

#### **REVIEW**

**3** OPEN ACCESS



# Evolution of phage display libraries for therapeutic antibody discovery

Yang Zhang

Consultant for Biopharma Companies, New York, USA

#### **ABSTRACT**

Monoclonal antibodies (mAbs) and their derivatives have emerged as one of the most important classes of biotherapeutics in recent decades. The success of mAb is due to their high versatility, high target specificity, excellent clinical safety profile, and efficacy. Antibody discovery, the most upstream stage of the antibody development pipeline, plays a pivotal role in determination of the clinical outcome of an mAb product. Phage display technology, originally developed for peptide directed evolution, has been extensively applied to discovery of fully human antibodies due to its unprecedented advantages. The value of phage display technology has been proven by a number of approved mAbs, including several top-selling mAb drugs, derived from the technology. Since antibody phage display was first established over 30 years ago, phage display platforms have been developed to generate mAbs targeting difficult-to-target antigens and tackle the drawbacks present in in vivo antibody discovery approaches. More recently, the new generation of phage display libraries have been optimized for discovery of mAbs with "drug-like" properties. This review will summarize the principles of antibody phage display and design of three generations of antibody phage display libraries.

#### **ARTICLE HISTORY**

Received 28 November 2022 Revised 7 May 2023 Accepted 10 May 2023

#### **KEYWORDS**

Antibody developability; antibody selection; library design; phage display; therapeutic antibody discovery

### Introduction

Monoclonal antibodies (mAbs) and their derivatives<sup>1</sup> represent a major class of therapeutics and have become the bestselling drugs in United States in recent years.<sup>2,3</sup> The global mAb market size reached ~\$150 billion in 2020 and is expected to double in the next five years.<sup>2</sup> To date, approved fully human therapeutic antibodies were discovered from either in vivo animal immunization (including humanized mice and convalescent human donors) or in vitro phage display technology. For in vivo animal immunization, antibodies are generated through repeated immunization of target of interest. Antibodies with high affinity and developability are selected during the development of immune response. However, this process is time intensive and requires the antigen to be immunogenic and nontoxic. In addition, because the selection is entirely completed in vivo, there is limited control over properties, such as specificity and epitope. As the other approach, phage display technology has greatly advanced the therapeutic mAb discovery process by providing a highly versatile approach and overcoming many drawbacks present in in vivo antibody generation technologies. Due to the completely in vitro selection system, phage display surpasses in vivo discovery approaches by enabling the discovery of antibodies against virtually any targets or epitopes, including those that are either toxic or nonimmunogenic for animal immunization. 4-6 Moreover, due to fully controlled selection conditions, phage display can be tailored for selection for desired properties that may not be achievable by in vivo approaches, e.g., selection for a specific epitope binding,9,10 recognition,<sup>7,8</sup> pH-dependent antibody internalization, 11,12 activity. 13 and catalytic

Furthermore, phage display libraries have successfully led to antibody discovery against the most challenging targets or epitopes, e.g., the stem region of influenza hemagglutinin, <sup>14</sup> G-protein-coupled receptors (GPCRs), <sup>15</sup> and specific conformations of ion channels. <sup>16–18</sup> A recently developed new generation of phage libraries with protein quality control steps in the library construction will further close the developability gap between antibodies derived in vivo and in vitro. Moreover, there is an increasing consideration that development of antibody-based affinity reagents and therapeutics should be moving from animal-based to in vitro approaches due to animal protection. <sup>19,20</sup>

Although the majority of approved therapeutic mAbs were discovered through animal immunization to date, the number of phage-derived antibodies has increased in the recent years, including some of the blockbuster drugs, Humira\*, Lucentis\*, and Tecentriq\* (Table 1). As of November of 2022, 17 phage-derived mAbs have been granted approvals and a multitude of them are actively being evaluated in clinical trials (Table 1).<sup>21–23</sup> Due to the continuous evolution of the technology, as well as the expiration of related key patents,<sup>23</sup> more and more phage-derived mAbs are anticipated to enter clinical trial and the market in the future.

The success of phage display mainly relies on the quality of library and the selection (a process also known as "panning") strategy. The two most widely used panning strategies are solid phase and liquid phase panning. In solid phase panning, the target is immobilized on a microtiter plate where specific phage binders are captured. By elution and propagation in the *E.coli* host cells, specific phage hits are amplified. After iterative panning cycles, target-specific phages are enriched

Table 1. Approved mAbs derived from phage display technology.

| Generic Name | Product<br>Name | Company                                                  | Format | Target       | First<br>Indication | Approved<br>Year | Phage display technology                  |
|--------------|-----------------|----------------------------------------------------------|--------|--------------|---------------------|------------------|-------------------------------------------|
| Adalimumab   | Humira          | Abbvie                                                   | lgG1   | TNFα         | RA                  | 2002             | Humanization                              |
| Ranibizumab  | Lucentis        | Novartis, Roche/Genentech                                | Fab-   | VEGFA        | nAMD                | 2006             | Humanization, affinity                    |
|              |                 |                                                          | lgG1   |              |                     |                  | maturation                                |
| Belimumab    | Benlysta        | Human genome Sciences (HGS),<br>GlaxoSmithKline<br>(GSK) | lgG1   | BLyS         | SLE                 | 2011             | Initial discovery                         |
| Raxibacumab  | ABThrax         | HGS, GSK                                                 | lgG1   | Bacillus     | Anthrax             | 2012             | Initial discovery                         |
|              |                 |                                                          |        | anthracis PA |                     |                  |                                           |
| Ramucirumab  | Cyramza         | Lilly/Imclone                                            | lgG1   | VEGFR2       | GC, NSCLC           | 2014             | Initial discovery                         |
| Necitumumab  | Portrazza       | Eli Lilly                                                | lgG1   | EGFR         | NSLCC               | 2015             | Initial discovery                         |
| lxekizumab   | Taltz           | Eli Lilly                                                | lgG4   | IL-17a       | Psoriasis           | 2016             | Humanization                              |
| Atezolizumab | Tencentriq      | Roche/Genentech                                          | lgG1   | PD-L1        | UC                  | 2016             | Initial discovery                         |
| Avelumab     | Bavencio        | Merck Serono/Pfizer                                      | lgG1   | PD-L1        | MCC                 | 2017             | Initial discovery                         |
| Guselkumab   | Tremfya         | Morphosys, Janssen,                                      | lgG1   | IL-23        | Psoriasis           | 2017             | Initial discovery                         |
| Lanadelumab  | Takhzyro        | Dyax, Shire                                              | lgG1   | pKal         | HAE                 | 2018             | Initial discovery                         |
| Caplacizumab | Cablivi         | Ablynx                                                   | VHH    | vWF          | aTTP                | 2018             | Initial discovery                         |
| Moxetumomab  | Lumoxiti        | AstraZeneca/Medimmune                                    | dsFv-  | CD22         | HCL                 | 2018             | Affinity maturation                       |
| pasudotox    |                 |                                                          | PE38   |              |                     |                  |                                           |
| Emapalumab   | Gamifant        | Novimmune                                                | lgG1   | INFγ         | HLH                 | 2018             | Initial discovery                         |
| nebilizumab  | Uplizna         | AstraZeneca/Medimmune, Viela Bio                         | lgG1   | CD19         | NMOSD               | 2020             | Affinity maturation                       |
| Tralokinumab | Adbry           | AstraZeneca/Medimmune, Leo Pharma                        | lgG4   | IL-13        | Asthma              | 2021             | Initial discovery                         |
| Faricimab    | Vabysmo         | Roche                                                    | Bi-Fab | VEGFA, Ang2  | nAMD, DME           | 2022             | Initial discovery and affinity maturation |

Abbreviations: Ang2: angiopoietin 2; aTTP: acquired thrombotic thrombocytopenic purpura; Bacillus anthracis PA: Bacillus anthracis protective antigen; Bi-Fab: bispecific Fab; BLyS: B-lymphocyte stimulator; DME: diabetic macular edema; EGFR: epidermal growth factor receptor; GC: gastric carcinoma; HAE: hereditary angioedema; HCL: hairy cell leukemia; HLH, hemophagocytic lymphohistiocytosis; IFN: interferon-gamma; IL-13: interleukin-13; IL-17A: interleukin-17A; IL-23: interleukin-23; MCC: Merkel cell carcinoma; nAMD: neovascular age-related macular degeneration; NMOSD: neuromyelitis optica spectrum disorder; NSCLC: non-small cell lung carcinoma; PD-L1: programmed death-1 ligand-1; PE38: Pseudomonas exotoxin A; pKal: plasma kallikrein; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; TNFα: tumor necrosis factor-alpha; UC: urothelial carcinoma; VEGFA: vascular endothelial growth factor A; VEGFR2: vascular endothelial growth factor receptor 2; vWF: von Willebrand factor.

(Figure 1).<sup>24,25</sup> In liquid phase panning, biotin-labeled targets are incubated with the antibody phage libraries and briefly pulled down by streptavidin-coated magnetic beads to capture bound phage. 26,27 Epitope-directed antibody selection can be achieved by alternative panning strategies or incorporating other technologies, e.g., competitive panning<sup>7,28-30</sup> and sitespecific photocrosslinking.8 Some other panning strategies, such as cell-based and nanodisc-based panning, have been developed for challenging targets, e.g., multi-spanning membrane proteins. 31-33 Moreover, functional selection can be directly integrated in the selection process. 34,35 Although various panning strategies have been developed to meet different antibody discovery goals, the selection procedures are generally well-established and standardized.<sup>36</sup> However, library design is highly variable and plays a central role in phage display-based antibody discovery. In this review, we will briefly summarize the principle of antibody phage display and phage engineering. This review will focus on the design principles of three generations of phage display libraries, as well as several specially designed libraries.

# Phage display

Display of foreign peptide on the bacteriophage surface without affecting phage infection was first described by George P. Smith in 1985.<sup>37</sup> Since then, phage display technology has been extensively applied to various applications, e.g., protein evolution (also known as directed evolution), epitope determination, identification of enzyme substrates, and drug discovery.<sup>38</sup> Since phenotype and genotype are physically

linked in a phage display system, protein variants with desired properties can be rapidly selected through panning and the genetic information can be readily extracted. In a phage display system, a library in which diversified peptide or protein variants are displayed on phage surface is constructed (typically  $10^{10}-10^{12}$  diversity). Variants with favored properties are enriched during iterative selection cycles. Unique sequences can then be screened for further applications. While the success of phage display has been demonstrated in a wide variety of areas, this review will focus on its application in therapeutic antibody discovery.

