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ABSTRACT
Monoclonal antibodies (mAbs) and their derivatives have emerged as one of the most important classes 
of biotherapeutics in recent decades. The success of mAb is due to their high versatility, high target 
specificity, excellent clinical safety profile, and efficacy. Antibody discovery, the most upstream stage of 
the antibody development pipeline, plays a pivotal role in determination of the clinical outcome of an 
mAb product. Phage display technology, originally developed for peptide directed evolution, has been 
extensively applied to discovery of fully human antibodies due to its unprecedented advantages. The 
value of phage display technology has been proven by a number of approved mAbs, including several 
top-selling mAb drugs, derived from the technology. Since antibody phage display was first established 
over 30 years ago, phage display platforms have been developed to generate mAbs targeting difficult-to- 
target antigens and tackle the drawbacks present in in vivo antibody discovery approaches. More 
recently, the new generation of phage display libraries have been optimized for discovery of mAbs 
with ”drug-like” properties. This review will summarize the principles of antibody phage display and 
design of three generations of antibody phage display libraries.
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Introduction

Monoclonal antibodies (mAbs) and their derivatives1 repre
sent a major class of therapeutics and have become the best- 
selling drugs in United States in recent years.2,3 The global 
mAb market size reached ~$150 billion in 2020 and is expected 
to double in the next five years.2 To date, approved fully 
human therapeutic antibodies were discovered from either 
in vivo animal immunization (including humanized mice 
and convalescent human donors) or in vitro phage display 
technology. For in vivo animal immunization, antibodies are 
generated through repeated immunization of target of interest. 
Antibodies with high affinity and developability are selected 
during the development of immune response. However, this 
process is time intensive and requires the antigen to be immu
nogenic and nontoxic. In addition, because the selection is 
entirely completed in vivo, there is limited control over prop
erties, such as specificity and epitope. As the other approach, 
phage display technology has greatly advanced the therapeutic 
mAb discovery process by providing a highly versatile 
approach and overcoming many drawbacks present in 
in vivo antibody generation technologies. Due to the comple
tely in vitro selection system, phage display surpasses in vivo 
discovery approaches by enabling the discovery of antibodies 
against virtually any targets or epitopes, including those that 
are either toxic or nonimmunogenic for animal 
immunization.4–6 Moreover, due to fully controlled selection 
conditions, phage display can be tailored for selection for 
desired properties that may not be achievable by in vivo 
approaches, e.g., selection for a specific epitope 
recognition,7,8 pH-dependent binding,9,10 antibody 
internalization,11,12 and even catalytic activity.13 

Furthermore, phage display libraries have successfully led to 
antibody discovery against the most challenging targets or 
epitopes, e.g., the stem region of influenza hemagglutinin,14 

G-protein-coupled receptors (GPCRs),15 and specific confor
mations of ion channels.16–18 A recently developed new gen
eration of phage libraries with protein quality control steps in 
the library construction will further close the developability 
gap between antibodies derived in vivo and in vitro. Moreover, 
there is an increasing consideration that development of anti
body-based affinity reagents and therapeutics should be mov
ing from animal-based to in vitro approaches due to animal 
protection.19,20

Although the majority of approved therapeutic mAbs were 
discovered through animal immunization to date, the number 
of phage-derived antibodies has increased in the recent years, 
including some of the blockbuster drugs, Humira®, Lucentis®, 
and Tecentriq® (Table 1). As of November of 2022, 17 phage- 
derived mAbs have been granted approvals and a multitude of 
them are actively being evaluated in clinical trials (Table 1).21– 

23 Due to the continuous evolution of the technology, as well as 
the expiration of related key patents,23 more and more phage- 
derived mAbs are anticipated to enter clinical trial and the 
market in the future.

The success of phage display mainly relies on the quality of 
library and the selection (a process also known as “panning”) 
strategy. The two most widely used panning strategies are solid 
phase and liquid phase panning. In solid phase panning, the 
target is immobilized on a microtiter plate where specific 
phage binders are captured. By elution and propagation in 
the E.coli host cells, specific phage hits are amplified. After 
iterative panning cycles, target-specific phages are enriched 
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(Figure 1).24,25 In liquid phase panning, biotin-labeled targets 
are incubated with the antibody phage libraries and briefly 
pulled down by streptavidin-coated magnetic beads to capture 
bound phage.26,27 Epitope-directed antibody selection can be 
achieved by alternative panning strategies or incorporating 
other technologies, e.g., competitive panning7,28–30 and site- 
specific photocrosslinking.8 Some other panning strategies, 
such as cell-based and nanodisc-based panning, have been 
developed for challenging targets, e.g., multi-spanning mem
brane proteins.31–33 Moreover, functional selection can be 
directly integrated in the selection process.34,35 Although var
ious panning strategies have been developed to meet different 
antibody discovery goals, the selection procedures are gener
ally well-established and standardized.36 However, library 
design is highly variable and plays a central role in phage 
display-based antibody discovery. In this review, we will briefly 
summarize the principle of antibody phage display and phage 
engineering. This review will focus on the design principles of 
three generations of phage display libraries, as well as several 
specially designed libraries.

