BAX and BAK-dependent mitochondrion-dependent cell

death program is regulated.

2. BH3s relay death signals to multidomain
BCL-2 members to initiate mitochondrial
apoptosis
BH3s are sentinels for cellular stress and function as

initiator cell death signaling molecules with each BH3

coupled to a specific death signal. Their activity is regu-

lated transcriptionally or by post-translational modifica-

tions. For example, genotoxic stress activates p53 to

induce PUMA and NOXA, while cytokine/growth factor

deprivation triggers nuclear translocation of FOXO1/3 to

transactivate PUMA or BIM in a cell type-specific manner

[1,10]. ER stress activates BIM through CHOP-mediated

transcription as well as protein phosphatase 2A-mediated

dephosphorylation [11]. In contrast, phosphorylation of

BIM by the kinases ERK and RSK targets BIM for

b-TRCP-mediated ubiquitination and subsequent pro-

teasome-dependent degradation [12]. Death receptor

ligation results in caspase-8 mediated proteolytic cleavage

of cytosolic BID into truncated BID (tBID), which then

targets to the mitochondria to activate BAX and BAK,

connecting the extrinsic pathway to the intrinsic mito-

chondrial apoptosis pathway [1]. BH3s interconnect sig-

nal transduction and multidomain BCL-2 family check-

points by either activating BAX/BAK or inactivating anti-

apoptotic BCL-2 members through direct binding

[13,14]. Accordingly, BH3s have been divided into two

classes, ‘activator’ and ‘inactivator’ (or ‘sensitizer’)

[13,14].

3. BH3-in-Groove: a structural basis of
heterodimerization between BCL-2 members
and homodimerization of BAX or BAK
The BCL-2 family proteins regulate mitochondrial apo-

ptosis through protein–protein interactions, all involving

the same BH3 helix-in-groove structure [15] (Figure 2).

The BH1, BH2, and BH3 domains of multidomain anti-

apoptotic and pro-apoptotic members can form a hydro-

phobic binding groove (or canonical dimerization groove)

that accommodates the amphipathic alpha-helical BH3

domain in BH3s. The interaction between activator BH3s

and multidomain BAX or BAK has been debated for

decades due to low binding affinity. Recent biophysical

demonstration of BID, BIM or PUMA bound to BAX or

BAK by NMR or crystal structures have helped resolve

this controversy [16–20]. The binding of BH3s to multi-

domain anti-apoptotic members is inhibitory and stable

(Figure 2A), whereas the binding of activator BH3s to
www.sciencedirect.com 
BAX/BAK is stimulatory and dynamic (Figure 2B). The

major purpose of the latter interaction is to induce the

exposure of the BH3 domain in BAX or BAK such that the

‘BH3-exposed’ BAX or BAK monomer can bind to the

hydrophobic dimerization groove of another BAX or BAK

molecule, forming symmetric homo-dimers and subse-

quent homo-oligomers (Figure 2C). Accordingly, the

interaction between activator BH3 and BAX or BAK must

be ‘hit-and-run’, consistent with the low binding affinity

between activator BH3s and BAX or BAK. In contrast,

BH3s bind tightly to anti-apoptotic BCL-2 members. By

analogy, activator BH3s are death ligands, BAX/BAK are

death receptors, and the anti-apoptotic BCL-2 members

function like ‘decoy’ death receptors that form inert

stable complexes with BH3s but are unable to assemble

the homo-oligomerized death machinery. Notably, the

BH3 domain of most BAX or BAK present in viable cells

is not exposed [9��,15,16,20–23]. Only partially activated

BAX or BAK will expose the BH3 domain and as a result

can bind to anti-apoptotic BCL-2 members (Figure 2D).