Antibody phage display was originally developed in three institutes: Institute of Cell and Tumor Biology at German Cancer Research Center (Germany),<sup>39</sup> MRC Laboratory of Molecular Biology (United Kingdom), 40,41 and Scripps Research Institute (United States). 42,43 Since then, various antibody fragment formats have been commonly used for phage display, such as single chain variable fragment (scFv), 44,45 antigen binding fragment (Fab), 24,46 single-domain antibody (VHH), <sup>47,48</sup> and bispecific antibody fragment. <sup>49–51</sup> Although display of full-length IgG on phage was also reported, 52,53 this platform was not widely used, likely due to unstable display, low display level, and bias on phage propagation, which resulted in limited functional diversity of the library. However, strategies for functional screening in fulllength IgG format after phage panning have been reported, e.g., dual host vector, <sup>54</sup> donor-acceptor system, <sup>55</sup> highthroughput reformatting, and mammalian expression of phage-derived antibodies. 56,57 Nevertheless, the display of full-length antibody can be readily achieved by eukaryotic

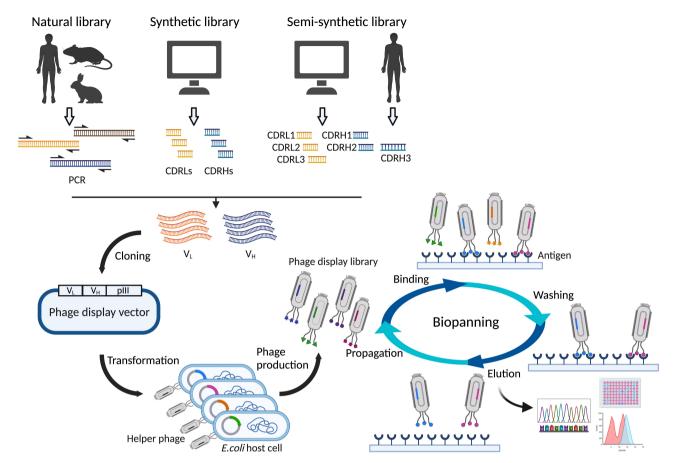



Figure 1. Types of antibody phage display libraries (upper left panel), library construction (lower left panel) and antibody selection (right panel). According to source of diversity, antibody phage display libraries can be categorized into three types: natural library, synthetic library, and semisynthetic library. In a typical phagemid system, variable regions of light and heavy chains, either cloned from a natural immunoglobulin repertoire or designed and synthesized in vitro, are cloned into a phage display vector (phagemid), with one of the chains genetically fused to plll of phage for display. The library pool is then transformed to E.Coli host cells. By infection with helper phage, which provides all the components for phage production, a phage library is generated. Taking solid-phase panning as an example, the phage library is incubated with immobilized antigen. After washing, nonspecific phages are removed and antigen-specific phages stay with the antigen. The bound phages are then dissociated from the antigen by diverse methods, e.g., low-Ph elution, enzymatic cleavage. Lastly, eluted phages are subjected to propagation in E.Coli host cells. After iterative rounds of panning, antigen-specific clones are enriched. Typically, output phages from middle and late rounds of panning are subjected to sequencing and binding characterization for obtaining both sequence diversity and high affinity, respectively. Alt-text: Three types of antibody phage display libraries, including natural, synthetic, and semisynthetic libraries. Construction of an antibody phage library includes generation of antibody variable region fragments, cloning, transformation, and phage production. The antibody selection includes antigen immobilization, phage binding, washing, elution, and phage propagation.

display platforms, such as yeast and mammalian cell display.<sup>58–60</sup> Choice of display format depends on the final format that will be used in the application. Since reformatting sometimes causes substantial changes of antibody properties, e.g., affinity and stability, keeping format consistent from library to final product is considered a "rule of thumb." As such, phage display offers a highly versatile platform with regards to choice of antibody format.

Among several well-characterized filamentous bacteriophages (Ff), including f1, M13, and fd, M13 is the most widely used for phage display. Ff bacteriophages infect E. coli host cells through a specific interaction between host F pilus and phage minor coat protein pIII. 61,62 The Ff phage genome encodes 11 proteins, five of which are coat proteins (pIII, pVI, pVII, pVIII, and pIX). Although all five coat proteins have been demonstrated for protein display, 63,64 pIII is the most widely used as an antibody fusion partner in phage display platforms, because it can accommodate large proteins with minimal interference on phage function and is compatible with monovalent phage display. 65,66 Antibody-pIII fusion is generally achieved through genetic fusion, but can also be achieved through other conjugation approaches, such as leucine zipper dimerization,67 synthetic Fc-binding ZZ domains, 52,68 etc.

In the early display system, the peptide of interest was fused to pIII in frame in the phage genome. 69,70 Thus, the peptide is displayed on all copies of pIII on the phage surface, which results in a potential decrease in phage infectivity. Also, the size of the peptide that can be efficiently displayed is limited to 12 amino acids. 71 In a phagemid-based system, antibody-pIII fusion is encoded in a separate plasmid (designated phagemid) and coinfection with a helper phage is required to provide all proteins for phage proliferation. <sup>66,72,73</sup> As a result, each phage particle contains both wild type and antibody-fusion pIII proteins. A key advantage of this system is that monoclonal display can be achieved, which facilitates selection of high affinity clones by avoiding the avidity effect during panning. 63,66 Meanwhile, phage infectivity is maximally retained due to the presence of wild type pIII. One drawback of the system is that wild type pIII is more efficiently assembled in the phage particle, resulting in only a small percentage (<10%) of antibody-displaying phage particles in the population.<sup>74</sup> As

a consequence, either panning efficiency or sensitivity of any phage-mediated binding assays can be greatly compromised due to excessive wild type phage background. One strategy is to increase multiplicity of display, which can be achieved by different methods, such as the pVIII/pVII display system, 75,76 the adapter-directed display, and using an inducible promoter for the antibody-pIII fusion gene. To maximize the display valency, hyperphage was developed by generating a helper phage featuring a pIII gene-deficient genotype and wild type infectivity phenotype in a pIII-supplying *E. coli* host. 78,79 Thereby, application of the hyperphage in a regular phagemid system resulted in production of phage particles that exclusively display antibody-pIII fusion protein. This not only substantially increased the sensitivity of phage ELISA, but also significantly improved the panning efficiency.

The pIII protein is comprised of N1 and N2 domains required for phage infection and a C-terminal domain (CT) for pIII assembly. In another effort, a mutant helper phage, named CT helper phage, was generated by deletion of N1 and N2 domains in the genome. Similar to the hyperphage system, the infectivity of CT helper phage was restored by propagation in a E. coli host that heterogeneously expresses an intact pIII gene. Therefore, use of CT helper phage substantially improved the panning efficiency since only phages incorporated with antibody-pIII fusion are infective.80 Some other pIII-deficient helper phage systems were also reported, e.g., ex-phage, 81 phaberge, 82 and a helper phage engineered with low N1 expression.<sup>71</sup> Of note, since these variants of helper phage adopt multivalent display, they result in either reduction in phage production or decrease in phage infectivity. Therefore, they may not be ideal for phage library construction. In order to balance display level and phage functionality, XP5 helper phage was developed to reduce WT pIII production by introducing multiple rare codons in the pIII gene and an altered ribosome binding site spacing.<sup>83</sup>

# Three generations of antibody phage display libraries

Universal antibody phage display libraries, typically consisting of over ten billion unique sequences, have become a valuable source for discovery of mAbs against any types of targets. According to the source of diversity, antibody phage libraries can be divided into natural, fully synthetic, and semisynthetic libraries (Figure 1). In a natural library, diversity is derived entirely from natural repertoires, which can be either healthy, autoimmune, or immunized donors (named naïve, nonimmunized, and immunized libraries, respectively). In theory, a large naïve library can be used to isolate antibodies against any targets, but, if a library is constructed from immunized donors, diversity will be highly biased toward a specific target. For an immunized library constructed from human repertoires, it can be constructed from either vaccinated donors or donors who have recovered from infection or disease. In a fully synthetic library, the antibody frameworks are usually chosen from human antibody germlines that are well-represented and have shown superior developability. Complementarity-determining regions (CDRs) are designed based on antibody structure and application purpose. The quality of the synthetic DNA that are used to create CDR diversity plays a pivotal

role in determining the functional size of a synthetic library. By using mono- or trinucleotide phosphoramidites (TRIM technology) as building blocks, <sup>84,85</sup> diversified CDRs can be synthesized in a high-throughput manner, such as array-based oligonucleotide synthesis and Slonomics. 86,87 In the TRIM technology, each amino acid is encoded by a defined codon. Therefore, amino acid distribution at the desired position can be precisely defined. Moreover, because the codon for each amino acid is selected for optimal antibody expression, the functional library size is increased. In the natural antibody repertoire, the diversity of CDRs, except CDRH3, is a collection of defined sequences that exhibit canonical structures. Compared with the traditional column-based DNA synthesis approaches in which one single gene is produced per column, the high-throughput DNA synthesis technologies allow parallel synthesis of a large number of predetermined sequences in the same footprint on a silicon-based chip. 88,89 This enables not only removal of liability motifs that impact developability, but also precise mimic of the natural antibody diversity. Semisynthetic libraries, therefore, combine synthetic CDRs (typically three light chain CDRs and heavy chain CDR1 and CDR2) and heavy chain CDR3 from natural repertoires. Phage libraries can be designed for either antibody discovery or engineering. The design of the latter is based on one parental antibody and tailored for one specific target. This review will focus on design of three generations of universal antibody phage display libraries for antibody discovery (Table 2).

# First-generation library

Generation of a universal antibody phage library and its successful application for panning was first described in 1989.42 The Fab library containing  $2.5 \times 10^7$  plaque-forming units (PFUs) was constructed by amplification of variable regions of light and heavy chains from the mouse antibody repertoire. Soon after, an immunized scFv phage library was created using a similar procedure.<sup>41</sup> Despite the small library size (2×10<sup>5</sup>), the hit rate was substantially improved (>90% after two rounds of panning). The success of natural libraries for in vitro antibody discovery has been proven at different institutions. 103-106 A common feature of these natural libraries is that light and heavy chains are randomly combined, thus these are designated combinatorial library. Due to the heavy and light chain rearrangement, the library diversity is dramatically increased. For example, if a natural antibody repertoire contains a diversity of 10<sup>6</sup> (i.e., 106 unique light and heavy chain pairs), the diversity would be 10<sup>12</sup> after full light and heavy chain recombination. One significant advantage is that this approach generates specificities that do not exist in natural repertoire, which enables discovery of antibodies targeting any given antigen, including self-antigens. <sup>107</sup> In contrast, self-antigen targeting can be challenging for natively paired antibodies due to immune tolerance (a protection mechanism in which immune system does not respond to self-antigen). 108,109 In addition, a large naïve library comprises most of the germline genes, which further increases the structural complexity of the library due to diverse framework structures. Although the germline gene distribution in a naïve library is usually consistent with that in natural repertoire, it has been observed that germline gene usage post-selection is biased

(Continued)