Phage display

Display of foreign peptide on the bacteriophage surface with
out affecting phage infection was first described by George 
P. Smith in 1985.37 Since then, phage display technology has 
been extensively applied to various applications, e.g., protein 
evolution (also known as directed evolution), epitope determi
nation, identification of enzyme substrates, and drug 
discovery.38 Since phenotype and genotype are physically 

linked in a phage display system, protein variants with desired 
properties can be rapidly selected through panning and the 
genetic information can be readily extracted. In a phage dis
play system, a library in which diversified peptide or protein 
variants are displayed on phage surface is constructed (typi
cally 1010 − 1012 diversity). Variants with favored properties 
are enriched during iterative selection cycles. Unique 
sequences can then be screened for further applications. 
While the success of phage display has been demonstrated in 
a wide variety of areas, this review will focus on its application 
in therapeutic antibody discovery.

Antibody phage display was originally developed in three 
institutes: Institute of Cell and Tumor Biology at German 
Cancer Research Center (Germany),39 MRC Laboratory of 
Molecular Biology (United Kingdom),40,41 and Scripps 
Research Institute (United States).42,43 Since then, various 
antibody fragment formats have been commonly used for 
phage display, such as single chain variable fragment 
(scFv),44,45 antigen binding fragment (Fab),24,46 single-domain 
antibody (VHH),47,48 and bispecific antibody fragment.49–51 

Although display of full-length IgG on phage was also 
reported,52,53 this platform was not widely used, likely due to 
unstable display, low display level, and bias on phage propaga
tion, which resulted in limited functional diversity of the 
library. However, strategies for functional screening in full- 
length IgG format after phage panning have been reported, 
e.g., dual host vector,54 donor-acceptor system,55 high- 
throughput reformatting, and mammalian expression of 
phage-derived antibodies.56,57 Nevertheless, the display of 
full-length antibody can be readily achieved by eukaryotic 

Table 1. Approved mAbs derived from phage display technology.

Generic Name
Product 
Name Company Format Target

First 
Indication

Approved 
Year Phage display technology

Adalimumab Humira Abbvie IgG1 TNFα RA 2002 Humanization
Ranibizumab Lucentis Novartis, Roche/Genentech Fab- 

IgG1
VEGFA nAMD 2006 Humanization, affinity 

maturation
Belimumab Benlysta Human genome Sciences (HGS), 

GlaxoSmithKline 
(GSK)

IgG1 BLyS SLE 2011 Initial discovery

Raxibacumab ABThrax HGS, GSK IgG1 Bacillus 
anthracis PA

Anthrax 2012 Initial discovery

Ramucirumab Cyramza Lilly/Imclone IgG1 VEGFR2 GC, NSCLC 2014 Initial discovery
Necitumumab Portrazza Eli Lilly IgG1 EGFR NSLCC 2015 Initial discovery
Ixekizumab Taltz Eli Lilly IgG4 IL-17a Psoriasis 2016 Humanization
Atezolizumab Tencentriq Roche/Genentech IgG1 PD-L1 UC 2016 Initial discovery
Avelumab Bavencio Merck Serono/Pfizer IgG1 PD-L1 MCC 2017 Initial discovery
Guselkumab Tremfya Morphosys, Janssen, IgG1 IL-23 Psoriasis 2017 Initial discovery
Lanadelumab Takhzyro Dyax, Shire IgG1 pKal HAE 2018 Initial discovery
Caplacizumab Cablivi Ablynx VHH vWF aTTP 2018 Initial discovery
Moxetumomab 

pasudotox
Lumoxiti AstraZeneca/Medimmune dsFv- 

PE38
CD22 HCL 2018 Affinity maturation

Emapalumab Gamifant Novimmune IgG1 INFγ HLH 2018 Initial discovery
Inebilizumab Uplizna AstraZeneca/Medimmune, Viela Bio IgG1 CD19 NMOSD 2020 Affinity maturation
Tralokinumab Adbry AstraZeneca/Medimmune, Leo Pharma IgG4 IL-13 Asthma 2021 Initial discovery
Faricimab Vabysmo Roche Bi-Fab VEGFA, Ang2 nAMD, DME 2022 Initial discovery and affinity 

maturation

Abbreviations: Ang2: angiopoietin 2; aTTP: acquired thrombotic thrombocytopenic purpura; Bacillus anthracis PA: Bacillus anthracis protective antigen; Bi-Fab: 
bispecific Fab; BLyS: B-lymphocyte stimulator; DME: diabetic macular edema; EGFR: epidermal growth factor receptor; GC: gastric carcinoma; HAE: hereditary 
angioedema; HCL: hairy cell leukemia; HLH, hemophagocytic lymphohistiocytosis; IFN: interferon-gamma; IL-13: interleukin-13; IL-17A: interleukin-17A; IL-23: 
interleukin-23; MCC: Merkel cell carcinoma; nAMD: neovascular age-related macular degeneration; NMOSD: neuromyelitis optica spectrum disorder; NSCLC: non- 
small cell lung carcinoma; PD-L1: programmed death-1 ligand-1; PE38: Pseudomonas exotoxin A; pKal: plasma kallikrein; RA: rheumatoid arthritis; SLE: systemic lupus 
erythematosus; TNFα: tumor necrosis factor-alpha; UC: urothelial carcinoma; VEGFA: vascular endothelial growth factor A; VEGFR2: vascular endothelial growth factor 
receptor 2; vWF: von Willebrand factor.
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display platforms, such as yeast and mammalian cell 
display.58–60 Choice of display format depends on the final 
format that will be used in the application. Since reformatting 
sometimes causes substantial changes of antibody properties, 
e.g., affinity and stability, keeping format consistent from 
library to final product is considered a ”rule of thumb.” As 
such, phage display offers a highly versatile platform with 
regards to choice of antibody format.

