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ABSTRACT

Monoclonal antibodies (mAbs) and their derivatives have emerged as one of the most important classes
of biotherapeutics in recent decades. The success of mAb is due to their high versatility, high target
specificity, excellent clinical safety profile, and efficacy. Antibody discovery, the most upstream stage of
the antibody development pipeline, plays a pivotal role in determination of the clinical outcome of an
mADb product. Phage display technology, originally developed for peptide directed evolution, has been
extensively applied to discovery of fully human antibodies due to its unprecedented advantages. The
value of phage display technology has been proven by a number of approved mAbs, including several
top-selling mAb drugs, derived from the technology. Since antibody phage display was first established
over 30 years ago, phage display platforms have been developed to generate mAbs targeting difficult-to-
target antigens and tackle the drawbacks present in in vivo antibody discovery approaches. More
recently, the new generation of phage display libraries have been optimized for discovery of mAbs
with “drug-like” properties. This review will summarize the principles of antibody phage display and
design of three generations of antibody phage display libraries.
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Introduction

Monoclonal antibodies (mAbs) and their derivatives' repre-
sent a major class of therapeutics and have become the best-
selling drugs in United States in recent years.> The global
mADb market size reached ~$150 billion in 2020 and is expected
to double in the next five years.”> To date, approved fully
human therapeutic antibodies were discovered from either
in vivo animal immunization (including humanized mice
and convalescent human donors) or in vitro phage display
technology. For in vivo animal immunization, antibodies are
generated through repeated immunization of target of interest.
Antibodies with high affinity and developability are selected
during the development of immune response. However, this
process is time intensive and requires the antigen to be immu-
nogenic and nontoxic. In addition, because the selection is
entirely completed in vivo, there is limited control over prop-
erties, such as specificity and epitope. As the other approach,
phage display technology has greatly advanced the therapeutic
mAb discovery process by providing a highly versatile
approach and overcoming many drawbacks present in
in vivo antibody generation technologies. Due to the comple-
tely in vitro selection system, phage display surpasses in vivo
discovery approaches by enabling the discovery of antibodies
against virtually any targets or epitopes, including those that
are either toxic or nonimmunogenic for animal
immunization.* ® Moreover, due to fully controlled selection
conditions, phage display can be tailored for selection for
desired properties that may not be achievable by in vivo

approaches, e.g., selection for a specific epitope
recognition,”®  pH-dependent  binding,”'°  antibody
internalization,">'* and  even  catalytic  activity."?

Furthermore, phage display libraries have successfully led to
antibody discovery against the most challenging targets or
epitopes, e.g., the stem region of influenza hemagglutinin,"*
G-protein-coupled receptors (GPCRs),"” and specific confor-
mations of ion channels.'®'® A recently developed new gen-
eration of phage libraries with protein quality control steps in
the library construction will further close the developability
gap between antibodies derived in vivo and in vitro. Moreover,
there is an increasing consideration that development of anti-
body-based affinity reagents and therapeutics should be mov-
ing from animal-based to in vitro approaches due to animal
protection.'>**

Although the majority of approved therapeutic mAbs were
discovered through animal immunization to date, the number
of phage-derived antibodies has increased in the recent years,
including some of the blockbuster drugs, Humira®, Lucentis®,
and Tecentriq® (Table 1). As of November of 2022, 17 phage-
derived mAbs have been granted approvals and a multitude of
them are actively being evaluated in clinical trials (Table 1).'~
** Due to the continuous evolution of the technology, as well as
the expiration of related key patents,”> more and more phage-
derived mAbs are anticipated to enter clinical trial and the
market in the future.

The success of phage display mainly relies on the quality of
library and the selection (a process also known as “panning”)
strategy. The two most widely used panning strategies are solid
phase and liquid phase panning. In solid phase panning, the
target is immobilized on a microtiter plate where specific
phage binders are captured. By elution and propagation in
the E.coli host cells, specific phage hits are amplified. After
iterative panning cycles, target-specific phages are enriched
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Table 1. Approved mAbs derived from phage display technology.