|                                          | Library Name (year)             | Organization                              | Format       | Library Type   | Framework                                                                                  | Library Size                                                           | Key Feature                                                                                                                                                                                                                                                                                            | Highest<br>affinity<br>(nM)<br>(format) <sup>a</sup> | Reference |
|------------------------------------------|---------------------------------|-------------------------------------------|--------------|----------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|
| First generation                         | N/A (1996)                      | Cambridge Antibody                        | ScFv         | Naïve          | Naïve                                                                                      | $1.4 \times 10^{10}$                                                   | * Repertoires from 43 healthy donors                                                                                                                                                                                                                                                                   | 4.2 (scFv)                                           | 06        |
| in i | N/A (1994)                      | MRC Centre for Protein Fab<br>Engineering | Fab          | Synthetic      | 49 V <sub>H</sub> frameworks;<br>26 V <sub>K</sub> frameworks;<br>21 V, frameworks         | $6.5 \times 10^{10}$                                                   | <ul> <li>Fully randomized CDR3</li> <li>Heavy and light chains assembled using combinatorial infaction</li> </ul>                                                                                                                                                                                      | 7 (Fab)                                              | 16        |
|                                          | HAL (2015)                      | Technical University of<br>Braunschweig   | ScFv         | Naïve          | Naïve                                                                                      | $1.5 \times 10^{10}$                                                   | <ul> <li>Repertoires from 98 healthy donors</li> <li>Optimized Myc/His tag</li> <li>Improved antibody production by removal of C-terminal phenylalanine of V. light chain</li> </ul>                                                                                                                   | 0.9 (lgG)                                            | 92,110    |
|                                          | CAT2.0 (2009)<br>n-CoDeR (2000) | Medlmmune<br>Biolnvent                    | ScFv<br>ScFv | Naïve<br>Naïve | Naïve<br>Single V <sub>H</sub> framework;<br>single V <sub>L</sub><br>frameworks           | $1.29 \times 10^{11}$ $2 \times 10^{9}$                                | * Repertoires from 100 healthy donors * Rearranged 6 CDR segments from natural repertoire in single light and heavy chain frameworks                                                                                                                                                                   | N/A<br>0.9<br>(scFv) <sup>b</sup>                    | 94        |
| Second generation<br>library             | ETH2-GOLD (2005)                | ETH Zurich                                | ScFv         | Synthetic      | Single V <sub>H</sub> framework; 2<br>V <sub>L</sub> frameworks                            | $3 \times 10^9$                                                        | <ul> <li>Fully randomized CDR3</li> <li>CDR diversity concentrated in the center of anti-<br/>grap hinding region</li> </ul>                                                                                                                                                                           | 23.6<br>(scFv)                                       | 95        |
|                                          | PHILODiam ond (2014)            | ETH Zurich                                | ScFv         | Synthetic      | Single V <sub>H</sub> framework; 2<br>V. frameworks                                        | $4 \times 10^{10}$                                                     | # Introduction of S52N in heavy chain CDR2                                                                                                                                                                                                                                                             | 27 (scFv)                                            | 96        |
|                                          | Dyax (2005)                     | Dyax                                      | Fab          | Semisynthetic  | Σ                                                                                          | $3.5 \times 10^{10}$<br>(FAB-310)<br>$1.0 \times 10^{10}$<br>(FAB-410) | <ul> <li>Randomization of selected antigen-contacting<br/>residues in heavy chain CDR1 and CDR2</li> <li>Diversity of light chain and CDRH3 derived from<br/>autoimmune donors</li> </ul>                                                                                                              | 0.22<br>(Fab) <sup>c</sup>                           | 97        |
|                                          | HuCAL- GOLD (2008)              | MorphoSys                                 | Fab          | Synthetic      | $7  V_H$ framework; $4  V_\kappa$ frameworks; $3  V_\lambda$ frameworks                    | $1.6 \times 10^{10}$                                                   | <ul> <li>Natural amino acid distribution of six CDRs by 0.04 (Fab) using trinucleotide mixtures</li> <li>Elimination of frame-shifted clones by β-lactamase system</li> <li>Antibody and pIII linked by disulfide bond</li> </ul>                                                                      | 0.04 (Fab)                                           | 86        |
|                                          | HuCAL- PLATINUM<br>(2011)       | MorphoSys                                 | Fab          | Synthetic      | 7 V <sub>H</sub> framework;<br>3 V <sub>k</sub> frameworks;<br>3 V <sub>k</sub> frameworks | $4.5 \times 10^{10}$                                                   | <ul> <li>Removal of post-translational modification hot spots</li> <li>Loop length dependent amino acid distribution in CDRH3</li> <li>Optimized sequence for high expression in both produzoric and automoric cells</li> </ul>                                                                        | 0.002<br>(Fab) <sup>d</sup>                          | 66        |
|                                          | Ylanthia (2013)                 | MorphoSys                                 | Fab          | Synthetic      | 21 V <sub>H</sub> /V <sub>κ</sub> pairs; 15 V <sub>H</sub> /<br>V <sub>λ</sub> pairs       | 1.3 × 10 <sup>11</sup>                                                 | <ul> <li>Selected V<sub>H</sub>/V<sub>L</sub> framework pairs with optimal biophysical properties</li> <li>CDRH3 length and amino acid composition based on JH4 and JH6 sequences</li> <li>CDR optimized to be devoid of PTM motifs</li> <li>Optimized sequence for high expression in both</li> </ul> | 0.7 (Fab)                                            | 000       |

| Reference                                            | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Highest<br>affinity<br>(nM)<br>(format) <sup>a</sup> | 3.3 (scFv)<br>0.034<br>(lgG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Key Feature                                          | <ul> <li>Natural CDRH3 from 200 donors</li> <li>Removal of developability liability residues</li> <li>Enhanced stability by heat shock and protein A recovery during library construction</li> <li>Selection of clinically validated V<sub>H</sub>/V<sub>L</sub> pairs as library scaffolds</li> <li>Synthetic CDRs except CDRH3 from replicated natural diversity. Natural CDRH3 sequences amplified from 10 donors</li> <li>Removal of CDR sequence liabilities informatically</li> <li>Comprehensively improved developability, including affinity, polyspecificity, stability, aggregation, expression and display level by yeast display filtration</li> </ul> |
| Library Size                                         | $2.5 \times 10^{10}$ $9 \times 10^{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Framework                                            | Semisynthetic Single V <sub>H</sub> framework; 2 V <sub>L</sub> frameworks Semisynthetic 4 V <sub>H</sub> framework; 3 V <sub>K</sub> frameworks; 1 V <sub>A</sub> frameworks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Library Type                                         | Semisynthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Format                                               | ScFv<br>ScFv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Organization                                         | GlobalBio<br>Specifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Library Name (year)                                  | ALTHEA<br>Gold libraries (2019)<br>N/A (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                      | Third generation library                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Abbreviations: HC, heavy chain; LC, light chain; VH, heavy chain variable region; VL, light chain variable region; Vk, kappa light chain variable region; VN, lambda light chain variable region.

a. Affinity was measured by SPR unless specified
b. Affinity was measured by ELISA.
c. Method was not specified.
d. Affinity was measured by solution equilibrium titration.
by combining donor-derived and synthetic

toward certain families, 93,110 e.g., VH1-69, VH1-46 (Kabat nomenclature) and/or IGHV3-30 (IMGT nomenclature) for heavy chain. For the light chain,  $V_{\lambda}1$ -c,  $V_{\lambda}2$ -2a (Kabat nomenclature) and/or IGLV1-47, IGKV1-12, IGKV1-D33 (IMGT nomenclature) were enriched after selection. Meanwhile, several synthetic and semisynthetic antibody libraries were generated in the early 1990s. 111-113 Although only antibodies with low affinity (micromolar range) were isolated due to the small library size (10<sup>7</sup>-10<sup>8</sup>), these libraries demonstrated that artificial antibodies can be generated in vitro. Later studies showed that, by generating larger naïve libraries with library size of 10<sup>10</sup>-10<sup>12</sup>, antibodies with low- to sub-nanomolar affinity can be directly isolated. 90,91,93,114-118 Of note, the large naïve library and related phage display technology developed by Cambridge Antibody Technology has led to approval of six mAbs: adalimumab, 115 pasudotox, 121,122 belimumab, 120 moxetumomab raxibacumab, 123 emapalumab, 124 and tralokinumab. 125 Another example is the n-CoDeR library in which heavy and light chain CDR segments were separately amplified by using primers specific to VH3-23 and VL1-47 germlines. The six CDRs were then reassembled in a single light and heavy chain framework that is well-presented in human repertoire and wellexpressed in bacterial host cells.<sup>94</sup> This strategy overcomes the drawback with conventional naïve antibody phage libraries in which part of the diversity might be lost due to low expression and/or display level of certain germline genes in prokaryotic system. The n-CoDeR library was used to discover five mAbs and their derivatives that entered clinical trials. 126-130 In our experience, high hit rate (>90%) can be readily achieved and antibodies with high affinity (low nanomolar) can be routinely isolated from a large naïve library (library size =  $10^{12}$ ) constructed in-house. Depending on the target, 10-20% of total sequences screened are unique.

Taken together, first-generation phage libraries demonstrated that antibody discovery can be performed completely in vitro and antibodies with high affinity and sequence diversity can be isolated directly from phage libraries.

### Second-generation library

In the design of the second-generation libraries, represented by several semisynthetic and fully synthetic libraries, amino acid distribution and positions to be diversified were carefully selected based on knowledge of natural antibody structure and antibody-antigen interaction. By leveraging TRIM technology which uses pre-synthesized trinucleotides as building blocks for oligonucleotides synthesis, the CDR amino acid composition can be precisely tailored to meet specific design criteria. Moreover, developability was taken into consideration in the library design.

In the design of several synthetic libraries, e.g., HelL-11, HelL-13, and Library F, amino acids that are frequently used in the antibody-antigen interaction dominate in CDRL3 and CDRH3. More precisely, in the design of ETH2 and ETH-2-Gold libraries, selected residues predicted to be in direct contact with the antigen in silico were randomized, while structure-supporting CDR residues were kept constant. Based on ETH-2-Gold library, PHILO and PHILODiamond libraries were designed to cover a broader

epitope landscape by incorporation of hydrophilic residues at specific positions in the antigen contacting site. 96,135 ETH serial libraries led to two mAbs, Teleukin and Dekavil, being investigated in clinical trials. 136-140 Although CDRL3 and CDRH3 play crucial roles in germline diversity, it has been observed that CDR1 and CDR2 are preferentially selected for affinity maturation during the course of somatic hypermutation. 141-143 In the design of the Dyax library, a semisynthetic library, diversity of light chain and CDRH3 were derived from antibody repertoires of autoimmune donors to increase the likelihood of discovery of antibodies targeting self-antigens. CDRH1 and CDRH2, however, were fully synthetic, and residues that were predicted to be surface-exposed were randomized using all amino acids except cysteine.<sup>97</sup> Indeed, by panning against four selected antigens, the average antibody affinities indicated by K<sub>D</sub> were below 20 nM for three of the four targets. Of note, the moderate average affinity (131 nM) of the other one target is likely due to usage of a single V<sub>H</sub>/V<sub>L</sub> framework pair in the library construction. The Dyax library was used in the discovery of four approved mAbs: ramucirumab, 144 necitumumab, 145 avelumab, 146 lanadelumab. 147 In a systematic analysis of antibody-protein and antibody-peptide interaction propensity, machine learning was leveraged to predict CDR hot spot residue distributions. 148 By densely enriching the hot spot residues across all CDRs, GH libraries resulted in enhanced antibodyantigen recognition indicated by high affinity and specificity. In fact, by using minimalist libraries, it has been demonstrated that only a small subset of amino acid types (a four-amino-acid code (Tyr, Asp, Ser, and Ala) or a binary code (Tyr and Ser)) is sufficient to mediate interactions with proteins. 149,150

In the HuCAL serial libraries, frameworks that cover major types of CDR canonical structures were included to maximize structural diversity. By leveraging TRIM technology, six CDRs were designed to precisely mimic the amino acid distribution that occurs in natural repertoire. 98,99,151 Thus, the HuCAL libraries are more likely to yield antibodies with nature-like properties. Since TRIM technology allows precisely defined nucleotide composition in the oligonucleotide synthesis, it also enables stable and high expression of antibody in E.coli host cells through optimized codon usage and avoidance of stop codons, which are the drawbacks of using degenerate codons. As a result, functional diversity of the synthetic library can be greatly improved. It is notable that the percentage of alanine at heavy chain H137 can be tuned to favor binding for either protein or hapten/peptide. Another feature of the HuCAL library is that restriction sites were introduced to flank all six CDR loops. Thus, antibody engineering can be facilitated by rapid CDR shuffling. In the design of the HuCAL-PLATINUM library, post-translational modification hot spots, e.g., N-glycosylation, were avoided in CDR design to further improve the antibody's developability. Moreover, amino acid distribution in CDRH3 was tuned based on the loop length to further mimic the natural repertoire.<sup>99</sup> In another effort to further improve the overall developability of antibodies selected from a phage library, 36 of 400 V<sub>H</sub>/V<sub>L</sub> pairs were identified for optimal biophysical properties and used for construction of the Ylanthia library. 100 As a result, antibodies directly selected from the library showed superior affinity,

protein expression level, thermal stability, and aggregation propensity. Of note, the HuCAL-GOLD library yielded guselk-umab, which was approved in 2017. 152

In summary, in the design of the second-generation libraries, antibody structure and developability properties were taken into consideration through the removal of sequence liability motifs, inclusion of natural amino acid distributions in CDR, and selection of heavy and light chain frameworks with superior biophysical properties.