Among several well-characterized filamentous bacterio
phages (Ff), including f1, M13, and fd, M13 is the most widely 
used for phage display. Ff bacteriophages infect E. coli host 
cells through a specific interaction between host F pilus and 
phage minor coat protein pIII.61,62 The Ff phage genome 
encodes 11 proteins, five of which are coat proteins (pIII, 
pVI, pVII, pVIII, and pIX). Although all five coat proteins 
have been demonstrated for protein display,63,64 pIII is the 
most widely used as an antibody fusion partner in phage dis
play platforms, because it can accommodate large proteins 
with minimal interference on phage function and is compati
ble with monovalent phage display.65,66 Antibody-pIII fusion 
is generally achieved through genetic fusion, but can also be 

achieved through other conjugation approaches, such as leu
cine zipper dimerization,67 synthetic Fc-binding ZZ 
domains,52,68 etc.

In the early display system, the peptide of interest was fused 
to pIII in frame in the phage genome.69,70 Thus, the peptide is 
displayed on all copies of pIII on the phage surface, which 
results in a potential decrease in phage infectivity. Also, the 
size of the peptide that can be efficiently displayed is limited to 
12 amino acids.71 In a phagemid-based system, antibody-pIII 
fusion is encoded in a separate plasmid (designated phagemid) 
and coinfection with a helper phage is required to provide all 
proteins for phage proliferation.66,72,73 As a result, each phage 
particle contains both wild type and antibody-fusion pIII pro
teins. A key advantage of this system is that monoclonal dis
play can be achieved, which facilitates selection of high affinity 
clones by avoiding the avidity effect during panning.63,66 

Meanwhile, phage infectivity is maximally retained due to 
the presence of wild type pIII. One drawback of the system is 
that wild type pIII is more efficiently assembled in the phage 
particle, resulting in only a small percentage (<10%) of anti
body-displaying phage particles in the population.74 As 

Figure 1. Types of antibody phage display libraries (upper left panel), library construction (lower left panel) and antibody selection (right panel). According to source of 
diversity, antibody phage display libraries can be categorized into three types: natural library, synthetic library, and semisynthetic library. In a typical phagemid system, 
variable regions of light and heavy chains, either cloned from a natural immunoglobulin repertoire or designed and synthesized in vitro, are cloned into a phage display 
vector (phagemid), with one of the chains genetically fused to pIII of phage for display. The library pool is then transformed to E.Coli host cells. By infection with helper 
phage, which provides all the components for phage production, a phage library is generated. Taking solid-phase panning as an example, the phage library is 
incubated with immobilized antigen. After washing, nonspecific phages are removed and antigen-specific phages stay with the antigen. The bound phages are then 
dissociated from the antigen by diverse methods, e.g., low-Ph elution, enzymatic cleavage. Lastly, eluted phages are subjected to propagation in E.Coli host cells. After 
iterative rounds of panning, antigen-specific clones are enriched. Typically, output phages from middle and late rounds of panning are subjected to sequencing and 
binding characterization for obtaining both sequence diversity and high affinity, respectively. Alt-text: Three types of antibody phage display libraries, including 
natural, synthetic, and semisynthetic libraries. Construction of an antibody phage library includes generation of antibody variable region fragments, cloning, 
transformation, and phage production. The antibody selection includes antigen immobilization, phage binding, washing, elution, and phage propagation.
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a consequence, either panning efficiency or sensitivity of any 
phage-mediated binding assays can be greatly compromised 
due to excessive wild type phage background. One strategy is 
to increase multiplicity of display, which can be achieved by 
different methods, such as the pVIII/pVII display system,75,76 

the adapter-directed display,77 and using an inducible promo
ter for the antibody-pIII fusion gene. To maximize the display 
valency, hyperphage was developed by generating a helper 
phage featuring a pIII gene-deficient genotype and wild type 
infectivity phenotype in a pIII-supplying E. coli host.78,79 

Thereby, application of the hyperphage in a regular phagemid 
system resulted in production of phage particles that exclu
sively display antibody-pIII fusion protein. This not only sub
stantially increased the sensitivity of phage ELISA, but also 
significantly improved the panning efficiency.