Product First Approved

Generic Name Name Company Format Target Indication Year Phage display technology

Adalimumab  Humira Abbvie IgG1  TNFa RA 2002 Humanization

Ranibizumab  Lucentis Novartis, Roche/Genentech Fab-  VEGFA nAMD 2006 Humanization, affinity
1gG1 maturation

Belimumab Benlysta Human genome Sciences (HGS), IlgG1  BLyS SLE 2011 Initial discovery

GlaxoSmithKline
(GSK)
Raxibacumab ~ ABThrax HGS, GSK I9G1  Bacillus Anthrax 2012 Initial discovery
anthracis PA

Ramucirumab  Cyramza Lilly/Imclone IgG1  VEGFR2 GC, NSCLC 2014 Initial discovery

Necitumumab  Portrazza Eli Lilly IgG1  EGFR NSLCC 2015 Initial discovery

Ixekizumab Taltz Eli Lilly IgG4  IL-17a Psoriasis 2016 Humanization

Atezolizumab  Tencentriq Roche/Genentech IgG1  PD-L1 uc 2016 Initial discovery

Avelumab Bavencio Merck Serono/Pfizer IgG1  PD-L1 McCC 2017 Initial discovery

Guselkumab Tremfya Morphosys, Janssen, lgG1  IL-23 Psoriasis 2017 Initial discovery

Lanadelumab  Takhzyro Dyax, Shire IgG1  pKal HAE 2018 Initial discovery

Caplacizumab  Cablivi Ablynx VHH  vWF alTP 2018 Initial discovery

Moxetumomab  Lumoxiti AstraZeneca/Medimmune dsFv-  CD22 HCL 2018 Affinity maturation

pasudotox PE38

Emapalumab  Gamifant Novimmune IgG1  INFy HLH 2018 Initial discovery

Inebilizumab  Uplizna AstraZeneca/Medimmune, Viela Bio IgG1 (D19 NMOSD 2020 Affinity maturation

Tralokinumab  Adbry AstraZeneca/Medimmune, Leo Pharma  19gG4  IL-13 Asthma 2021 Initial discovery

Faricimab Vabysmo Roche Bi-Fab VEGFA, Ang2 nAMD, DME 2022 Initial discovery and affinity

maturation

Abbreviations: Ang2: angiopoietin 2; aTTP: acquired thrombotic thrombocytopenic purpura; Bacillus anthracis PA: Bacillus anthracis protective antigen; Bi-Fab:
bispecific Fab; BLyS: B-lymphocyte stimulator; DME: diabetic macular edema; EGFR: epidermal growth factor receptor; GC: gastric carcinoma; HAE: hereditary
angioedema; HCL: hairy cell leukemia; HLH, hemophagocytic lymphohistiocytosis; IFN: interferon-gamma; IL-13: interleukin-13; IL-17A: interleukin-17A; 1L-23:
interleukin-23; MCC: Merkel cell carcinoma; nAMD: neovascular age-related macular degeneration; NMOSD: neuromyelitis optica spectrum disorder; NSCLC: non-
small cell lung carcinoma; PD-L1: programmed death-1 ligand-1; PE38: Pseudomonas exotoxin A; pKal: plasma kallikrein; RA: rheumatoid arthritis; SLE: systemic lupus
erythematosus; TNFa: tumor necrosis factor-alpha; UC: urothelial carcinoma; VEGFA: vascular endothelial growth factor A; VEGFR2: vascular endothelial growth factor

receptor 2; VWF: von Willebrand factor.

(Figure 1).**** In liquid phase panning, biotin-labeled targets
are incubated with the antibody phage libraries and briefly
pulled down by streptavidin-coated magnetic beads to capture
bound phage.”®*” Epitope-directed antibody selection can be
achieved by alternative panning strategies or incorporating
other technologies, e.g., competitive panning”?*~° and site-
specific photocrosslinking.® Some other panning strategies,
such as cell-based and nanodisc-based panning, have been
developed for challenging targets, e.g., multi-spanning mem-
brane proteins.’’ > Moreover, functional selection can be
directly integrated in the selection process.”*** Although var-
ious panning strategies have been developed to meet different
antibody discovery goals, the selection procedures are gener-
ally well-established and standardized.’® However, library
design is highly variable and plays a central role in phage
display-based antibody discovery. In this review, we will briefly
summarize the principle of antibody phage display and phage
engineering. This review will focus on the design principles of
three generations of phage display libraries, as well as several
specially designed libraries.