#### **Third-generation library**

In general, the improvements of developability properties in the second-generation libraries were achieved by sequence-based optimization. While our knowledge regarding sequence-based prediction of protein liabilities is still limited, many biophysical properties, such as stability, solubility, and expression, are closely related to higher order structure of a protein. Although scaffolds with high stability and expression can be selected for library construction, the overall biophysical properties of antibodies in a phage library are also highly determined by CDR sequence. Therefore, these developability properties were experimentally improved during construction of the third-generation libraries.

In order to enhance the library solubility and thermostability, a heat shock step, followed by a protein A recovery, was incorporated in the construction of the semisynthetic ALTHEA Gold library. This is based on the observation that heat denaturation selected stable and well-folded antibodies. Validation of the library showed that the overall frequency of hydrophobic residues at diversified CDR positions decreased after heat shock and protein A selection. In contrast, charged residues were positively selected by the filtration process. By panning the library against a diverse panel of antigens, the scFvs selected exhibited high affinity ( $K_D$  ranges from single-digit nM to sub-nM), solubility (>50 mg/L), and thermal stability ( $Tm > 70^{\circ}$ C), which agree with biophysical parameters of therapeutic antibodies.  $^{101,154,155}$ 

In another effort to create a semisynthetic phage library with "drug-like" properties, a yeast display filtration was applied to select sequences with optimal developability properties required for clinical development, including affinity, aggregation, thermostability, polyspecificity, and expression level.<sup>102</sup> This step leverages the eukaryotic protein quality control systems for selection of correctly behaving proteins for secretion. 156-158 In detail, five single-CDR yeast display libraries, in each of which one CDR (except CDRH3) was synthesized from replicated natural diversity, were individually created. The antibody sequences that were displayed correctly and in a high level were selected and subjected to nextgeneration sequencing (NGS) analysis. CDRH3 sequences, however, were sourced from human natural antibody repertoires. This was done for two reasons: 1) depending on length and amino acid usage, synthetic CDRH3 diversity typically far exceeds the actual library size; and 2) the natural CDRH3 source can provide enough high diversity and the sequences have also been filtered in vivo for optimal biophysical properties, e.g., high stability and expression, low immunogenicity. To validate the library, panning was conducted against four antigens. Remarkably, from a total number of 81 antibodies isolated, around 80% showed single-digit to sub-nM affinity. More strikingly, by determining developability parameters, including thermostability, polyspecificity, and self-interaction, 97% of the measurements of the antibodies behaved similarly or better than that of the corresponding approved parental antibodies. This study highlights the importance of the eukaryotic quality control system in the selection of high-quality antibodies.

In summary, the third-generation libraries leverage in vitro or *i*n vivo experimental approaches to further improve the overall library quality, which yield antibodies with properties comparable to therapeutic antibody drugs.

# Library designed for specific applications

Although the aforementioned universal phage libraries provide valuable resources for antibody discovery, their performance may be compromised for challenging targets and epitopes (e.g., GPCR, concave-shaped epitope) and specific applications (e.g., pH-dependent antibodies). This is due to inherent characteristics of conventional antibody libraries, either natural libraries or synthetic libraries that mimic the human antibody repertoire. An advantage of phage display technology is that the library can be tailored to adapt to distinct applications. Indeed, several specialized phage libraries have been designed and created.

# **GPCR library**

GPCR represents a class of seven transmembrane receptors. GPCRs have been recognized as successful drug targets as approximately one third of the US Food and Drug Administration (FDA)-approved drugs target GPCRs. 159,160 However, due to high hydrophobicity, conformational flexibility, and limited accessibility of epitopes on the extracellular portion, GPCRs are challenging targets for antibodies. To date, there are only two FDA-approved antibodies drugs targeting GPCRs: mogamulizumab and erenumab, which target CC chemokine receptor 4 and calcitonin gene-related peptide receptor, respectively. 161 Phage display offers a valuable antibody discovery platform for targeting challenging targets, including ion channels, transporters, and GPCRs. 162 For example, one synthetic antibody phage display library was designed by mining the sequences of all known GPCR ligand interactions and incorporating the identified binding motifs into CDRH3. As a result, this GPCR-focused library successfully led to discovery of a panel of antagonistic antibodies targeting glucagon-like peptide-1 receptor with high affinity. 15

### Library for selection of pH dependent antibodies

Elimination of soluble targets by conventional high affinity antibodies usually requires a large dose. This is because an antibody usually binds with an antigen with similar strength at both neutral and slightly acidic pH (pH 5.5–6.0); therefore the antigen bound with antibody in the extracellular environment does not dissociate from the complex in the endosome. As a result, the antigen can escape from lysosomal

degradation and return to the circulation mediated by the neonatal Fc receptor (FcRn). 163,164 Thus, antibodies that are capable of neutralizing the target at physiological pH and releasing it at acidic endosomal pH would be expected to enhance the therapeutic index. In the past, pH-dependent binding has been achieved through antibody engineering, e.g., histidine scanning. 165,166 Alternatively, sweeping antibody technology was developed to enhance binding with FcRn at neutral pH for rapid uptake of antibody-antigen complex for target clearance. 167 While these technologies proved successful, they are labor-intensive and all based on preexisting antibodies. In another attempt, pH-dependent antibodies were isolated de novo from a synthetic antibody phage display library. In the library design, histidine residue was enriched in CDRH3 for two reasons. First, histidine is neutrally charged at physiological pH but becomes positively charged at pH 6.0. Therefore, histidine residues within the protein-protein interaction region can exert pH-dependent binding. Second, histidine is less frequently found in natural repertoires. 168 Combined with a modified selection strategy, several anti-CXCL10 antibodies with high binding affinity and strong neutralizing activity at pH 7.4, but weak binding at pH 6.0 were isolated.

#### **Library with elongated CDRH3**

One limitation of human or mouse antibodies is that targeting a concave epitope of a target, e.g., pore of ion channels and pocket of enzymes, can be challenging. This is largely due to the relatively short CDRH3 length, typically 7-12 and 8-20 amino acids for mouse and human respectively, which tend to form a cave or flat paratope. 169,170 Therefore, concave-shaped conformation of a target is usually inaccessible for conventional antibodies. Although antihuman immunodeficiency virus (HIV) broadly neutralizing antibodies with extended CDRH3 of around 30 amino acids have been isolated, they were only found in a minority of infected population and require years of development. 171,172 Interestingly, antibodies from some species, such as cow and camelid, are unusual in having a natural elongated CDRH3 (e.g., up to 70 amino acids for cow), which provides extra diversity and paratope complexity. 173,174 The cow ultralong CDRH3 generally adopts a "stalk and knob" structure, in which a β strand "stalk" supports a structurally complex "knob" domain stabilized with multiple disulfide bonds. 175 The "knob" domain protrudes out from the antibody surface, making it accessible to the concave epitope. In a proof-of-concept study, a synthetic Fab phage display library carrying elongated CDRH3 (23-27 amino acids) was constructed. 176 By panning against the library, a number of antibodies that potently inhibited matrix metalloproteinase-14 were identified. Of note, one of the antibodies was indicated to bind to the vicinity of the enzyme activity pocket. Libraries displaying atypical antibodies with elongated CDRH3 further extend the application of phage display technology.

### **Conclusions and prospects**

Phage display has proven to be an unequivocal success for antibody discovery, evidenced by 17 approved mAbs and an increasing number of phage-derived antibodies under clinical investigation. As an entirely in vitro technology, phage display not only compensates for many limitations inherited by in vivo antibody discovery approaches, it also provides a highly versatile and customizable platform that continuously evolves to meet distinct development goals.

Affinity is a key factor used to evaluate the quality of a phage library. It has been observed that affinity that can be achieved is correlated with the library size. We investigated the correlation between highest affinity values obtained from published universal phage libraries and library size (data not shown). In agreement with previous observations, there is a positive correlation between the two parameters. This is because a universal library is designed for antibody discovery against any given target. Therefore, a larger library (higher diversity) offers a greater chance of identifying high affinity antibodies. In the case of a synthetic library, although a limited number of frameworks are used, the designed CDR diversity usually far exceeds the natural CDR diversity. Therefore, the chance to obtain high affinity antibodies mainly depends on CDR sequence diversity. In the case of a naïve library, the library diversity comes from not only the sequence diversity, but also from light and heavy chain rearrangement. Of note, the random heavy and light chain rearrangement is a process highly resembling chain shuffling, which is a routine strategy for in vitro antibody affinity maturation. This may explain why antibodies with very high affinity were isolated from naïve phage libraries, even when the libraries were constructed from germline sequences with no or very limited somatic hypermutations. While it was expected that identification of library size is a key factor that determines the affinity, a correlation with either library type or library generation was not observed (data not shown). One reason is that, except for a few early libraries, the library size difference among three generations of phage libraries is minimal. Also, the advancements of three generations of phage libraries mainly reflects improvements of overall developability properties.

It has been reported that the presence of library clones that do not display antibody fragments (bald phage) is partially due to stop codons or frameshifts present in the antibody gene. These clones often outgrow because of the decreased burden on production of antibody fusion proteins and higher infectivity due to all wild type pIII molecules on phage particle, resulting in loss of library diversity. In efforts to increase functional library size, several strategies have been developed. For example, anti-tag antibody was used for proofreading panning to select in-frame sequences due to the tag being inframe with the antibody sequence. 177 In the design of the HuCAL GOLD library, the β-lactamase gene was used to eliminate frame-shifted sequences.<sup>98</sup>

Regarding framework usage in a phage display library, it is generally accepted that a library using multiple frameworks



will perform better than one using a single pair of frameworks, since multiple scaffolds provide more structural diversity. 100 For selection of framework, parameters, such as frequency in natural repertories, stability, expression, and display level, have been taken into consideration. Moreover, it should be noted that several heavy chain germline genes, e.g., certain IGVH4 family genes, have been found to be deselected during phage panning. 93,98 Also, VH4-34 has been found to be associated with B cell cytotoxicity. Thus, these germlines should be excluded from the library design. For the majority of the phage display libraries, VH and VL are randomly rearranged, which agrees with the observation that there is no obvious preference of V<sub>H</sub>/V<sub>L</sub> pairing in natural repertories. <sup>179</sup> However, in terms of drug development, since different V<sub>H</sub>/V<sub>L</sub> pairings do exhibit very distinct biophysical characteristics, 100,180 attention should be given to the choice of framework pairing.

Compared to in vivo antibody discovery approaches, another advantage of phage display is that the sequence information can be retrieved rapidly and readily. However, this advantage is partially attenuated by the conventional screening approach of characterization of individual clones, in which only a small percentage of sequence information, i.e., the most abundant sequences, from panning output is assessed. This is partially due to intrinsic amplification bias of antibodydisplaying phages in E.coli host cells, which leads to some of the sequences becoming rare over several cycles of panning. 181,182 To overcome the limitation, NGS, which allows deep mining of sequence space in a sample, has recently been applied to antibody phage display technology, especially for identification of those rare sequences with potential interesting features. 183,184 Most recently, machine learning combined with NGS has been applied to predict binding features (e.g., affinity, epitope, developability) of sequences from phage panning, and even generate new sequences with improved properties. 185,186

Despite many advantages of phage display, developability has been a concern for mAbs derived in vitro due to lack of in vivo protein quality control process. 187-189 As aforementioned, either in vitro or eukaryotic quality control steps were integrated into the construction of the third-generation phage display libraries. Thus, only library members with favorable developability were selected. Indeed, it has been reported that mAbs selected from the third-generation libraries showed overall enhanced developability properties, including high affinity, improved stability and solubility, and less self-interaction. Alternatively, mammalian display can be used to further screen or optimize developability properties of mAbs, based on a strong correlation between optimal biophysical properties and display level. 190 It is worthwhile to mention that the emergence of in vivo delivery of nucleic acid-encoded biologics, i.e., DNA and mRNA technologies, enables direct production of therapeutic mAbs in vivo. These delivery technologies bypass the complex protein manufacturing, storage, and transport processes, which require proteins with excellent biophysical properties. 191,192 Therefore, it would be envisioned that, with the advancements of new drug delivery technologies, many requirements on developability, particularly manufacturability, can be mitigated in the future.