The pIII protein is comprised of N1 and N2 domains 
required for phage infection and a C-terminal domain (CT) 
for pIII assembly. In another effort, a mutant helper phage, 
named CT helper phage, was generated by deletion of N1 and 
N2 domains in the genome. Similar to the hyperphage system, 
the infectivity of CT helper phage was restored by propagation 
in a E. coli host that heterogeneously expresses an intact pIII 
gene. Therefore, use of CT helper phage substantially 
improved the panning efficiency since only phages incorpo
rated with antibody-pIII fusion are infective.80 Some other 
pIII-deficient helper phage systems were also reported, e.g., 
ex-phage,81 phaberge,82 and a helper phage engineered with 
low N1 expression.71 Of note, since these variants of helper 
phage adopt multivalent display, they result in either reduction 
in phage production or decrease in phage infectivity. 
Therefore, they may not be ideal for phage library construc
tion. In order to balance display level and phage functionality, 
XP5 helper phage was developed to reduce WT pIII produc
tion by introducing multiple rare codons in the pIII gene and 
an altered ribosome binding site spacing.83

Three generations of antibody phage display libraries

Universal antibody phage display libraries, typically consisting 
of over ten billion unique sequences, have become a valuable 
source for discovery of mAbs against any types of targets. 
According to the source of diversity, antibody phage libraries 
can be divided into natural, fully synthetic, and semisynthetic 
libraries (Figure 1). In a natural library, diversity is derived 
entirely from natural repertoires, which can be either healthy, 
autoimmune, or immunized donors (named naïve, nonimmu
nized, and immunized libraries, respectively). In theory, a large 
naïve library can be used to isolate antibodies against any 
targets, but, if a library is constructed from immunized donors, 
diversity will be highly biased toward a specific target. For an 
immunized library constructed from human repertoires, it can 
be constructed from either vaccinated donors or donors who 
have recovered from infection or disease. In a fully synthetic 
library, the antibody frameworks are usually chosen from 
human antibody germlines that are well-represented and 
have shown superior developability. Complementarity-deter
mining regions (CDRs) are designed based on antibody struc
ture and application purpose. The quality of the synthetic 
DNA that are used to create CDR diversity plays a pivotal 

role in determining the functional size of a synthetic library. 
By using mono- or trinucleotide phosphoramidites (TRIM 
technology) as building blocks,84,85 diversified CDRs can be 
synthesized in a high-throughput manner, such as array-based 
oligonucleotide synthesis and Slonomics.86,87 In the TRIM 
technology, each amino acid is encoded by a defined codon. 
Therefore, amino acid distribution at the desired position can 
be precisely defined. Moreover, because the codon for each 
amino acid is selected for optimal antibody expression, the 
functional library size is increased. In the natural antibody 
repertoire, the diversity of CDRs, except CDRH3, is 
a collection of defined sequences that exhibit canonical struc
tures. Compared with the traditional column-based DNA 
synthesis approaches in which one single gene is produced 
per column, the high-throughput DNA synthesis technologies 
allow parallel synthesis of a large number of predetermined 
sequences in the same footprint on a silicon-based chip.88,89 

This enables not only removal of liability motifs that impact 
developability, but also precise mimic of the natural antibody 
diversity. Semisynthetic libraries, therefore, combine synthetic 
CDRs (typically three light chain CDRs and heavy chain CDR1 
and CDR2) and heavy chain CDR3 from natural repertoires. 
Phage libraries can be designed for either antibody discovery 
or engineering. The design of the latter is based on one par
ental antibody and tailored for one specific target. This review 
will focus on design of three generations of universal antibody 
phage display libraries for antibody discovery (Table 2).

First-generation library

Generation of a universal antibody phage library and its success
ful application for panning was first described in 1989.42 The 
Fab library containing 2.5 × 107 plaque-forming units (PFUs) 
was constructed by amplification of variable regions of light and 
heavy chains from the mouse antibody repertoire. Soon after, an 
immunized scFv phage library was created using a similar 
procedure.41 Despite the small library size (2×105), the hit rate 
was substantially improved (>90% after two rounds of panning). 
The success of natural libraries for in vitro antibody discovery 
has been proven at different institutions.103–106 A common fea
ture of these natural libraries is that light and heavy chains are 
randomly combined, thus these are designated combinatorial 
library. Due to the heavy and light chain rearrangement, the 
library diversity is dramatically increased. For example, if 
a natural antibody repertoire contains a diversity of 106 (i.e., 
106 unique light and heavy chain pairs), the diversity would be 
1012 after full light and heavy chain recombination. One signifi
cant advantage is that this approach generates specificities that 
do not exist in natural repertoire, which enables discovery of 
antibodies targeting any given antigen, including self-antigens.
107 In contrast, self-antigen targeting can be challenging for 
natively paired antibodies due to immune tolerance (a protec
tion mechanism in which immune system does not respond to 
self-antigen).108,109 In addition, a large naïve library comprises 
most of the germline genes, which further increases the struc
tural complexity of the library due to diverse framework struc
tures. Although the germline gene distribution in a naïve library 
is usually consistent with that in natural repertoire, it has been 
observed that germline gene usage post-selection is biased 
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toward certain families,93,110 e.g., VH1–69, VH1–46 (Kabat 
nomenclature) and/or IGHV3–30 (IMGT nomenclature) for 
heavy chain. For the light chain, Vλ1-c, Vλ2-2a (Kabat nomen
clature) and/or IGLV1–47, IGKV1–12, IGKV1-D33 (IMGT 
nomenclature) were enriched after selection. Meanwhile, several 
synthetic and semisynthetic antibody libraries were generated in 
the early 1990s.111–113 Although only antibodies with low affi
nity (micromolar range) were isolated due to the small library 
size (107-108), these libraries demonstrated that artificial anti
bodies can be generated in vitro. Later studies showed that, by 
generating larger naïve libraries with library size of 1010-1012, 
antibodies with low- to sub-nanomolar affinity can be directly 
isolated.90,91,93,114–118 Of note, the large naïve library and related 
phage display technology developed by Cambridge Antibody 
Technology has led to approval of six mAbs: adalimumab,119 