Phage display

Display of foreign peptide on the bacteriophage surface with-
out affecting phage infection was first described by George
P. Smith in 1985.%” Since then, phage display technology has
been extensively applied to various applications, e.g., protein
evolution (also known as directed evolution), epitope determi-
nation, identification of enzyme substrates, and drug
discovery.’® Since phenotype and genotype are physically

linked in a phage display system, protein variants with desired
properties can be rapidly selected through panning and the
genetic information can be readily extracted. In a phage dis-
play system, a library in which diversified peptide or protein
variants are displayed on phage surface is constructed (typi-
cally 10" — 10'* diversity). Variants with favored properties
are enriched during iterative selection cycles. Unique
sequences can then be screened for further applications.
While the success of phage display has been demonstrated in
a wide variety of areas, this review will focus on its application
in therapeutic antibody discovery.

Antibody phage display was originally developed in three
institutes: Institute of Cell and Tumor Biology at German
Cancer Research Center (Germany),39 MRC Laboratory of
Molecular Biology (United Kingdom),*”*' and Scripps
Research Institute (United States).**** Since then, various
antibody fragment formats have been commonly used for
phage display, such as single chain variable fragment
(scFv),**** antigen binding fragment (Fab),***° single-domain
antibody (VHH),*”*® and bispecific antibody fragment.*’~>'
Although display of full-length IgG on phage was also
reported,”™”” this platform was not widely used, likely due to
unstable display, low display level, and bias on phage propaga-
tion, which resulted in limited functional diversity of the
library. However, strategies for functional screening in full-
length IgG format after phage panning have been reported,
e.g., dual host vector,” donor-acceptor system,”> high-
throughput reformatting, and mammalian expression of
phage-derived antibodies.”®>” Nevertheless, the display of
full-length antibody can be readily achieved by eukaryotic
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Figure 1. Types of antibody phage display libraries (upper left panel), library construction (lower left panel) and antibody selection (right panel). According to source of
diversity, antibody phage display libraries can be categorized into three types: natural library, synthetic library, and semisynthetic library. In a typical phagemid system,
variable regions of light and heavy chains, either cloned from a natural immunoglobulin repertoire or designed and synthesized in vitro, are cloned into a phage display
vector (phagemid), with one of the chains genetically fused to plll of phage for display. The library pool is then transformed to E.Coli host cells. By infection with helper
phage, which provides all the components for phage production, a phage library is generated. Taking solid-phase panning as an example, the phage library is
incubated with immobilized antigen. After washing, nonspecific phages are removed and antigen-specific phages stay with the antigen. The bound phages are then
dissociated from the antigen by diverse methods, e.g., low-Ph elution, enzymatic cleavage. Lastly, eluted phages are subjected to propagation in E.Coli host cells. After
iterative rounds of panning, antigen-specific clones are enriched. Typically, output phages from middle and late rounds of panning are subjected to sequencing and
binding characterization for obtaining both sequence diversity and high affinity, respectively. Alt-text: Three types of antibody phage display libraries, including
natural, synthetic, and semisynthetic libraries. Construction of an antibody phage library includes generation of antibody variable region fragments, cloning,
transformation, and phage production. The antibody selection includes antigen immobilization, phage binding, washing, elution, and phage propagation.

display platforms, such as yeast and mammalian cell
display.”®® Choice of display format depends on the final
format that will be used in the application. Since reformatting
sometimes causes substantial changes of antibody properties,
e.g., affinity and stability, keeping format consistent from
library to final product is considered a “rule of thumb.” As
such, phage display offers a highly versatile platform with
regards to choice of antibody format.