As phage display technology continues to evolve, and in concert with other state-of-the-art technologies, such as NGS

and machine learning, phage display technology will continue to make great contributions to innovative drug discovery in the future.

#### **Abbreviations**

| A 2    | angiopoietin  | 1 |
|--------|---------------|---|
| Ang2   | angionoletin  | , |
| 111154 | ungiopoletini | _ |

aTTP acquired thrombotic thrombocytope-

nic purpura

Bacillus anthracis PA Bacillus anthracis protective antigen

Bi-Fab bispecific Fab

**BLyS** B-lymphocyte stimulator

**CDR** complementarity-determining region

**DME** diabetic macular edema

**EGFR** epidermal growth factor receptor

Fab antigen binding fragment FcRn neonatal Fc receptor

**FDA** US Food and Drug Administration

GC gastric carcinoma

**GPCR** G-protein-coupled receptor HAE hereditary angioedema

HC heavy chain **HCL** hairy cell leukemia

HIV human immunodeficiency virus HLH hemophagocytic lymphohistiocytosis

**IFN** interferon-gamma IL-13 interleukin-13 IL-17A interleukin-17A IL-23 interleukin-23 LC light chain

mAbs monoclonal antibodies **MCC** Merkel cell carcinoma

nAMD macular neovascular age-related

degeneration

NGS next-generation sequencing

**NMOSD** neuromyelitis optica spectrum

disorder

**NSCLC** non-small cell lung carcinoma PD-L1 programmed death-1 ligand-1 PE38 Pseudomonas exotoxin A **PFU** plaque-forming unit pKal plasma kallikrein RA rheumatoid arthritis

scFv single chain variable fragment SLE systemic lupus erythematosus SPR surface plasmon resonance TNFa tumor necrosis factor-alpha **TRIM** trinucleotide mutagenesis UC urothelial carcinoma

**VEGFA** vascular endothelial growth factor A VEGFR2 vascular endothelial growth factor

receptor 2

 $V_{H}$ heavy chain variable region VHH single-domain antibody

 $V_{\kappa}$ kappa light chain variable region  $V_{\lambda}$ lambda light chain variable region

 $V_{L}$ light chain variable region von Willebrand factor vWF

# **Acknowledgments**

The author gratefully acknowledges Frederic Fellouse (Abtech Therapeutics SAS, Marseille, France) who kindly proofread the manuscript and provided his insights, as well as useful comments and suggestions. The author also thanks Peter Meinke and Nora Kostow (Tri-Institutional Therapeutics Discovery Institute, New York, United States) for providing helpful comments.

#### **Disclosure statement**

No potential conflict of interest was reported by the author.

#### **Funding**

The author(s) reported there is no funding associated with the work featured in this article.

#### References

- Zhu Y, Wang SS, Zhou ZS, Ho M. The emergence of AntibodyPlus: the future trend of antibody-based therapeutics. Antib Ther. 2022;5:280–87. PMID: 36299417. doi:10.1093/abt/ tbac024
- Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1. PMID: 31894001. doi:10.1186/ s12929-019-0592-z
- Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018;9:86–120. PMID: 28822103. doi:10.1007/s13238-017-0457-8
- Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fuhner V, Kuhn P, et al. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Front Cell Infect Microbiol. 2021;11:697876. PMID: 34307196. doi:10. 3389/fcimb.2021.697876.
- 5. Nagano K, Tsutsumi Y. Phage display technology as a powerful platform for antibody drug discovery. Viruses. 2021;13(2):178. PMID: 33504115. doi:10.3390/v13020178.
- 6. Zhang Y, Su J, Wu DH. Chaptor 10. Physiology and pathology of multidrug-resistant bacteria: antibodies- and vaccines-based pathogen-specific targeting. In: Nima Rezaei, editor. Physiology and pathology of immunology. chaptor 10. physiology and pathology of multidrug-resistant bacteria: antibodies- and vaccinesbased pathogen-specific Targeting. London, United Kingdom: Intech Open; 2017. p. 34.
- Parsons HL, Earnshaw JC, Wilton J, Johnson KS, Schueler PA, Mahoney W, McCafferty J. Directing phage selections towards specific epitopes. Protein Eng. 1996;9(11):1043–49. PMID: 8961357. doi:10.1093/protein/9.11.1043.
- Chen L, Zhu C, Guo H, Li R, Zhang L, Xing Z, Song Y, Zhang Z, Wang F, Liu X, et al. Epitope-directed antibody selection by site-specific photocrosslinking. Sci Adv. 2020;6(14):eaaz7825. PMID: 32270046. doi:10.1126/sciadv.aaz7825.
- Bonvin P, Venet S, Fontaine G, Ravn U, Gueneau F, Kosco-Vilbois M, Proudfoot AE, Fischer N. De Novo isolation of anti-bodies with Ph-dependent binding properties. MAbs. 2015;7:294–302. PMID: 25608219. doi:10.1080/19420862.2015. 1006993
- Murtaugh ML, Fanning SW, Sharma TM, Terry AM, Horn JR. A combinatorial histidine scanning library approach to engineer highly Ph-dependent protein switches. Protein Sci. 2011;20:1619–31. PMID: 21766385. doi:10.1002/pro.696
- 11. Poul MA, Becerril B, Nielsen UB, Morisson P, Marks JD. Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol. 2000;301:1149–61. PMID: 10966812. doi:10. 1006/jmbi.2000.4026

- Becerril B, Poul MA, Marks JD. Toward selection of internalizing antibodies from phage libraries. Biochem Biophys Res Commun. 1999;255:386–93. PMID: 10049718. doi:10.1006/bbrc.1999.0177
- Janda KD, Lo CH, Li T, Barbas CF 3rd, Wirsching P, Lerner RA. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc Natl Acad Sci U S A. 1994;91:2532–36. PMID: 8146149. doi:10.1073/pnas.91.7.2532
- 14. Tung CP, Chen IC, Yu CM, Peng HP, Jian JW, Ma SH, Lee YC, Jan JT, Yang AS. Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries. null. 2015;5:15053. PMID: 26456860. doi:10.1038/srep15053
- Liu Q, Garg P, Hasdemir B, Wang L, Tuscano E, Sever E, Keane E, Hernandez AGL, Yuan TZ, Kwan E, et al. Functional GLP-1R antibodies identified from a synthetic GPCR-focused library demonstrate potent blood glucose control. MAbs. 2021;13:1893425. PMID: 33706686. doi:10.1080/19420862.2021. 1893425.
- Dominik PK, Borowska MT, Dalmas O, Kim SS, Perozo E, Keenan RJ, Kossiakoff AA. Conformational chaperones for structural studies of membrane proteins using antibody phage display with nanodiscs. Structure. 2016;24:300–09. PMID: 26749445. doi:10.1016/j.str.2015.11.014
- 17. Qiang M, Dong X, Zha Z, Zuo XK, Song XL, Zhao L, Yuan C, Huang C, Tao P, Hu Q, et al. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc Natl Acad Sci U S A. 2018;115:E7469–77. PMID: 30042215. doi:10.1073/pnas.1807233115.
- Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J, Hatcher JP, Huang L, Taddese B, Thornton P, et al. Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain. 2019;160(9):1989–2003. PMID: 31045747. doi:10.1097/j.pain.000000000001587.
- Gray AC, Bradbury A, Dubel S, Knappik A, Pluckthun A, Borrebaeck CAK. Reproducibility: bypass animals for antibody production. Nature. 2020;581:262. PMID: 32415238. doi:10.1038/ d41586-020-01474-7
- Gorovits B, Hays A, Jani D, Jones C, King C, Lundequist A, Mora J, Partridge M, Pathania D, Ramaswamy SS, et al. AAPS perspective on the EURL recommendation on the use of non-animal-derived antibodies. Aaps J. 2021;23(2):34. PMID: 33649990. doi:10.1208/ s12248-021-00567-z.
- Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol. 2020;11:1986. PMID: 32983137. doi:10.3389/fimmu.2020.01986
- Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem. 2021;403(5–6):455–77. PMID: 33759431. doi:10.1515/hsz-2020-0377.
- Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8:1177-94. PMID: 27416017. doi:10.1080/19420862.2016. 1212149
- Kang AS, Barbas CF, Janda KD, Benkovic SJ, Lerner RA. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc Natl Acad Sci U S A. 1991;88:4363–66. PMID: 1903540. doi:10.1073/pnas.88. 10.4363
- Sidhu SS, Lowman HB, Cunningham BC, Wells JA. Phage display for selection of novel binding peptides. Methods Enzymol. 2000;328:333–63. PMID: 11075354. doi:10.1016/s0076-6879(00) 28406-1
- Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J Mol Biol. 1992;226(3):889–96. PMID: 1507232. doi:10.1016/0022-2836(92) 90639-2.
- 27. Schutte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T, et al. Identification of a putative Crf splice variant and generation of



- recombinant antibodies for the specific detection of Aspergillus fumigatus. PLos One. 2009;4(8):e6625. PMID: 19675673. doi:10. 1371/journal.pone.0006625.
- 28. Zeng X, Li L, Lin J, Li X, Liu B, Kong Y, Zeng S, Du J, Xiao H, Zhang T, et al. Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy. Antib Ther. 2020;3 (2):95-100. PMID: 33912790. doi:10.1093/abt/tbaa008.
- 29. Eisenhardt SU, Schwarz M, Bassler N, Peter K. Subtractive single-chain antibody (scFv) phage-display: phage-display for high specificity against function-specific conformations of cell membrane molecules. Nat Protoc. 2007;2 (12):3063-73. PMID: 18079705. doi:10.1038/nprot.2007.455.
- 30. Ditzel HJ, Binley JM, Moore JP, Sodroski J, Sullivan N, Sawyer LS, Hendry RM, Yang WP, Barbas CF 3rd, Burton DR, et al. Neutralizing recombinant human antibodies to a conformational V2- and CD4-binding site-sensitive epitope of HIV-1 gp120 isolated by using an epitope-masking procedure. J Immunol. 1995;154(2):893-906. PMID: 7529290. https://www.ncbi.nlm.nih. gov/pubmed/7529290.
- 31. Jones ML, Alfaleh MA, Kumble S, Zhang S, Osborne GW, Yeh M, Arora N, Hou JJ, Howard CB, Chin DY, et al. Targeting membrane proteins for antibody discovery using phage display. null. 2016;6 (1):26240. PMID: 27189586. doi:10.1038/srep26240.
- 32. Dominik PK, Kossiakoff AA. Phage display selections for affinity reagents to membrane proteins in nanodiscs. Methods Enzymol. 2015;557:219-45. PMID: 25950967. doi:10.1016/bs. mie.2014.12.032
- 33. Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for selecting membrane protein-specific antibodies using phage display with cell-based panning. Antibodies (Basel). 2017;6(3):10. PMID: 31548525. doi:10.3390/antib6030010.
- 34. Zhang H, Wilson IA, Lerner RA. Selection of antibodies that regulate phenotype from intracellular combinatorial antibody libraries. Proc Natl Acad Sci U S A. 2012;109(39):15728-33. PMID: 23019357. doi:10.1073/pnas.1214275109.
- 35. Merkouris S, Barde YA, Binley KE, Allen ND, Stepanov AV, Wu NC, Grande G, Lin CW, Li M, Nan X, et al. Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library. Proc Natl Acad Sci U S A. 2018;115(30):E7023-32. PMID: 29987039. doi:10.1073/pnas. 1806660115.
- 36. Ledsgaard L, Ljungars A, Rimbault C, Sorensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today. 2022;27 (8):2151-69. PMID: 35550436. doi:10.1016/j.drudis.2022.05.002.
- 37. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315-17. PMID: 4001944. doi:10.1126/science.4001944
- 38. Smith GP, Petrenko VA. Phage Display. Chem Rev. 1997;97:391-410. PMID: 11848876. doi:10.1021/cr960065d
- 39. Breitling F, Dubel S, Seehaus T, Klewinghaus I, Little M. A surface expression vector for antibody screening. Gene. 1991;104:147–53. PMID: 1916287. doi:10.1016/0378-1119(91)90244-6
- 40. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552-54. PMID: 2247164. doi:10.1038/348552a0
- 41. Clackson T, Hoogenboom HR, Griffiths AD, Winter G. Making antibody fragments using phage display libraries. Nature. 1991;352:624-28. PMID: 1907718. doi:10.1038/352624a0
- 42. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989;246:1275-81. PMID: 2531466. doi:10.1126/ science,2531466
- 43. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A. 1991;88:7978-82. PMID: 1896445. doi:10.1073/pnas.88.18.7978