belimumab,120 moxetumomab pasudotox,121,122 

raxibacumab,123 emapalumab,124 and tralokinumab.125 

Another example is the n-CoDeR library in which heavy and 
light chain CDR segments were separately amplified by using 
primers specific to VH3–23 and VL1–47 germlines. The six 
CDRs were then reassembled in a single light and heavy chain 
framework that is well-presented in human repertoire and well- 
expressed in bacterial host cells.94 This strategy overcomes the 
drawback with conventional naïve antibody phage libraries in 
which part of the diversity might be lost due to low expression 
and/or display level of certain germline genes in prokaryotic 
system. The n-CoDeR library was used to discover five mAbs 
and their derivatives that entered clinical trials.126–130 In our 
experience, high hit rate (>90%) can be readily achieved and 
antibodies with high affinity (low nanomolar) can be routinely 
isolated from a large naïve library (library size = 1012) con
structed in-house. Depending on the target, 10–20% of total 
sequences screened are unique.

Taken together, first-generation phage libraries demon
strated that antibody discovery can be performed completely 
in vitro and antibodies with high affinity and sequence diver
sity can be isolated directly from phage libraries.

Second-generation library

In the design of the second-generation libraries, represented by 
several semisynthetic and fully synthetic libraries, amino acid 
distribution and positions to be diversified were carefully 
selected based on knowledge of natural antibody structure 
and antibody–antigen interaction. By leveraging TRIM tech
nology which uses pre-synthesized trinucleotides as building 
blocks for oligonucleotides synthesis, the CDR amino acid 
composition can be precisely tailored to meet specific design 
criteria. Moreover, developability was taken into consideration 
in the library design.

In the design of several synthetic libraries, e.g., HelL-11, 
HelL-13, and Library F, amino acids that are frequently used in 
the antibody-antigen interaction dominate in CDRL3 and 
CDRH3.131,132 More precisely, in the design of ETH2 and 
ETH-2-Gold libraries, selected residues predicted to be in 
direct contact with the antigen in silico were randomized, 
while structure-supporting CDR residues were kept 
constant.133,134 Based on ETH-2-Gold library, PHILO and 
PHILODiamond libraries were designed to cover a broader 

epitope landscape by incorporation of hydrophilic residues at 
specific positions in the antigen contacting site.96,135 ETH 
serial libraries led to two mAbs, Teleukin and Dekavil, being 
investigated in clinical trials.136–140 Although CDRL3 and 
CDRH3 play crucial roles in germline diversity, it has been 
observed that CDR1 and CDR2 are preferentially selected for 
affinity maturation during the course of somatic 
hypermutation.141–143 In the design of the Dyax library, 
a semisynthetic library, diversity of light chain and CDRH3 
were derived from antibody repertoires of autoimmune donors 
to increase the likelihood of discovery of antibodies targeting 
self-antigens. CDRH1 and CDRH2, however, were fully syn
thetic, and residues that were predicted to be surface-exposed 
were randomized using all amino acids except cysteine.97 

Indeed, by panning against four selected antigens, the average 
antibody affinities indicated by KD were below 20 nM for three 
of the four targets. Of note, the moderate average affinity (131  
nM) of the other one target is likely due to usage of a single 
VH/VL framework pair in the library construction. The Dyax 
library was used in the discovery of four approved mAbs: 
ramucirumab,144 necitumumab,145 avelumab,146 and 
lanadelumab.147 In a systematic analysis of antibody-protein 
and antibody-peptide interaction propensity, machine learn
ing was leveraged to predict CDR hot spot residue 
distributions.148 By densely enriching the hot spot residues 
across all CDRs, GH libraries resulted in enhanced antibody– 
antigen recognition indicated by high affinity and specificity. 
In fact, by using minimalist libraries, it has been demonstrated 
that only a small subset of amino acid types (a four-amino-acid 
code (Tyr, Asp, Ser, and Ala) or a binary code (Tyr and Ser)) is 
sufficient to mediate interactions with proteins.149,150