Among several well-characterized filamentous bacterio-
phages (Ff), including f1, M13, and fd, M13 is the most widely
used for phage display. Ff bacteriophages infect E. coli host
cells through a specific interaction between host F pilus and
phage minor coat protein pIIL.°"®* The Ff phage genome
encodes 11 proteins, five of which are coat proteins (pIII,
pVL pVII, pVIII, and pIX). Although all five coat proteins
have been demonstrated for protein display,*>** pIII is the
most widely used as an antibody fusion partner in phage dis-
play platforms, because it can accommodate large proteins
with minimal interference on phage function and is compati-
ble with monovalent phage display.®>*® Antibody-plII fusion
is generally achieved through genetic fusion, but can also be

achieved through other conjugation approaches, such as leu-
cine zipper dimerization,”” synthetic Fc-binding ZZ
domains,”*® etc.

In the early display system, the peptide of interest was fused
to pIIl in frame in the phage genome.®®”® Thus, the peptide is
displayed on all copies of pIIl on the phage surface, which
results in a potential decrease in phage infectivity. Also, the
size of the peptide that can be efficiently displayed is limited to
12 amino acids.”' In a phagemid-based system, antibody-pIII
fusion is encoded in a separate plasmid (designated phagemid)
and coinfection with a helper phage is required to provide all
proteins for phage proliferation.®®’>”> As a result, each phage
particle contains both wild type and antibody-fusion pIII pro-
teins. A key advantage of this system is that monoclonal dis-
play can be achieved, which facilitates selection of high affinity
clones by avoiding the avidity effect during panning.®>®°
Meanwhile, phage infectivity is maximally retained due to
the presence of wild type pIIl. One drawback of the system is
that wild type pIII is more efficiently assembled in the phage
particle, resulting in only a small percentage (<10%) of anti-
body-displaying phage particles in the population.”* As
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a consequence, either panning efficiency or sensitivity of any
phage-mediated binding assays can be greatly compromised
due to excessive wild type phage background. One strategy is
to increase multiplicity of display, which can be achieved by
different methods, such as the pVIII/pVII display system,”>”®
the adapter-directed display,”” and using an inducible promo-
ter for the antibody-pIII fusion gene. To maximize the display
valency, hyperphage was developed by generating a helper
phage featuring a plII gene-deficient genotype and wild type
infectivity phenotype in a pIll-supplying E. coli host.”®”®
Thereby, application of the hyperphage in a regular phagemid
system resulted in production of phage particles that exclu-
sively display antibody-plII fusion protein. This not only sub-
stantially increased the sensitivity of phage ELISA, but also
significantly improved the panning efficiency.

The pllII protein is comprised of N1 and N2 domains
required for phage infection and a C-terminal domain (CT)
for pIII assembly. In another effort, a mutant helper phage,
named CT helper phage, was generated by deletion of N1 and
N2 domains in the genome. Similar to the hyperphage system,
the infectivity of CT helper phage was restored by propagation
in a E. coli host that heterogeneously expresses an intact pIII
gene. Therefore, use of CT helper phage substantially
improved the panning efficiency since only phages incorpo-
rated with antibody-pIII fusion are infective.** Some other
plII-deficient helper phage systems were also reported, e.g.,
ex-phage,®’ phaberge,®> and a helper phage engineered with
low N1 expression.”" Of note, since these variants of helper
phage adopt multivalent display, they result in either reduction
in phage production or decrease in phage infectivity.
Therefore, they may not be ideal for phage library construc-
tion. In order to balance display level and phage functionality,
XP5 helper phage was developed to reduce WT plII produc-
tion by introducing multiple rare codons in the pIII gene and
an altered ribosome binding site spacing.®’