- 44. Marks JD, Griffiths AD, Malmqvist M, Clackson TP, Bye JM, Winter G. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology (N Y). 1992;10:779-83. PMID: 1368267. doi:10.1038/nbt0792-779
- 45. Noronha EJ, Wang X, Desai SA, Kageshita T, Ferrone S. Limited diversity of human scFv fragments isolated by panning a synthetic phage-display scFv library with cultured human melanoma cells. J Immunol. 1998;161:2968-76. PMID: 9743360 https://www.ncbi. nlm.nih.gov/pubmed/9743360.
- 46. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991;19:4133-37. PMID: 1908075. doi:10.1093/nar/19.15.4133
- 47. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414:521-26. PMID: 9323027. doi:10.1016/s0014-5793(97)01062-4
- 48. Yan J, Li G, Hu Y, Ou W, Wan Y. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med. 2014;12:343. PMID: 25496223. doi:10.1186/s12967-014-0343-6
- 49. Beckmann R, Jensen K, Fenn S, Speck J, Krause K, Meier A, Roth M, Fauser S, Kimbung R, Logan DT, et al. DutaFabs are engineered therapeutic Fab fragments that can bind two targets simultaneously. Nat Commun. 2021;12:708. PMID: 33514724. doi:10.1038/s41467-021-20949-3.
- 50. McGuinness BT, Walter G, FitzGerald K, Schuler P, Mahoney W, Duncan AR, Hoogenboom HR. Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nat Biotechnol. 1996;14:1149-54. PMID: 9631069. doi:10.1038/ nbt0996-1149
- 51. Fagete S, Botas-Perez L, Rossito-Borlat I, Adea K, Gueneau F, Ravn U, Rousseau F, Kosco-Vilbois M, Fischer N, Hartley O. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments. Protein Eng Des Sel. 2017;30:575-82. PMID: 28444391. doi:10.1093/protein/gzx021
- 52. Mazor Y, Van Blarcom T, Carroll S, Georgiou G. Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. FEBS J. 2010;277:2291-303. PMID: 20423457. doi:10.1111/j.1742-4658.2010.07645.x
- 53. Zhang L, Cong Y, Li H, Chen L, Li B, Huang JX, Dong J. Construction of a full-length antibody phage display vector. J Immunol Methods. 2021;494:113052. PMID: 33838171. doi:10. 1016/j.jim.2021.113052
- 54. Tesar D, Hotzel I. A dual host vector for Fab phage display and expression of native IgG in mammalian cells. Protein Eng Des Sel. 2013;26:655-62. PMID: 24065833. doi:10.1093/protein/gzt050
- 55. Batonick M, Kiss MM, Fuller EP, Magadan CM, Holland EG, Zhao Q, Wang D, Kay BK, Weiner MP. pMINERVA: a donor-acceptor system for the in vivo recombineering of scFv into IgG molecules. J Immunol Methods. 2016;431:22-30. PMID: 26851519. doi:10.1016/j.jim.2016.02.003
- 56. Xiao X, Douthwaite JA, Chen Y, Kemp B, Kidd S, Percival-Alwyn J, Smith A, Goode K, Swerdlow B, Lowe D, et al. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. MAbs. 2017;9(6):996-1006. PMID: 28613102. doi:10.1080/19420862.2017.1337617.
- 57. Liu Y, Gu M, Wu Y, Wang W, Wang R, Du M, Ma P, Zhou X, Wang Y, Cao Y, et al. High-throughput reformatting of phage-displayed antibody fragments to IgGs by one-step emulsion PCR. Protein Eng Des Sel. 2018;31:427-36. PMID: 31096267. doi:10.1093/protein/gzz004.
- 58. Rhiel L, Krah S, Gunther R, Becker S, Kolmar H, Hock B, Sturtevant J. REAL-Select: full-length antibody display and library

- screening by surface capture on yeast cells. PLos One. 2014;9(12): e114887. PMID: 25501029. doi:10.1371/journal.pone.0114887.
- 59. Zhou C, Jacobsen FW, Cai L, Chen Q, Shen WD. Development of a novel mammalian cell surface antibody display platform. MAbs. 2010;2:508–18. PMID: 20716968. doi:10.4161/mabs.2.5.12970
- Akamatsu Y, Pakabunto K, Xu Z, Zhang Y, Tsurushita N. Whole IgG surface display on mammalian cells: application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. J Immunol Methods. 2007;327:40–52. PMID: 17719061. doi:10.1016/j.jim. 2007.07.007
- 61. O'Callaghan R, Bradley R, Paranchych W. The effect of M13 phage infection upon the F pili of E. coli. Virology. 1973;54:220–29. PMID: 4123460. doi:10.1016/0042-6822(73)90131-1
- 62. Stengele I, Bross P, Garces X, Giray J, Rasched I. Dissection of functional domains in phage fd adsorption protein. Discrimination between attachment and penetration sites. J Mol Biol. 1990;212:143–49. PMID: 2319594. doi:10.1016/0022-2836(90)90311-9
- Sidhu SS. Engineering M13 for phage display. Biomol Eng. 2001;18:57-63. PMID: 11535417. doi:10.1016/s1389-0344(01) 00087-9
- 64. Loset GA, Sandlie I. Next generation phage display by use of pVII and pIX as display scaffolds. Methods. 2012;58:40–46. PMID: 22819858. doi:10.1016/j.ymeth.2012.07.005
- 65. Kehoe JW, Kay BK. Filamentous phage display in the new millennium. Chem Rev. 2005;105:4056–72. PMID: 16277371. doi:10.1021/cr000261r
- 66. Lowman HB, Bass SH, Simpson N, Wells JA. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 1991;30:10832–38. PMID: 1932005. doi:10.1021/ bi00109a004
- 67. Lee CV, Sidhu SS, Fuh G. Bivalent antibody phage display mimics natural immunoglobulin. J Immunol Methods. 2004;284:119–32. PMID: 14736422. doi:10.1016/j.jim.2003.11.001
- 68. Nilsson B, Moks T, Jansson B, Abrahmsen L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlen M. A synthetic IgG-binding domain based on staphylococcal protein a. Protein Eng. 1987;1:107–13. PMID: 3507693. doi:10.1093/protein/1.2.107
- Rodi DJ, Makowski L. Phage-display technology-finding a needle in a vast molecular haystack. Curr Opin Biotechnol. 1999;10:87–93. PMID: 10047512. doi:10.1016/s0958-1669(99) 80016-0
- Omidfar K, Daneshpour M. Advances in phage display technology for drug discovery. Expert Opin Drug Discov. 2015;10:651–69. PMID: 25910798. doi:10.1517/17460441.2015.1037738
- 71. Chang A, Ting JP, Espada A, Broughton H, Molina-Martin M, Afshar S. A novel phage display vector for selection of target-specific peptides. Protein Eng Des Sel. 2020;33 PMID: 33009572. doi:10.1093/protein/gzaa023.
- 72. Bass S, Greene R, Wells JA. Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins. 1990;8:309–14. PMID: 1708882. doi:10.1002/prot. 340080405
- Sidhu SS, Geyer CR. Phage display in biotechnology and drug discovery. Boca Raton (FL): CRC Press; 2015.
- Azzazy HM, Highsmith WE Jr. Phage display technology: clinical applications and recent innovations. Clin Biochem. 2002;35:425–45. PMID: 12413604. doi:10.1016/s0009-9120(02) 00343-0
- 75. Felici F, Castagnoli L, Musacchio A, Jappelli R, Cesareni G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol. 1991;222:301–10. PMID: 1720463. doi:10.1016/0022-2836(91) 90213-p
- Kwasnikowski P, Kristensen P, Markiewicz WT. Multivalent display system on filamentous bacteriophage pVII minor coat protein. J Immunol Methods. 2005;307:135–43. PMID: 16277988. doi:10.1016/j.jim.2005.10.002
- 77. Wang KC, Wang X, Zhong P, Luo PP. Adapter-directed display: a modular design for shuttling display on phage surfaces. J Mol

- Biol. 2010;395:1088–101. PMID: 19969002. doi:10.1016/j.jmb. 2009.11.068
- 78. Rondot S, Koch J, Breitling F, Dubel S. A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol. 2001;19:75–78. PMID: 11135557. doi:10.1038/83567
- Soltes G, Hust M, Ng KK, Bansal A, Field J, Stewart DI, Dubel S, Cha S, Wiersma EJ. On the influence of vector design on antibody phage display. J Biotechnol. 2007;127:626–37. PMID: 16996161. doi:10.1016/j.jbiotec.2006.08.015
- 80. Kramer RA, Cox F, van der Horst M, van der Oudenrijn S, Res PC, Bia J, Logtenberg T, de Kruif J. A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucleic Acids Res. 2003;31(11):e59. PMID: 12771223. doi:10.1093/nar/gng058.
- Baek H, Suk KH, Kim YH, Cha S. An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res. 2002;30:e18. PMID: 11861923. doi:10.1093/nar/30.5.e18
- 82. Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ. A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. J Immunol Methods. 2003;274:233–44. PMID: 12609549. doi:10.1016/s0022-1759(02)00294-6
- Beaber JW, Tam EM, Lao LS, Rondon IJ. A new helper phage for improved monovalent display of Fab molecules. J Immunol Methods. 2012;376:46–54. PMID: 22119405. doi:10.1016/j.jim. 2011.11.006
- 84. Shim H. Synthetic approach to the generation of antibody diversity. BMB Rep. 2015;48:489–94. PMID: 26129672. doi:10. 5483/bmbrep.2015.48.9.120
- Virnekas B, Ge L, Pluckthun A, Schneider KC, Wellnhofer G, Moroney SE. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 1994;22:5600–07. PMID: 7838712. doi:10.1093/ nar/22.25.5600
- Kosuri S, Church GM. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods. 2014;11:499–507. PMID: 24781323. doi:10.1038/nmeth.2918
- 87. den Brulle J V, Fischer M, Langmann T, Horn G, Waldmann T, Arnold S, Fuhrmann M, Schatz O, O'Connell T, O'Connell D, et al. A novel solid phase technology for high-throughput gene synthesis. Biotechniques. 2008;45:340–43. PMID: 18778261. doi:10.2144/000112953.
- 88. Cox A, Treusch S, Chen S, inventors; Twist bioscience corporations assignees. Oligonucleic acid variant libraries and synthesis thereof. United States patent US 2021/0040476A1. 2020 Oct 12.
- 89. Indermuhle PF, Marsh EP, Fernandez A, Banyai W, Peck BJ, inventors; Twist bioscience corporations assignees. Methods and devices for de novo oligonucleic acid assembly. WIPO (PCT) Patent WO2016/126882A1. 2016 Feb 03.
- 90. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol. 1996;14:309–14. PMID: 9630891. doi:10.1038/nbt0396-309
- 91. Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. Embo J . 1994;13:3245–60. PMID: 8045255. doi:10.1002/j.1460-2075.1994. tb06626.x
- Bertoglio F, Meier D, Langreder N, Steinke S, Rand U, Simonelli L, Heine PA, Ballmann R, Schneider KT, Roth KDR, et al. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun. 2021;12:1577. PMID: 33707427. doi:10.1038/s41467-021-21609-2.
- 93. Lloyd C, Lowe D, Edwards B, Welsh F, Dilks T, Hardman C, Vaughan T. Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of