4. Direct activation of BAX and BAK by
activator BH3s
Among BH3s, BID, BIM, PUMA, and NOXA are

‘activator BH3s’ that directly interact with and induce

the stepwise structural reorganization of BAX and BAK

[7,8,9��,13,18,24–26] (Figure 3). Notably, only the BH3

peptides derived from BID and BIM, but not PUMA and

NOXA, can consistently recapitulate the full-length pro-

teins in activating BAX and BAK [27–29]. Hence, early

classification of BH3s based on the activity of BH3 pep-

tides has inherent limitations. In viable cells, BAX exists

in the cytosol as a monomer with its a1 helix keeping the

C-terminal a9 helix engaged in the dimerization groove

[21,24]. This auto-inhibited BAX monomer may be fur-

ther stabilized by forming an asymmetric dimer with the

a9 helix of one BAX molecule binding to the a1/a6
trigger site of the other BAX [30�]. In contrast, BAK is

constitutively inserted in the MOM via its C-terminal a9
helix and maintained as an inactive monomer by VDAC2

[31]. Activation of BAX involves two distinct steps, mito-

chondrial targeting and homo-oligomerization, whereas

that of BAK only involves the latter (Figure 3). To induce

mitochondrial targeting of BAX, the activator BH3s bind

to the a1 helix or the a1/a6 trigger site of BAX, resulting

in the exposure of the a1 helix and secondary disengage-

ment of the a9 helix that inserts into the MOM

[24,32,33]. Activator BH3s remain associated with the

N-terminally exposed BAX through the canonical dimer-

ization groove to drive the exposure of the BH3 domain

and ensuing homo-dimerization of BAX [16,18,24]. Bind-

ing of activator BH3s to the canonical dimerization groove

of BAK also induces the exposure of the a1 helix and the

BH3 domain [9��,17,19,20,22,34�]. X-ray crystallography

has shown the unfolding of BAX or BAK into an N-

terminal ‘core’ (a2–a5) and a C-terminal ‘latch’ (a6–
a8) upon activation by BH3 peptides [15,16,20], which
Current Opinion in Physiology 2018, 3:71–81
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Figure 2
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BH3-in-groove: a structural basis of BCL-2 family interactions that control survival or death decisions. A schematic depicts conceptual modeling

of the different interactions among the BCL-2 family proteins. The BCL-2 family proteins regulate mitochondrial apoptosis through protein–

protein interactions, all involving the same BH3 helix-in-groove structure. Multidomain BCL-2 family members have four BCL-2 homology (BH)

domains and a C-terminus hydrophobic transmembrane domain (a9 helix). The BH1, BH2, and BH3 domains of multidomain anti-apoptotic and

pro-apoptotic members form a hydrophobic binding groove (or canonical dimerization groove) that accommodates the amphipathic alpha

helical BH3 domain of BH3-only molecules as well as the BH3 domains of ‘BH3-exposed’ BAX or BAK. The binding of BH3s to multidomain

anti-apoptotic members is inhibitory and stable (a), whereas the binding of activator BH3s to BAX/BAK is stimulatory and dynamic (b). The BH3-

in-groove interaction also forms the structural basis for the formation of symmetric BAX or BAK homo-dimers (c), the minimal unit for the

assembly of higher-order homo-oligomers that permeabilize the mitochondrial outer membrane. The BH3 domain of most BAX or BAK present

in viable cells is not exposed. Only partially activated BAX or BAK will expose the BH3 domain and as a result can bind to anti-apoptotic BCL-2

members (d).
may help eject activator BH3s. Whether this occurs in the

MOM remains to be determined. The symmetric homo-

dimers of BAX or BAK further assemble into homo-

oligomers through either the a6/a6 or a3/a5 interface

[35,36]. Deciphering how the homo-oligomers of BAX or

BAK permeabilize the MOM is currently an area of

intense investigation. BAX or BAK homo-oligomers have

been proposed to form either proteinaceous or lipidic

pores in the MOM [37–39], and visualization of the BAX

oligomers in the MOM recently became feasible through

super-resolution imaging [40,41].

5. Anti-apoptotic BCL-2 members prevent
apoptosis through the sequestration of
activator BH3s or BH3-exposed BAX/BAK
monomers
Anti-apoptotic BCL-2, BCL-XL, and MCL-1 sequester

activator BH3s to prevent the initiation of BAX and BAK

activation [8,13], providing frontline protection

(Figures 2A and 3). As the second line of defense, the

anti-apoptotic BCL-2 members can also sequester ‘BH3-
Current Opinion in Physiology 2018, 3:71–81 
exposed’ BAX and BAK monomers to prevent the homo-

oligomerization of BAX and BAK [9��,15] (Figures 2D

and 3). The interaction between activator BH3s and anti-

apoptotic BCL-2 members confers mutual inhibition

because it not only prevents activator BH3s from activat-

ing BAX or BAK but also restrain the anti-apoptotics from

sequestering ‘BH3-exposed’ BAX or BAK monomers.