Three generations of antibody phage display libraries

Universal antibody phage display libraries, typically consisting
of over ten billion unique sequences, have become a valuable
source for discovery of mAbs against any types of targets.
According to the source of diversity, antibody phage libraries
can be divided into natural, fully synthetic, and semisynthetic
libraries (Figure 1). In a natural library, diversity is derived
entirely from natural repertoires, which can be either healthy,
autoimmune, or immunized donors (named naive, nonimmu-
nized, and immunized libraries, respectively). In theory, a large
naive library can be used to isolate antibodies against any
targets, but, if a library is constructed from immunized donors,
diversity will be highly biased toward a specific target. For an
immunized library constructed from human repertoires, it can
be constructed from either vaccinated donors or donors who
have recovered from infection or disease. In a fully synthetic
library, the antibody frameworks are usually chosen from
human antibody germlines that are well-represented and
have shown superior developability. Complementarity-deter-
mining regions (CDRs) are designed based on antibody struc-
ture and application purpose. The quality of the synthetic
DNA that are used to create CDR diversity plays a pivotal

role in determining the functional size of a synthetic library.
By using mono- or trinucleotide phosphoramidites (TRIM
technology) as building blocks,**® diversified CDRs can be
synthesized in a high-throughput manner, such as array-based
oligonucleotide synthesis and Slonomics.**®” In the TRIM
technology, each amino acid is encoded by a defined codon.
Therefore, amino acid distribution at the desired position can
be precisely defined. Moreover, because the codon for each
amino acid is selected for optimal antibody expression, the
functional library size is increased. In the natural antibody
repertoire, the diversity of CDRs, except CDRH3, is
a collection of defined sequences that exhibit canonical struc-
tures. Compared with the traditional column-based DNA
synthesis approaches in which one single gene is produced
per column, the high-throughput DNA synthesis technologies
allow parallel synthesis of a large number of predetermined
sequences in the same footprint on a silicon-based chip.***’
This enables not only removal of liability motifs that impact
developability, but also precise mimic of the natural antibody
diversity. Semisynthetic libraries, therefore, combine synthetic
CDRs (typically three light chain CDRs and heavy chain CDR1
and CDR2) and heavy chain CDR3 from natural repertoires.
Phage libraries can be designed for either antibody discovery
or engineering. The design of the latter is based on one par-
ental antibody and tailored for one specific target. This review
will focus on design of three generations of universal antibody
phage display libraries for antibody discovery (Table 2).

First-generation library

Generation of a universal antibody phage library and its success-
ful application for panning was first described in 1989.** The
Fab library containing 2.5 x 107 plaque-forming units (PFUs)
was constructed by amplification of variable regions of light and
heavy chains from the mouse antibody repertoire. Soon after, an
immunized scFv phage library was created using a similar
procedure.*' Despite the small library size (2x10°), the hit rate
was substantially improved (>90% after two rounds of panning).
The success of natural libraries for in vitro antibody discovery
has been proven at different institutions.'”'°° A common fea-
ture of these natural libraries is that light and heavy chains are
randomly combined, thus these are designated combinatorial
library. Due to the heavy and light chain rearrangement, the
library diversity is dramatically increased. For example, if
a natural antibody repertoire contains a diversity of 10° (i.e.,
10° unique light and heavy chain pairs), the diversity would be
10" after full light and heavy chain recombination. One signifi-
cant advantage is that this approach generates specificities that
do not exist in natural repertoire, which enables discovery of
antibodies targeting any given antigen, including self-antigens.”
7 In contrast, self-antigen targeting can be challenging for
natively paired antibodies due to immune tolerance (a protec-
tion mechanism in which immune system does not respond to
self-antigen).'*®'%° In addition, a large naive library comprises
most of the germline genes, which further increases the struc-
tural complexity of the library due to diverse framework struc-
tures. Although the germline gene distribution in a naive library
is usually consistent with that in natural repertoire, it has been
observed that germline gene usage post-selection is biased
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toward certain families,”''" e.g., Viy1-69, Vi1-46 (Kabat
nomenclature) and/or IGHV3-30 (IMGT nomenclature) for
heavy chain. For the light chain, V,1-¢c, V)2-2a (Kabat nomen-
clature) and/or IGLV1-47, IGKV1-12, IGKV1-D33 (IMGT
nomenclature) were enriched after selection. Meanwhile, several
synthetic and semisynthetic antibody libraries were generated in
the early 1990s.""''"> Although only antibodies with low affi-
nity (micromolar range) were isolated due to the small library
size (107-10%), these libraries demonstrated that artificial anti-
bodies can be generated in vitro. Later studies showed that, by
generating larger naive libraries with library size of 10'°-10"%,
antibodies with low- to sub-nanomolar affinity can be directly
isolated.”>?**>114"118 Of note, the large naive library and related
phage display technology developed by Cambridge Antibody
Technology has led to approval of six mAbs: adalimumab,'"
belimumab, '’ moxetumomab pasudotox,'*"'*?
raxibacumab,'* emapalumab,124 and tralokinumab.'?
Another example is the n-CoDeR library in which heavy and
light chain CDR segments were separately amplified by using
primers specific to VH3-23 and VL1-47 germlines. The six
CDRs were then reassembled in a single light and heavy chain
framework that is well-presented in human repertoire and well-
expressed in bacterial host cells.”* This strategy overcomes the
drawback with conventional naive antibody phage libraries in
which part of the diversity might be lost due to low expression
and/or display level of certain germline genes in prokaryotic
system. The n-CoDeR library was used to discover five mAbs
and their derivatives that entered clinical trials.'**""*° In our
experience, high hit rate (>90%) can be readily achieved and
antibodies with high affinity (low nanomolar) can be routinely
isolated from a large naive library (library size = 10'?) con-
structed in-house. Depending on the target, 10-20% of total
sequences screened are unique.