- therapeutically relevant antigens. Protein Eng Des Sel. 2009;22:159-68. PMID: 18974080. doi:10.1093/protein/gzn058
- 94. Soderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C, et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol. 2000;18:852-56. PMID: 10932154. doi:10.1038/78458.
- 95. Romani C, Comper F, Bandiera E, Ravaggi A, Bignotti E, Tassi RA, Pecorelli S, Santin AD. Development and characterization of a human single-chain antibody fragment against claudin-3: a novel therapeutic target in ovarian and uterine carcinomas. Am J Obstet Gynecol. 2009;201:70 e71-79. PMID: 19426958. doi:10. 1016/j.ajog.2009.02.010
- 96. Weber M, Bujak E, Putelli A, Villa A, Matasci M, Gualandi L, Hemmerle T, Wulhfard S, Neri D, Isalan M. A highly functional synthetic phage display library containing over 40 billion human antibody clones. PLos One. 2014;9:e100000. PMID: 24950200. doi:10.1371/journal.pone.0100000.
- 97. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determiningregion diversity. Nat Biotechnol. 2005;23(3):344-48. PMID: 15723048. doi:10.1038/nbt1067.
- 98. Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, et al. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol. 2008;376:1182-200. PMID: 18191144. doi:10.1016/j.jmb.2007.12.018.
- Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Norenberg S, Stark Y, Kolln J, Popp A, et al. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol. 2011;413:261-78. PMID: 21856311. doi:10.1016/j.jmb. 2011.08.012.
- 100. Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, et al. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs. 2013;5:445-70. PMID: 23571156. doi:10.4161/mabs.24218.
- 101. Valadon P, Perez-Tapia SM, Nelson RS, Guzman-Bringas OU, Arrieta-Oliva HI, Gomez-Castellano KM, Pohl MA, Almagro JC. ALTHEA Gold Libraries: antibody libraries for therapeutic antibody discovery. MAbs. 2019;11:516-31. PMID: 30663541. doi:10. 1080/19420862.2019.1571879
- 102. Teixeira AA, Erasmus MF, D'Angelo S, Naranjo L, Ferrara F, Leal-Lopes C, Durrant O, Galmiche C, Morelli A, Scott-Tucker A, et al. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. MAbs. 2021;13:1980942. PMID: 34850665. doi:10.1080/19420862.2021.
- 103. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991;222:581-97. PMID: 1748994. doi:10.1016/0022-2836(91) 90498-u
- 104. Persson MA, Caothien RH, Burton DR. Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci U S A. 1991;88:2432-36. PMID: 1826052. doi:10.1073/pnas.88.6.2432
- 105. Wang L, Radic MZ, Siegel D, Chang T, Bracy J, Galili U. Cloning of anti-Gal Fabs from combinatorial phage display libraries: structural analysis and comparison of Fab expression in pComb3h and pComb8 phage. Mol Immunol. 1997;34:609-18. PMID: 9393964. doi:10.1016/s0161-5890(97)00082-5
- 106. Siegel DL, Chang TY, Russell SL, Bunya VY. Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in

- immunohematology. J Immunol Methods. 1997;206:73-85. PMID: 9328570. doi:10.1016/s0022-1759(97)00087-2
- 107. Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J, Baier M, Holliger KP, Gorick BD, Hughes-Jones NC, et al. Human anti-self antibodies with high specificity from phage display libraries. Embo J. 1993;12:725-34. PMID: 7679990. doi:10.1002/j.1460-2075.1993.tb05706.x
- 108. Melchers F, ten Boekel E, Seidl T, Kong XC, Yamagami T, Onishi K, Shimizu T, Rolink AG, Andersson J. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol Rev. 2000;175:33-46. PMID: 10933589 https://www.ncbi.nlm.nih. gov/pubmed/10933589.
- 109. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374-77. PMID: 12920303. doi:10.1126/science.1086907
- 110. Kugler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dubel S, Garritsen H, Hock B, Toleikis L, et al. Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol. 2015;15:10. PMID: 25888378. doi:10. 1186/s12896-015-0125-0.
- 111. Hoogenboom HR, Winter G. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol. 1992;227:381-88. PMID: 1404359. doi:10.1016/0022-2836(92)90894-p
- 112. Barbas CF 3rd, Bain JD, Hoekstra DM, Lerner RA. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A. 1992;89:4457-61. PMID: 1584777. doi:10.1073/pnas.89.10.4457
- 113. Garrard LJ, Henner DJ. Selection of an anti-IGF-1 Fab from a Fab phage library created by mutagenesis of multiple CDR loops. Gene. 1993;128:103-09. PMID: 8099557. doi:10.1016/0378-1119(93)90160-5
- 114. de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, Arends J-W, de Bruine AP, de Haard JW, Hoogenboom HR, et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem. 1999;274:18218-30. PMID: 10373423. doi:10.1074/jbc.274.26.18218.
- 115. Schwimmer LJ, Huang B, Giang H, Cotter RL, Chemla-Vogel DS, Dy FV, Tam EM, Zhang F, Toy P, Bohmann DJ, et al. Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J Immunol Methods. 2013;391:60-71. PMID: 23454004. doi:10.1016/j.jim.2013.02.010.
- 116. Diebolder P, Keller A, Haase S, Schlegelmilch A, Kiefer JD, Karimi T, Weber T, Moldenhauer G, Kehm R, Eis-Hubinger AM, et al. Generation of "LYmph Node Derived Antibody Libraries" (LYNDAL) for selecting fully human antibody fragments with therapeutic potential. MAbs. 2014;6:130-42. PMID: 24256717. doi:10.4161/mabs.27236.
- 117. Lee CV, Liang WC, Dennis MS, Eigenbrot C, Sidhu SS, Fuh G. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol. 2004;340:1073-93. PMID: 15236968. doi:10.1016/j.jmb.2004. 05.051
- 118. Kim S, Park I, Park SG, Cho S, Kim JH, Ipper NS, Choi SS, Lee ES, Hong HJ. Generation, diversity determination, and application to antibody selection of a human naive fab library. Mol Cells. 2017;40:655-66. PMID: 28927259. doi:10. 14348/molcells.2017.0106
- 119. Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (N Y). 1994;12:899-903. PMID: 7521646. doi:10.1038/nbt0994-899
- 120. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, Lappin PB, Riccobene T, Abramian D, Sekut L, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities

- of B lymphocyte stimulator. Arthritis Rheum. 2003;48:3253-65. PMID: 14613291. doi:10.1002/art.11299.
- 121. Ho M, Nagata S, Pastan I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A. 2006;103:9637–42. PMID: 16763048. doi:10.1073/pnas. 0603653103
- 122. Dhillon S. Moxetumomab pasudotox: first global approval. Drugs. 2018;78:1763–67. PMID: 30357593. doi:10.1007/s40265-018-1000-9
- 123. Mazumdar S. Raxibacumab. MAbs. 2009;1:531–38. PMID: 20068396. doi:10.4161/mabs.1.6.10195
- 124. Al-Salama ZT. Emapalumab: first global approval. Drugs. 2019;79:99–103. PMID: 30623346. doi:10.1007/s40265-018-1046-8
- 125. Duggan S. Tralokinumab: first approval. Drugs. 2021;81:1657–63. PMID: 34406631. doi:10.1007/s40265-021-01583-1
- 126. Sommer A, Kopitz C, Schatz CA, Nising CF, Mahlert C, Lerchen HG, Stelte-Ludwig B, Hammer S, Greven S, Schuhmacher J, et al. Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res. 2016;76:6331–39. PMID: 27543601. doi:10.1158/0008-5472.CAN-16-0180.
- 127. Jerkeman M, McAllister A, Roos C, Andersson ML, Karlsson I, Borggren M, Abrisqueta P, Carneiro A, Cordoba R, Hagberg H, et al. 17-BI-1206-02 phase 1/2a clinical trial of BI-1206, a monoclonal antibody to fcgriib, in combination with rituximab in subjects with indolent B-Cell non-hodgkin lymphoma that has relapsed or is refractory to rituximab. Blood. 2020;136:2. doi:10. 1182/blood-2020-140219.
- 128. Willuda J, Linden L, Lerchen HG, Kopitz C, Stelte-Ludwig B, Pena C, Lange C, Golfier S, Kneip C, Carrigan PE, et al. Preclinical antitumor efficacy of BAY 1129980—a novel auristatin-based anti-C4.4A (LYPD3) antibody-drug conjugate for the treatment of non-small cell lung cancer. Mol Cancer Ther. 2017;16:893–904. PMID: 28292941. doi:10.1158/1535-7163.MCT-16-0474.
- 129. Wichert S, Juliusson G, Johansson A, Sonesson E, Teige I, Wickenberg AT, Frendeus B, Korsgren M, Hansson M, Hills RK. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLos One. 2017;12: e0171205. PMID: 28158311. doi:10.1371/journal.pone.0171205.
- 130. Lehrer-Graiwer J, Singh P, Abdelbaky A, Vucic E, Korsgren M, Baruch A, Fredrickson J, van Bruggen N, Tang MT, Frendeus B, et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc Imaging. 2015;8:493–94. PMID: 25457756. doi:10.1016/j.jcmg.2014.06.021.
- 131. Sall A, Walle M, Wingren C, Muller S, Nyman T, Vala A, Ohlin M, Borrebaeck CAK, Persson H. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays. Protein Eng Des Sel. 2016;29(10):427–37. PMID: 27590051. doi:10.1093/protein/gzw042.
- 132. Persson H, Ye W, Wernimont A, Adams JJ, Koide A, Koide S, Lam R, Sidhu SS. CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. J Mol Biol. 2013;425 (4):803–11. PMID: 23219464. doi:10.1016/j.jmb.2012.11.037.
- 133. Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem. 1998;273:21769–76. PMID: 9705314. doi:10.1074/jbc.273.34.21769
- 134. Silacci M, Brack S, Schirru G, Marlind J, Ettorre A, Merlo A, Viti F, Neri D. Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics. 2005;5:2340–50. PMID: 15880779. doi:10.1002/pmic.200401273
- 135. Villa A, Lovato V, Bujak E, Wulhfard S, Pasche N, Neri D. A novel synthetic naive human antibody library allows the isolation of antibodies against a new epitope of oncofetal fibronectin. MAbs. 2011;3:264–72. PMID: 21487243. doi:10.4161/mabs.3.3.15616