BID, BIM, and PUMA can prevent BCL-2, BCL-XL,

and MCL-1 from sequestering BAX and BAK whereas

NOXA can only inhibit MCL-1. This difference may

contribute to the lower death-inducing activity of NOXA

in comparison with BID, BIM, and PUMA. Conse-

quently, Noxa deficiency only confers resistance to apo-

ptosis in tissues or cell types that highly express NOXA,

such as mouse embryonic fibroblasts (MEFs) and the

small intestines [9��]. Notably, BCL-XL is superior to

BCL-2 and MCL-1 in preventing apoptosis due to its dual

inhibition of BAX and BAK and higher protein stability

[9��,42��]. BCL-2 can only inhibit BAX but not BAK

[9��,42��] whereas MCL-1 is prone to degradation upon

death signals [43].
www.sciencedirect.com
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Figure 3
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Interconnected hierarchical regulation of BAX-dependent and BAK-dependent mitochondrial apoptosis. Activator BH3s, including BID,

BIM, PUMA, and NOXA, directly interact with BAX and BAK to induce the stepwise structural reorganization of BAX and BAK. In viable

cells, BAX exists as a cytosolic monomer with its a1 helix keeping the C-terminal a9 helix engaged in the dimerization groove, while

BAK is constitutively inserted in the MOM via its C-terminal a9 helix. The binding of activator BH3s drives the dissociation of an N-

terminal a1 helix of BAX or BAK and mobilizes  the C-terminal a9 of BAX for translocation to the MOM. Activator BH3s remain

associated with the N-terminally exposed BAX or BAK through the canonical dimerization groove to drive the exposure of the BH3

domain. Partially activated, BH3-exposed BAX or BAK monomers then can bind to the hydrophobic dimerization groove of another BAX

or BAK molecule to initiate homo-dimerization and subsequent homo-oligomerization. The interaction between activator BH3s and BAX

or BAK is ‘hit-and-run’ because the same binding interface of BAX and BAK is used for homo-dimerization. Anti-apoptotic BCL-2, BCL-

XL, and MCL-1 sequester activator BH3s to prevent the initiation of BAX and BAK activation, providing frontline protection. As the

second line of defense, anti-apoptotic BCL-2 members can also sequester ‘BH3-exposed’ BAX and BAK monomers to prevent the

homo-oligomerization of BAX and BAK. Autoactivation of BAX and BAK can occur independently of activator BH3s when BCL-2, BCL-

XL, and MCL-1 are simultaneously downregulated, albeit with slower kinetics compared to BH3-mediated activation. BH3-exposed BAX

or BAK monomers can serve as activators of BAX and BAK to induce a ‘feed-forward’ amplification loop for the initiation of

mitochondrial apoptosis, bypassing the need for activator BH3s.
6. Indirect activation of BAX and BAK by
inactivator BH3s
The ability of BCL-2, BCL-XL, and MCL-1 to sequester

tBID/BIM/PUMA is further modulated by ‘inactivator’

BH3s through high-affinity, competitive binding

(Figures 3 and 4). Specifically, BAD, BMF, BIK, and

HRK (DP5) displace sequestered BID/BIM/PUMA from

BCL-2/BCL-XL and thereby activate BAX/BAK indi-

rectly [9��,13]. NOXA is unique among all BH3s in that

it can prevent MCL-1 from sequestering BID, BIM, and

PUMA due to its high binding affinity to MCL-1 [13].

Hence, NOXA is both an activator and inactivator BH3.

Notably, deficiency of Bid, Bim, Puma, and Noxa abro-

gates apoptosis triggered by overexpression of BAD,

BMF, BIK or HRK [9��], supporting the BH3 hierarchy

in which activator BH3s function downstream of inacti-

vator BH3s. Hence, the observation that BH3 peptides of

some inactivator BH3s can induce BAX-dependent or
www.sciencedirect.com 
BAK-dependent liposome permeabilization is a purely in
vitro phenomenon [44].