Taken together, first-generation phage libraries demon-
strated that antibody discovery can be performed completely
in vitro and antibodies with high affinity and sequence diver-
sity can be isolated directly from phage libraries.

Second-generation library

In the design of the second-generation libraries, represented by
several semisynthetic and fully synthetic libraries, amino acid
distribution and positions to be diversified were carefully
selected based on knowledge of natural antibody structure
and antibody-antigen interaction. By leveraging TRIM tech-
nology which uses pre-synthesized trinucleotides as building
blocks for oligonucleotides synthesis, the CDR amino acid
composition can be precisely tailored to meet specific design
criteria. Moreover, developability was taken into consideration
in the library design.

In the design of several synthetic libraries, e.g., HelL-11,
HelL-13, and Library F, amino acids that are frequently used in
the antibody-antigen interaction dominate in CDRL3 and
CDRH3."’"'** More precisely, in the design of ETH2 and
ETH-2-Gold libraries, selected residues predicted to be in
direct contact with the antigen in silico were randomized,
while structure-supporting CDR residues were kept
constant."”>"** Based on ETH-2-Gold library, PHILO and
PHILODiamond libraries were designed to cover a broader
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epitope landscape by incorporation of hydrophilic residues at
specific positions in the antigen contacting site.”>'*> ETH
serial libraries led to two mAbs, Teleukin and Dekavil, being
investigated in clinical trials."**"'** Although CDRL3 and
CDRH3 play crucial roles in germline diversity, it has been
observed that CDR1 and CDR2 are preferentially selected for
affinity maturation during the course of somatic
hypermutation.'*''*> In the design of the Dyax library,
a semisynthetic library, diversity of light chain and CDRH3
were derived from antibody repertoires of autoimmune donors
to increase the likelihood of discovery of antibodies targeting
self-antigens. CDRH1 and CDRH2, however, were fully syn-
thetic, and residues that were predicted to be surface-exposed
were randomized using all amino acids except cysteine.””
Indeed, by panning against four selected antigens, the average
antibody affinities indicated by Ky, were below 20 nM for three
of the four targets. Of note, the moderate average affinity (131
nM) of the other one target is likely due to usage of a single
Vy/Vy, framework pair in the library construction. The Dyax
library was used in the discovery of four approved mAbs:
ramucirumab,'**  necitumumab,'*® avelumab,'*® and
lanadelumab.'*” In a systematic analysis of antibody-protein
and antibody-peptide interaction propensity, machine learn-
ing was leveraged to predict CDR hot spot residue
distributions.'*® By densely enriching the hot spot residues
across all CDRs, GH libraries resulted in enhanced antibody-
antigen recognition indicated by high affinity and specificity.
In fact, by using minimalist libraries, it has been demonstrated
that only a small subset of amino acid types (a four-amino-acid
code (Tyr, Asp, Ser, and Ala) or a binary code (Tyr and Ser)) is
sufficient to mediate interactions with proteins.'*>'*>°