- 136. Danielli R, Patuzzo R, Di Giacomo AM, Gallino G, Maurichi A, Di Florio A, Cutaia O, Lazzeri A, Fazio C, Miracco C, et al. Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: results of a phase II study. Cancer Immunol Immunother. 2015;64:999–1009. PMID: 25971540. doi:10.1007/s00262-015-1704-6.
- 137. Erba PA, Sollini M, Orciuolo E, Traino C, Petrini M, Paganelli G, Bombardieri E, Grana C, Giovannoni L, Neri D, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med. 2012;53:922–27. PMID: 22577235. doi:10.2967/jnumed.111.101006.
- 138. Schliemann C, Gutbrodt KL, Kerkhoff A, Pohlen M, Wiebe S, Silling G, Angenendt L, Kessler T, Mesters RM, Giovannoni L, et al. Targeting interleukin-2 to the bone marrow stroma for therapy of acute myeloid leukemia relapsing after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Res. 2015;3:547–56. PMID: 25672398. doi:10.1158/2326-6066.CIR-14-0179.
- 139. Galeazzi M, Sebastiani G, Voll R, Viapiana O, Dudler J, Zufferey P, Selvi E, Finzel S, Bootz FS, Neri D. Fri0118 dekavil (F8IL10) update on the results of clinical trials investigating the immunocytokine in patients with rheumatoid arthritis. Ann Rheum Dis. 2018;77. doi:10.1136/annrheumdis-2018-eular.5550.
- 140. Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak JN, Rosli C, Borsi L, Neri D. A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer. 2008;122:2405–13. PMID: 18271006. doi:10.1002/ijc.23408
- 141. Ignatovich O, Tomlinson IM, Jones PT, Winter G. The creation of diversity in the human immunoglobulin V(lambda) repertoire. J Mol Biol. 1997;268:69–77. PMID: 9149142. doi:10.1006/jmbi. 1997.0956
- Detanico T, Phillips M, Wysocki LJ. Functional versatility of AGY serine codons in immunoglobulin variable region genes. Front Immunol. 2016;7:525. PMID: 27920779. doi:10.3389/fimmu.2016. 00525
- 143. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GM, et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A. 2009;106:20216–21. PMID: 19875695. doi:10.1073/pnas. 0909775106.
- 144. Poole RM, Vaidya A. Ramucirumab: first global approval. Drugs. 2014;74:1047–58. PMID: 24916147. doi:10.1007/s40265-014-0244-2
- 145. Garnock-Jones KP. Necitumumab: first global approval. Drugs. 2016;76:283-89. PMID: 26729188. doi:10.1007/s40265-015-0537-0
- 146. ES K. Avelumab: first global approval. Drugs. 2017;77:929–37. PMID: 28456944. doi:10.1007/s40265-017-0749-6
- 147. Syed YY. Lanadelumab: first global approval. Drugs. 2018;78:1633–37. PMID: 30267321. doi:10.1007/s40265-018-0987-2
- 148. Jian JW, Chen HS, Chiu YK, Peng HP, Tung CP, Chen IC, Yu CM, Tsou YL, Kuo WY, Hsu HJ, et al. Effective binding to protein antigens by antibodies from antibody libraries designed with enhanced protein recognition propensities. MAbs. 2019;11:373–87. PMID: 30526270. doi:10.1080/19420862.2018. 1550320.
- 149. Fellouse FA, Wiesmann C, Sidhu SS. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A. 2004;101:12467–72. PMID: 15306681. doi:10.1073/pnas.0401786101
- 150. Fellouse FA, Esaki K, Birtalan S, Raptis D, Cancasci VJ, Koide A, Jhurani P, Vasser M, Wiesmann C, Kossiakoff AA, et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol. 2007;373:924–40. PMID: 17825836. doi:10.1016/j.jmb.2007.08.005.
- 151. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B. Fully synthetic human



- combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296:57-86. PMID: 10656818. doi:10.1006/jmbi.1999.3444
- 152. Markham A. Guselkumab: first global approval. Drugs. 2017;77:1487-92. PMID: 28819723. doi:10.1007/s40265-017-0800 - 7
- 153. Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol. 2004;22:1161-65. PMID: 15300256. doi:10.1038/ nbt1000
- 154. Mendoza-Salazar I, Gomez-Castellano KM, Gonzalez-Gonzalez E, Gamboa-Suasnavart R, Rodriguez-Luna SD, Santiago-Casas G, Cortes-Paniagua MI, Perez-Tapia SM, Almagro JC. Anti-SARS-CoV-2 omicron antibodies isolated from a SARS-CoV-2 delta semi-immune phage display library. Antibodies (Basel). 2022;11 (1):13. PMID: 35225871. doi:10.3390/antib11010013.
- 155. Pedraza-Escalona M, Guzman-Bringas O, Arrieta-Oliva HI, Gomez-Castellano K, Salinas-Trujano J, Torres-Flores J, Munoz-Herrera JC, Camacho-Sandoval R, Contreras-Pineda P, Chacon-Salinas R, et al. Isolation and characterization of high affinity and highly stable anti-Chikungunya virus antibodies using ALTHEA gold libraries™. BMC Infect Dis. 2021;21:1121. PMID: 34717584. doi:10.1186/s12879-021-06717-0.
- 156. Schwabl S, Teis D. Protein quality control at the Golgi. Curr Opin Cell Biol. 2022;75:102074. PMID: 35364487. doi:10.1016/j.ceb. 2022.02.008
- 157. Phillips BP, Gomez-Navarro N, Miller EA. Protein quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 2020;65:96-102. PMID: 32408120. doi:10.1016/j.ceb.2020.04.002
- 158. Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD. Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol. 1999;292:949-56. PMID: 10512694. doi:10.1006/jmbi.1999.3130
- 159. Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. 2018;93:251-58. PMID: 29298813. doi:10.1124/mol.
- 160. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829-42. PMID: 29075003. doi:10.1038/nrd.2017.178
- 161. Mullard A. FDA approves second GPCR-targeted antibody. Nat Rev Drug Discov. 2018;17:613. PMID: 30160256. doi:10.1038/nrd. 2018.153
- 162. Dodd R, Schofield DJ, Wilkinson T, Britton ZT. Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: overcoming the antigen challenge and enabling discovery strategies. Methods. 2020;180:111-26. PMID: 32422249. doi:10.1016/j.ymeth.2020.05.006.
- 163. Devanaboyina SC, Lynch SM, Ober RJ, Ram S, Kim D, Puig-Canto A, Breen S, Kasturirangan S, Fowler S, Peng L, et al. The effect of pH dependence of antibody-antigen interactions on subcellular trafficking dynamics. MAbs. 2013;5:851-59. PMID: 24492341. doi:10.4161/mabs.26389.
- 164. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715-25. PMID: 17703228. doi:10. 1038/nri2155
- 165. Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T, Takubo R, Doi Y, et al. Antibody recycling by engineered Ph-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol. 2010;28:1203-07. PMID: 20953198. doi:10.1038/nbt.1691.
- 166. Chaparro-Riggers J, Liang H, DeVay RM, Bai L, Sutton JE, Chen W, Geng T, Lindquist K, Casas MG, Boustany LM, et al. Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with Ph-sensitive binding to PCSK9. J Biol Chem. 2012;287:11090-97. PMID: 22294692. doi:10.1074/jbc.M111.319764.
- 167. Igawa T, Maeda A, Haraya K, Tachibana T, Iwayanagi Y, Mimoto F, Higuchi Y, Ishii S, Tamba S, Hironiwa N, et al.

- Engineered monoclonal antibody with novel antigen-sweeping activity in vivo. PLos One. 2013;8:e63236. PMID: 23667591. doi:10.1371/journal.pone.0063236.
- 168. Zemlin M, Klinger M, Link J, Zemlin C, Bauer K, Engler JA, Schroeder HW Jr., Kirkham PM. Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J Mol Biol. 2003;334:733-49. PMID: 14636599. doi:10. 1016/j.jmb.2003.10.007
- 169. Johnson G, Wu TT. Preferred CDRH3 lengths for antibodies with defined specificities. Int Immunol. 1998;10:1801-05. PMID: 9885900. doi:10.1093/intimm/10.12.1801
- 170. Collis AV, Brouwer AP, Martin AC. Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol. 2003;325:337-54. PMID: 12488099. doi:10.1016/s0022-2836(02) 01222-6
- 171. Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. 2013;254:225-44. PMID: 23772623. doi:10.1111/imr.12075
- 172. McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature. 2011;480:336-43. PMID: 22113616. doi:10.1038/ nature10696.
- 173. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128:178-83. PMID: 19026455. doi:10.1016/j.vetimm.2008.10.299.
- 174. Haakenson JK, Huang R, Smider VV. Diversity in the cow ultralong CDR H3 antibody repertoire. Front Immunol. 2018;9:1262. PMID: 29915599. doi:10.3389/fimmu.2018.01262.
- 175. Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O, Torkamani A, Raudsepp T, Mwangi W, Criscitiello MF, et al. Reshaping antibody diversity. Cell. 2013;153:1379-93. PMID: 23746848. doi:10.1016/j.cell.2013.04.049.
- 176. Nam DH, Rodriguez C, Remacle AG, Strongin AY, Ge X. Activesite MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc Natl Acad Sci U S A. 2016;113 (52):14970-75. PMID: 27965386. doi:10.1073/pnas.1609375114.
- 177. Bai X, Kim J, Kang S, Kim W, Shim H, Gill AC. A novel human scFv library with non-combinatorial synthetic CDR diversity. PLos One. 2015;10:e0141045. PMID: 26484868. doi:10.1371/journal. pone.0141045.
- 178. Bhat NM, Bieber MM, Stevenson FK, Teng NN. Rapid cytotoxicity of human B lymphocytes induced by VH4-34 (VH4.21) gene-encoded monoclonal antibodies. Clin Exp Immunol. 1996;105:183-90. PMID: 8697629. doi:10.1046/j.1365-2249.1996. d01-733.x
- 179. Jayaram N, Bhowmick P, Martin AC. Germline VH/VL pairing in antibodies. Protein Eng Des Sel. 2012;25:523-29. PMID: 22802295. doi:10.1093/protein/gzs043
- 180. Ewert S, Huber T, Honegger A, Pluckthun A. Biophysical properties of human antibody variable domains. J Mol Biol. 2003;325:531-53. PMID: 12498801. doi:10.1016/s0022-2836(02) 01237-8
- 181. Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules. 2011;16:1776-803. PMID: 21339712. doi:10.3390/molecules16021776
- 182. Matochko WL, Cory Li S, Tang SK, Derda R. Prospective identification of parasitic sequences in phage display screens. Nucleic Acids Res. 2014;42:1784-98. PMID: 24217917. doi:10.1093/nar/ økt1104
- 183. Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, Morelli MJ, Sasso E. High-throughput monoclonal antibody discovery from phage libraries: challenging the current preclinical pipeline to keep the pace with the increasing mAb

- demand. Cancers (Basel). 2022;14 PMID: 35267633. doi:10.3390/cancers14051325.
- 184. Rouet R, Jackson KJL, Langley DB, Christ D. Next-generation sequencing of antibody display repertoires. Front Immunol. 2018;9:118. PMID: 29472918. doi:10.3389/fimmu.2018.0 0118
- 185. Wilman W, Wrobel S, Bielska W, Deszynski P, Dudzic P, Jaszczyszyn I, Kaniewski J, Mlokosiewicz J, Rouyan A, Satlawa T, et al. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief Bioinform. 2022;23: PMID: 35830864. doi:10.1093/bib/bbac267.
- 186. Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, Flem-Karlsen K, Frank R, Mehta BB, Vu MH, et al. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs. 2022;14:2008790. PMID: 35293269. doi:10.1080/19420862. 2021.2008790.
- 187. Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. Biophysical properties of the

- clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 2017;114:944–49. PMID: 28096333. doi:10.1073/pnas.1616408114.
- 188. Spencer S, Bethea D, Raju TS, Giles-Komar J, Feng Y. Solubility evaluation of murine hybridoma antibodies. MAbs. 2012;4:319–25. PMID: 22531448. doi:10.4161/mabs.19869
- 189. Bradbury AR, Sidhu S, Dubel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011;29:245–54. PMID: 21390033. doi:10.1038/nbt.1791
- 190. Dyson MR, Masters E, Pazeraitis D, Perera RL, Syrjanen JL, Surade S, Thorsteinson N, Parthiban K, Jones PC, Sattar M, et al. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs. 2020;12:1829335. PMID: 33103593. doi:10.1080/19420862.2020.1829335.
- Deal CE, Carfi A, Plante OJ. Advancements in mRNA encoded antibodies for passive immunotherapy. Vaccines (Basel). 2021;9:108. PMID: 33572679. doi:10.3390/vaccines9020108.
- 192. Patel A, Bah MA, Weiner DB. In Vivo delivery of nucleic acid-encoded monoclonal antibodies. BioDrugs. 2020;34:273–93. PMID: 32157600. doi:10.1007/s40259-020-00412-3