7. BH3-independent autoactivation of BAX
and BAK
The first unequivocal evidence of BH3-independent

activation of BAX and BAK was not revealed until the

generation of Bid�/�Bim�/�Puma�/�Noxa�/� QKO mice

[9��]. Autoactivation of BAX and BAK can occur in QKO

cells when BCL-2, BCL-XL, and MCL-1 are simulta-

neously decreased upon DNA damage or silenced by

siRNA, albeit with slower kinetics compared to BH3-

mediated activation [9��]. In fact, silencing both BCL-XL

and MCL-1 is sufficient to trigger BAK autoactivation

due to the inability of BCL-2 to bind BAK. Similar

findings were shown in cells deficient for eight canonical

BH3s created by genome editing [45��]. The MOM

appears to provide an important platform for the
Current Opinion in Physiology 2018, 3:71–81
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Figure 4
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Indirect activation of BAX or BAK by inactivator BH3s and BH3 mimetics. Anti-apoptotic BCL-2, BCL-XL, and MCL-1 preserve mitochondrial

integrity by sequestering activator BH3s to prevent activation of BAX and BAK. Pro-apoptotic ‘inactivator’ BH3s, including BAD, BMF, BIK, and

HRK, displace sequestered BID/BIM/PUMA from anti-apoptotic BCL-2 and BCL-XL, thereby activating BAX and BAK indirectly. NOXA is unique

among all BH3s in that it can prevent MCL-1 from sequestering BID, BIM, and PUMA due to its high binding affinity to MCL-1. Hence, NOXA is

both an activator and inactivator BH3. The BH3-mimietic small molecules ABT-737 and ABT-263 (navitoclax) activate BAX and BAK indirectly

through displacing activator BH3s from BCL-2 and BCL-XL, whereas ABT-199 (venetoclax) selectively targets BCL-2. Selective inhibitors for BCL-

XL or MCL-1 (S63845) with preclinical activity have also been generated.
autoactivation of BAX and BAK, which is consistent with

the ‘embedded together’ model that emphasizes the

influence of the membrane milieu on BCL-2 family

interactions [46]. However, autoactivation of BAX and

BAK appears less efficient in part because only a small

fraction of BAX and BAK expose their BH3 domain,

which is sequestered by anti-apoptotic BCL-2 members

in viable cells. Liberation of the small fraction, ‘BH3-

exposed’ BAX or BAK monomers from the anti-apoptotic

BCL-2 members is sufficient to induce a ‘feed-forward’

amplification loop for the initiation of mitochondrial

apoptosis. Therefore, activator BH3s function as catalysts

for BAX and BAK activation by inducing the BH3 expo-

sure of BAX and BAK while simultaneously restraining

anti-apoptotic BCL-2 members. The presence of hetero-

dimers between multidomain anti-apoptotic and pro-apo-

ptotic members in QKO cells suggests that exposure of
Current Opinion in Physiology 2018, 3:71–81 
the BH3 domain in BAX and BAK can be generated

independently of activator BH3s. Potential mechanisms

include protein misfolding, post-translational modifica-

tions, oxidative stress, and physical stress such as heat or

changes in intracellular pH [23]. It is possible that these

heterodimers also have non-apoptotic functions in the

maintenance of cellular homeostasis, such as calcium

homeostasis and mitochondrial fission and fusion

[47,48]. Retrotranslocation of BAX from the mitochondria

to the cytosol mediated by BCL-XL appears to offer a

means to reduce the BAX/BCL-XL heterodimers in the

MOM [49].