In the HuCAL serial libraries, frameworks that cover major
types of CDR canonical structures were included to maximize
structural diversity. By leveraging TRIM technology, six CDRs
were designed to precisely mimic the amino acid distribution
that occurs in natural repertoir<—:‘.98’99’151 Thus, the HuCAL
libraries are more likely to yield antibodies with nature-like
properties. Since TRIM technology allows precisely defined
nucleotide composition in the oligonucleotide synthesis, it
also enables stable and high expression of antibody in E.coli
host cells through optimized codon usage and avoidance of
stop codons, which are the drawbacks of using degenerate
codons. As a result, functional diversity of the synthetic library
can be greatly improved. It is notable that the percentage of
alanine at heavy chain H137 can be tuned to favor binding for
either protein or hapten/peptide. Another feature of the
HuCAL library is that restriction sites were introduced to
flank all six CDR loops. Thus, antibody engineering can be
facilitated by rapid CDR shuffling. In the design of the
HuCAL-PLATINUM library, post-translational modification
hot spots, e.g., N-glycosylation, were avoided in CDR design to
further improve the antibody’s developability. Moreover,
amino acid distribution in CDRH3 was tuned based on the
loop length to further mimic the natural repertoire.”” In
another effort to further improve the overall developability of
antibodies selected from a phage library, 36 of 400 V/ V7, pairs
were identified for optimal biophysical properties and used for
construction of the Ylanthia library.'® As a result, antibodies
directly selected from the library showed superior affinity,
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protein expression level, thermal stability, and aggregation
propensity. Of note, the HuCAL-GOLD library yielded guselk-
umab, which was approved in 2017.">

In summary, in the design of the second-generation
libraries, antibody structure and developability properties
were taken into consideration through the removal of
sequence liability motifs, inclusion of natural amino acid dis-
tributions in CDR, and selection of heavy and light chain
frameworks with superior biophysical properties.

Third-generation library

In general, the improvements of developability properties in
the second-generation libraries were achieved by sequence-
based optimization. While our knowledge regarding
sequence-based prediction of protein liabilities is still limited,
many biophysical properties, such as stability, solubility, and
expression, are closely related to higher order structure of
a protein. Although scaffolds with high stability and expres-
sion can be selected for library construction, the overall bio-
physical properties of antibodies in a phage library are also
highly determined by CDR sequence. Therefore, these devel-
opability properties were experimentally improved during
construction of the third-generation libraries.

In order to enhance the library solubility and thermostabil-
ity, a heat shock step, followed by a protein A recovery, was
incorporated in the construction of the semisynthetic
ALTHEA Gold library."®" This is based on the observation
that heat denaturation selected stable and well-folded
antibodies.'”* Validation of the library showed that the overall
frequency of hydrophobic residues at diversified CDR posi-
tions decreased after heat shock and protein A selection. In
contrast, charged residues were positively selected by the fil-
tration process. By panning the library against a diverse panel
of antigens, the scFvs selected exhibited high affinity (Kp
ranges from single-digit nM to sub-nM), solubility (>50 mg/
L), and thermal stability (Tm >70°C), which agree with bio-
physical parameters of therapeutic antibodies.'*"'>*'%

In another effort to create a semisynthetic phage library
with ”drug-like” properties, a yeast display filtration was
applied to select sequences with optimal developability proper-
ties required for clinical development, including affinity,
aggregation, thermostability, polyspecificity, and expression
level.'** This step leverages the eukaryotic protein quality
control systems for selection of correctly behaving proteins
for secretion.'*®*”"*® In detail, five single-CDR vyeast display
libraries, in each of which one CDR (except CDRH3) was
synthesized from replicated natural diversity, were individu-
ally created. The antibody sequences that were displayed cor-
rectly and in a high level were selected and subjected to next-
generation sequencing (NGS) analysis. CDRH3 sequences,
however, were sourced from human natural antibody reper-
toires. This was done for two reasons: 1) depending on length
and amino acid usage, synthetic CDRH3 diversity typically far
exceeds the actual library size; and 2) the natural CDRH3
source can provide enough high diversity and the sequences
have also been filtered in vivo for optimal biophysical proper-
ties, e.g., high stability and expression, low immunogenicity.
To validate the library, panning was conducted against four