In the HuCAL serial libraries, frameworks that cover major 
types of CDR canonical structures were included to maximize 
structural diversity. By leveraging TRIM technology, six CDRs 
were designed to precisely mimic the amino acid distribution 
that occurs in natural repertoire.98,99,151 Thus, the HuCAL 
libraries are more likely to yield antibodies with nature-like 
properties. Since TRIM technology allows precisely defined 
nucleotide composition in the oligonucleotide synthesis, it 
also enables stable and high expression of antibody in E.coli 
host cells through optimized codon usage and avoidance of 
stop codons, which are the drawbacks of using degenerate 
codons. As a result, functional diversity of the synthetic library 
can be greatly improved. It is notable that the percentage of 
alanine at heavy chain H137 can be tuned to favor binding for 
either protein or hapten/peptide. Another feature of the 
HuCAL library is that restriction sites were introduced to 
flank all six CDR loops. Thus, antibody engineering can be 
facilitated by rapid CDR shuffling. In the design of the 
HuCAL-PLATINUM library, post-translational modification 
hot spots, e.g., N-glycosylation, were avoided in CDR design to 
further improve the antibody’s developability. Moreover, 
amino acid distribution in CDRH3 was tuned based on the 
loop length to further mimic the natural repertoire.99 In 
another effort to further improve the overall developability of 
antibodies selected from a phage library, 36 of 400 VH/VL pairs 
were identified for optimal biophysical properties and used for 
construction of the Ylanthia library.100 As a result, antibodies 
directly selected from the library showed superior affinity, 
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protein expression level, thermal stability, and aggregation 
propensity. Of note, the HuCAL-GOLD library yielded guselk
umab, which was approved in 2017.152

In summary, in the design of the second-generation 
libraries, antibody structure and developability properties 
were taken into consideration through the removal of 
sequence liability motifs, inclusion of natural amino acid dis
tributions in CDR, and selection of heavy and light chain 
frameworks with superior biophysical properties.

Third-generation library

In general, the improvements of developability properties in 
the second-generation libraries were achieved by sequence- 
based optimization. While our knowledge regarding 
sequence-based prediction of protein liabilities is still limited, 
many biophysical properties, such as stability, solubility, and 
expression, are closely related to higher order structure of 
a protein. Although scaffolds with high stability and expres
sion can be selected for library construction, the overall bio
physical properties of antibodies in a phage library are also 
highly determined by CDR sequence. Therefore, these devel
opability properties were experimentally improved during 
construction of the third-generation libraries.

In order to enhance the library solubility and thermostabil
ity, a heat shock step, followed by a protein A recovery, was 
incorporated in the construction of the semisynthetic 
ALTHEA Gold library.101 This is based on the observation 
that heat denaturation selected stable and well-folded 
antibodies.153 Validation of the library showed that the overall 
frequency of hydrophobic residues at diversified CDR posi
tions decreased after heat shock and protein A selection. In 
contrast, charged residues were positively selected by the fil
tration process. By panning the library against a diverse panel 
of antigens, the scFvs selected exhibited high affinity (KD 
ranges from single-digit nM to sub-nM), solubility (>50 mg/ 
L), and thermal stability (Tm > 70°C), which agree with bio
physical parameters of therapeutic antibodies.101,154,155

In another effort to create a semisynthetic phage library 
with ”drug-like” properties, a yeast display filtration was 
applied to select sequences with optimal developability proper
ties required for clinical development, including affinity, 
aggregation, thermostability, polyspecificity, and expression 
level.102 This step leverages the eukaryotic protein quality 
control systems for selection of correctly behaving proteins 
for secretion.156–158 In detail, five single-CDR yeast display 
libraries, in each of which one CDR (except CDRH3) was 
synthesized from replicated natural diversity, were individu
ally created. The antibody sequences that were displayed cor
rectly and in a high level were selected and subjected to next- 
generation sequencing (NGS) analysis. CDRH3 sequences, 
however, were sourced from human natural antibody reper
toires. This was done for two reasons: 1) depending on length 
and amino acid usage, synthetic CDRH3 diversity typically far 
exceeds the actual library size; and 2) the natural CDRH3 
source can provide enough high diversity and the sequences 
have also been filtered in vivo for optimal biophysical proper
ties, e.g., high stability and expression, low immunogenicity. 
To validate the library, panning was conducted against four 

antigens. Remarkably, from a total number of 81 antibodies 
isolated, around 80% showed single-digit to sub-nM affinity. 
More strikingly, by determining developability parameters, 
including thermostability, polyspecificity, and self-interaction, 
97% of the measurements of the antibodies behaved similarly 
or better than that of the corresponding approved parental 
antibodies. This study highlights the importance of the eukar
yotic quality control system in the selection of high-quality 
antibodies.

In summary, the third-generation libraries leverage in vitro 
or in vivo experimental approaches to further improve the 
overall library quality, which yield antibodies with properties 
comparable to therapeutic antibody drugs.

Library designed for specific applications

Although the aforementioned universal phage libraries pro
vide valuable resources for antibody discovery, their perfor
mance may be compromised for challenging targets and 
epitopes (e.g., GPCR, concave-shaped epitope) and specific 
applications (e.g., pH-dependent antibodies). This is due to 
inherent characteristics of conventional antibody libraries, 
either natural libraries or synthetic libraries that mimic the 
human antibody repertoire. An advantage of phage display 
technology is that the library can be tailored to adapt to dis
tinct applications. Indeed, several specialized phage libraries 
have been designed and created.