8. Mouse genetic studies support the
interconnected hierarchical model
Over the years, the mouse genetic studies of BCL-2

family proteins have provided the ultimate validations
www.sciencedirect.com
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for in vitro mechanistic studies. Consistent with the

higher and broader expression of Bim than other BH3s

as well as its activator BH3 activity, Bim�/�mice display

the most severe phenotypes compared to other single

BH3 KOs, developing lymphoid hyperplasia and fatal

autoimmune diseases [50]. Puma deficiency exacer-

bates the lymphoid hyperplasia and apoptotic defects

of Bim KO mice [51], and mice lacking Bid, Bim, and

Puma display even more severe defects and recapitulate

the developmental defects of Bax�/�Bak�/� mice,

including perinatal embryonic lethality, persistent

interdigital webs and imperfortate vagina [6,52]. Triple

deficiency of Bid, Bim, and Puma also completely abro-

gates BAX/BAK-dependent apoptosis in cerebellar

granule neurons [52]. Due to the unique high expres-

sion of NOXA in MEFs, Bid�/�Bim�/�Puma�/�Noxa�/�

but not Bid�/�Bim�/�Puma�/� MEFs are as resistant as

Bax�/�Bak�/� MEFs to apoptosis triggered by ER

stress and deprivation of growth factors or nutrients

[9��]. However, genotoxic stress can induce autoactiva-

tion of BAX/BAK through downregulation of BCL-2,

BCL-XL, and MCL-1 in Bid�/�Bim�/�Puma�/�Noxa�/�

MEFs [9��]. Interestingly, DNA damage-induced

downregulation of BCL-2 and BCL-XL is not observed

in T-cells or the small intestine. Consequently, qua-

druple deficiency of Bid, Bim, Puma, and Noxa provides

comparable protection as double deficiency of Bax and

Bak against irradiation-induced apoptosis in the small

intestine [9��]. Consistent with the low expression of

NOXA in lymphocytes and the absence of BAX/BAK

activation detected in Bid�/�Bim�/�Puma�/� T-cells

[52], Bid�/�Bim�/�Puma�/� T-cells are as resistant as

Bid�/�Bim�/�Puma�/�Noxa�/� T-cells to various apo-

ptotic signals [9��]. However, double deficiency of Bax
and Bak incurs more severe embryonic lethality than

quadruple deficiency of Bid, Bim, Puma, and Noxa
[6,9��], likely reflecting the presence of BAX/BAK

autoactivation in certain tissues in response to devel-

opmental cues. Alternatively, non-apoptotic functions

of BAX and BAK, such as regulation of mitochondrial

fission/fusion or ER calcium homeostasis [47,48], may

account for the more severe embryonic lethality of

Bax�/�Bak�/� mice.

The findings that Bim deficiency prevents the develop-

ment of polycystic kidney disease and loss of melanocytes

in Bcl-2�/� mice [53] support the concept that sequestra-

tion of BIM by BCL-2 prevents apoptosis. In addition,

mice harboring the death-competent BakQ75L mutation

that abrogates the BCL-XL/BAK but not MCL-1/BAK or

BAK/BAK interaction display reduced T-cell and platelet

survival and increased sensitivity to various apoptotic

stimuli [54��], providing in vivo evidence that inhibition

of BAK by BCL-XL contributes to apoptosis regulation.

Overall, the mouse genetic studies substantiate the inter-

connected hierarchical regulation of apoptosis by the

BCL-2 family.
www.sciencedirect.com 
9. Therapeutic targeting of BCL-2 family
interactions
To abrogate apoptotic checkpoints, cancer cells often

overexpress anti-apoptotic BCL-2 family proteins

through genetic mutations such as chromosomal trans-

locations involving BCL-2 or amplification of BCL-XL

and MCL-1 [4,55]. Counterintuitively, cancer cells also

commonly express higher levels of BIM and PUMA

that are transcriptionally  activated by E2F1 upon

malignant transformation [56] and sequestered by

anti-apoptotic BCL-2 members as inert complexes.

Hence, many cancer cells are likely ‘primed’ to undergo

apoptosis upon the administration of BAD and NOXA

mimetics that displace BIM/PUMA from BCL-2/BCL-

XL and MCL-1, respectively, to activate the BAX/BAK

apoptotic gateway (Figure 4).

Structure-based screening efforts targeting the hydro-

phobic dimerization groove of BCL-XL have led to the

development of the first specific small molecule inhibi-

tor of the BCL-2 family, ABT-737 [57]. ABT-737 and its

orally bioavailable analog ABT-263 (navitoclax) func-

tion like BAD mimetics that bind and inhibit BCL-2,

BCL-XL, and BCL-W, but not MCL-1 or A1 [57,58].

Although navitoclax shows promising clinical activity, it

induces a dose-dependent rapid thrombocytopenia as

an on-target result of BCL-XL inhibition. This spurred

the development of ABT-199 (venetoclax or GDC-

0199), a platelet-sparing, selective BCL-2 inhibitor

[59]. Venetoclax has exhibited remarkable therapeutic

efficacy for relapsed/refractory chronic lymphocytic leu-

kemia (CLL) [60��], resulting in its approval by the FDA

for the treatment of CLL patients with 17p deletion.

Similar to inactivator BH3s, ABT-263 activates BAX/

BAK indirectly through the displacement of activator

BH3s from BCL-2 and BCL-XL (Figure 4). Hence, low

expression of activator BH3s in cancers, particularly

BIM, confers resistance to ABT-263 [42��]. Another

therapeutic limitation of ABT-263 is its inability to

disrupt the BCL-XL/BAK interaction such that over-

expression of BCL-XL confers resistance to ABT-263

[42��]. Selective inhibitors of BCL-XL (A-1331852) or

MCL-1 (S63845) with robust preclinical activity have

also been generated [61,62�]. The current progress of

development of non-canonical inhibitors of anti-apo-

ptotic BCL-2 members, along with emerging

approaches to target pro-apoptotic BAX and BAK, are

discussed in detail elsewhere [63].

With BH3 mimetics entering the clinic, one major

challenge is how to identify patients who will respond

to a specific BCL-2 family inhibitor. Differential addic-

tion of cancer cells to anti-apoptotic BCL-2, BCL-XL, or

MCL-1 was reported in a panel of small cell lung cancer

(SCLC) cell lines and found to correlate with the

respective protein expression ratio [42��]. If a given

cell predominantly expresses a specific anti-apoptotic
Current Opinion in Physiology 2018, 3:71–81
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BCL-2 member, it will be addicted to that specific anti-

apoptotic BCL-2 member for survival. BH3 profiling is a

powerful tool to assess the baseline ‘mitochondrial

priming’ or apoptotic sensitivity of cancer cells to cancer

therapeutics [64], whereas dynamic BH3 profiling can

be used to measure the changes in apoptotic priming in

response to therapeutic agents [65�]. However, both

predict the overall apoptotic sensitivity rather than

the addiction to individual anti-apoptotic BCL-2 mem-

bers. The development of protein expression-based

biomarkers to predict the differential addiction of

human tumors to individual anti-apoptotic BCL-2

members will guide the future practice of precision

cancer medicine targeting the BCL-2 family.

The applications of BH3 mimetics as therapeutics

extend beyond cancer treatment. ABT-263 was identi-

fied as a potent senolytic agent that selectively elim-

inates senescent cells [66�], potentially expanding its

utility to treating age-related pathologies. Given that

some BCL-2 family proteins can regulate autophagy,

mitophagy, mitochondrial metabolism, mitochondrial

dynamics, calcium homeostasis, and peroxisomal mem-

brane permeability [47,48,67,68�,69], BH3 mimetics

may provide useful tools for manipulating these non-

apoptotic processes for future studies and therapeutic

interventions. For example, stapled peptides modeled

after the phospho-BAD BH3 helix can enhance insulin

secretion and b cell survival, and improve functional b
cell mass in diabetes due to activation of glucokinase by

phosphorylation of the BAD BH3 domain at Ser155

[70].

10. Conclusions
Three decades after the term ‘apoptosis or programmed

cell death’ first captured the world’s attention, intense

research efforts encompassing molecular biology, bio-

chemistry, structural biology, and genetically engi-

neered mouse models have unveiled an intricately

wired, interacting, regulatory network centered on the

BCL-2 family proteins that adjudicate cell survival or

death decisions. Importantly, this comprehensive

knowledge has not only satiated humanity’s curiosity

for the unknown but also laid the foundations and

provided the much needed roadmaps for the continuous

development and mechanism-based application of

small-molecule BH3 mimetics in cancer therapy. In

the next 10 years, we envision that many long unre-

solved questions will be answered with new pharmaco-

logical tools and research technologies, yet novel oppor-

tunities will arise to challenge existing and inspire new

cell death researchers.
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