GPCR library

GPCR represents a class of seven transmembrane receptors. 
GPCRs have been recognized as successful drug targets as 
approximately one third of the US Food and Drug 
Administration (FDA)-approved drugs target GPCRs.159,160 

However, due to high hydrophobicity, conformational flexibil
ity, and limited accessibility of epitopes on the extracellular 
portion, GPCRs are challenging targets for antibodies. To date, 
there are only two FDA-approved antibodies drugs targeting 
GPCRs: mogamulizumab and erenumab, which target CC 
chemokine receptor 4 and calcitonin gene-related peptide 
receptor, respectively.161 Phage display offers a valuable anti
body discovery platform for targeting challenging targets, 
including ion channels, transporters, and GPCRs.162 For 
example, one synthetic antibody phage display library was 
designed by mining the sequences of all known GPCR ligand 
interactions and incorporating the identified binding motifs 
into CDRH3. As a result, this GPCR-focused library success
fully led to discovery of a panel of antagonistic antibodies 
targeting glucagon-like peptide-1 receptor with high affinity.15

Library for selection of pH dependent antibodies

Elimination of soluble targets by conventional high affinity 
antibodies usually requires a large dose. This is because an 
antibody usually binds with an antigen with similar strength 
at both neutral and slightly acidic pH (pH 5.5–6.0); therefore 
the antigen bound with antibody in the extracellular envir
onment does not dissociate from the complex in the endo
some. As a result, the antigen can escape from lysosomal 
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degradation and return to the circulation mediated by the 
neonatal Fc receptor (FcRn).163,164 Thus, antibodies that are 
capable of neutralizing the target at physiological pH and 
releasing it at acidic endosomal pH would be expected to 
enhance the therapeutic index. In the past, pH-dependent 
binding has been achieved through antibody engineering, 
e.g., histidine scanning.165,166 Alternatively, sweeping anti
body technology was developed to enhance binding with 
FcRn at neutral pH for rapid uptake of antibody–antigen 
complex for target clearance.167 While these technologies 
proved successful, they are labor-intensive and all based on 
preexisting antibodies. In another attempt, pH-dependent 
antibodies were isolated de novo from a synthetic antibody 
phage display library.9 In the library design, histidine residue 
was enriched in CDRH3 for two reasons. First, histidine is 
neutrally charged at physiological pH but becomes positively 
charged at pH 6.0. Therefore, histidine residues within the 
protein–protein interaction region can exert pH-dependent 
binding. Second, histidine is less frequently found in natural 
repertoires.168 Combined with a modified selection strategy, 
several anti-CXCL10 antibodies with high binding affinity 
and strong neutralizing activity at pH 7.4, but weak binding 
at pH 6.0 were isolated.

Library with elongated CDRH3

One limitation of human or mouse antibodies is that tar
geting a concave epitope of a target, e.g., pore of ion 
channels and pocket of enzymes, can be challenging. This 
is largely due to the relatively short CDRH3 length, typi
cally 7–12 and 8–20 amino acids for mouse and human 
respectively, which tend to form a cave or flat 
paratope.169,170 Therefore, concave-shaped conformation 
of a target is usually inaccessible for conventional antibo
dies. Although antihuman immunodeficiency virus (HIV) 
broadly neutralizing antibodies with extended CDRH3 of 
around 30 amino acids have been isolated, they were only 
found in a minority of infected population and require 
years of development.171,172 Interestingly, antibodies from 
some species, such as cow and camelid, are unusual in 
having a natural elongated CDRH3 (e.g., up to 70 amino 
acids for cow), which provides extra diversity and paratope 
complexity.173,174 The cow ultralong CDRH3 generally 
adopts a ”stalk and knob” structure, in which a β strand 
”stalk” supports a structurally complex ”knob” domain 
stabilized with multiple disulfide bonds.175 The ”knob” 
domain protrudes out from the antibody surface, making 
it accessible to the concave epitope. In a proof-of-concept 
study, a synthetic Fab phage display library carrying elon
gated CDRH3 (23–27 amino acids) was constructed.176 By 
panning against the library, a number of antibodies that 
potently inhibited matrix metalloproteinase-14 were identi
fied. Of note, one of the antibodies was indicated to bind 
to the vicinity of the enzyme activity pocket. Libraries 
displaying atypical antibodies with elongated CDRH3 
further extend the application of phage display technology.

Conclusions and prospects

Phage display has proven to be an unequivocal success for 
antibody discovery, evidenced by 17 approved mAbs and an 
increasing number of phage-derived antibodies under clinical 
investigation. As an entirely in vitro technology, phage display 
not only compensates for many limitations inherited by in vivo 
antibody discovery approaches, it also provides a highly versa
tile and customizable platform that continuously evolves to 
meet distinct development goals.

Affinity is a key factor used to evaluate the quality of 
a phage library. It has been observed that affinity that can 
be achieved is correlated with the library size. We investi
gated the correlation between highest affinity values obtained 
from published universal phage libraries and library size 
(data not shown). In agreement with previous observations, 
there is a positive correlation between the two parameters. 
This is because a universal library is designed for antibody 
discovery against any given target. Therefore, a larger library 
(higher diversity) offers a greater chance of identifying high 
affinity antibodies. In the case of a synthetic library, although 
a limited number of frameworks are used, the designed CDR 
diversity usually far exceeds the natural CDR diversity. 
Therefore, the chance to obtain high affinity antibodies 
mainly depends on CDR sequence diversity. In the case of 
a naïve library, the library diversity comes from not only the 
sequence diversity, but also from light and heavy chain rear
rangement. Of note, the random heavy and light chain rear
rangement is a process highly resembling chain shuffling, 
which is a routine strategy for in vitro antibody affinity 
maturation. This may explain why antibodies with very 
high affinity were isolated from naïve phage libraries, even 
when the libraries were constructed from germline sequences 
with no or very limited somatic hypermutations. While it was 
expected that identification of library size is a key factor that 
determines the affinity, a correlation with either library type 
or library generation was not observed (data not shown). One 
reason is that, except for a few early libraries, the library size 
difference among three generations of phage libraries is mini
mal. Also, the advancements of three generations of phage 
libraries mainly reflects improvements of overall developabil
ity properties.

It has been reported that the presence of library clones that 
do not display antibody fragments (bald phage) is partially due 
to stop codons or frameshifts present in the antibody gene. 
These clones often outgrow because of the decreased burden 
on production of antibody fusion proteins and higher infectiv
ity due to all wild type pIII molecules on phage particle, 
resulting in loss of library diversity. In efforts to increase 
functional library size, several strategies have been developed. 
For example, anti-tag antibody was used for proofreading 
panning to select in-frame sequences due to the tag being in- 
frame with the antibody sequence.177 In the design of the 
HuCAL GOLD library, the β-lactamase gene was used to 
eliminate frame-shifted sequences.98

Regarding framework usage in a phage display library, it is 
generally accepted that a library using multiple frameworks 
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will perform better than one using a single pair of frameworks, 
since multiple scaffolds provide more structural diversity.100 

For selection of framework, parameters, such as frequency in 
natural repertories, stability, expression, and display level, have 
been taken into consideration. Moreover, it should be noted 
that several heavy chain germline genes, e.g., certain IGVH4 
family genes, have been found to be deselected during phage 
panning.93,98 Also, VH4–34 has been found to be associated 
with B cell cytotoxicity.178 Thus, these germlines should be 
excluded from the library design. For the majority of the phage 
display libraries, VH and VL are randomly rearranged, which 
agrees with the observation that there is no obvious preference 
of VH/VL pairing in natural repertories.179 However, in terms 
of drug development, since different VH/VL pairings do exhibit 
very distinct biophysical characteristics,100,180 attention should 
be given to the choice of framework pairing.

Compared to in vivo antibody discovery approaches, 
another advantage of phage display is that the sequence infor
mation can be retrieved rapidly and readily. However, this 
advantage is partially attenuated by the conventional screening 
approach of characterization of individual clones, in which 
only a small percentage of sequence information, i.e., the 
most abundant sequences, from panning output is assessed. 
This is partially due to intrinsic amplification bias of antibody- 
displaying phages in E.coli host cells, which leads to some of 
the sequences becoming rare over several cycles of 
panning.181,182 To overcome the limitation, NGS, which allows 
deep mining of sequence space in a sample, has recently been 
applied to antibody phage display technology, especially for 
identification of those rare sequences with potential interesting 
features.183,184 Most recently, machine learning combined with 
NGS has been applied to predict binding features (e.g., affinity, 
epitope, developability) of sequences from phage panning, and 
even generate new sequences with improved properties.185,186

Despite many advantages of phage display, developability 
has been a concern for mAbs derived in vitro due to lack of 
in vivo protein quality control process.187–189 As aforemen
tioned, either in vitro or eukaryotic quality control steps were 
integrated into the construction of the third-generation phage 
display libraries. Thus, only library members with favorable 
developability were selected. Indeed, it has been reported that 
mAbs selected from the third-generation libraries showed 
overall enhanced developability properties, including high affi
nity, improved stability and solubility, and less self-interaction. 
Alternatively, mammalian display can be used to further 
screen or optimize developability properties of mAbs, based 
on a strong correlation between optimal biophysical properties 
and display level.190 It is worthwhile to mention that the 
emergence of in vivo delivery of nucleic acid-encoded biolo
gics, i.e., DNA and mRNA technologies, enables direct pro
duction of therapeutic mAbs in vivo. These delivery 
technologies bypass the complex protein manufacturing, sto
rage, and transport processes, which require proteins with 
excellent biophysical properties.191,192 Therefore, it would be 
envisioned that, with the advancements of new drug delivery 
technologies, many requirements on developability, particu
larly manufacturability, can be mitigated in the future.

As phage display technology continues to evolve, and in 
concert with other state-of-the-art technologies, such as NGS 

and machine learning, phage display technology will continue 
to make great contributions to innovative drug discovery in 
the future.
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