antigens. Remarkably, from a total number of 81 antibodies
isolated, around 80% showed single-digit to sub-nM affinity.
More strikingly, by determining developability parameters,
including thermostability, polyspecificity, and self-interaction,
97% of the measurements of the antibodies behaved similarly
or better than that of the corresponding approved parental
antibodies. This study highlights the importance of the eukar-
yotic quality control system in the selection of high-quality
antibodies.

In summary, the third-generation libraries leverage in vitro
or in vivo experimental approaches to further improve the
overall library quality, which yield antibodies with properties
comparable to therapeutic antibody drugs.

Library designed for specific applications

Although the aforementioned universal phage libraries pro-
vide valuable resources for antibody discovery, their perfor-
mance may be compromised for challenging targets and
epitopes (e.g., GPCR, concave-shaped epitope) and specific
applications (e.g., pH-dependent antibodies). This is due to
inherent characteristics of conventional antibody libraries,
either natural libraries or synthetic libraries that mimic the
human antibody repertoire. An advantage of phage display
technology is that the library can be tailored to adapt to dis-
tinct applications. Indeed, several specialized phage libraries
have been designed and created.

GPCR library

GPCR represents a class of seven transmembrane receptors.
GPCRs have been recognized as successful drug targets as
approximately one third of the US Food and Drug
Administration (FDA)-approved drugs target GPCRs.">”'
However, due to high hydrophobicity, conformational flexibil-
ity, and limited accessibility of epitopes on the extracellular
portion, GPCRs are challenging targets for antibodies. To date,
there are only two FDA-approved antibodies drugs targeting
GPCRs: mogamulizumab and erenumab, which target CC
chemokine receptor 4 and calcitonin gene-related peptide
receptor, respectively.'®’ Phage display offers a valuable anti-
body discovery platform for targeting challenging targets,
including ion channels, transporters, and GPCRs.'®”> For
example, one synthetic antibody phage display library was
designed by mining the sequences of all known GPCR ligand
interactions and incorporating the identified binding motifs
into CDRH3. As a result, this GPCR-focused library success-
fully led to discovery of a panel of antagonistic antibodies
targeting glucagon-like peptide-1 receptor with high affinity."

Library for selection of pH dependent antibodies

Elimination of soluble targets by conventional high affinity
antibodies usually requires a large dose. This is because an
antibody usually binds with an antigen with similar strength
at both neutral and slightly acidic pH (pH 5.5-6.0); therefore
the antigen bound with antibody in the extracellular envir-
onment does not dissociate from the complex in the endo-
some. As a result, the antigen can escape from lysosomal



degradation and return to the circulation mediated by the
neonatal Fc receptor (FcRn).'*>'* Thus, antibodies that are
capable of neutralizing the target at physiological pH and
releasing it at acidic endosomal pH would be expected to
enhance the therapeutic index. In the past, pH-dependent
binding has been achieved through antibody engineering,
e.g., histidine scanning.'®>'®® Alternatively, sweeping anti-
body technology was developed to enhance binding with
FcRn at neutral pH for rapid uptake of antibody-antigen
complex for target clearance.'” While these technologies
proved successful, they are labor-intensive and all based on
preexisting antibodies. In another attempt, pH-dependent
antibodies were isolated de novo from a synthetic antibody
phage display library.” In the library design, histidine residue
was enriched in CDRH3 for two reasons. First, histidine is
neutrally charged at physiological pH but becomes positively
charged at pH 6.0. Therefore, histidine residues within the
protein—protein interaction region can exert pH-dependent
binding. Second, histidine is less frequently found in natural
repertoires.'®® Combined with a modified selection strategy,
several anti-CXCL10 antibodies with high binding affinity
and strong neutralizing activity at pH 7.4, but weak binding
at pH 6.0 were isolated.

Library with elongated CDRH3

One limitation of human or mouse antibodies is that tar-
geting a concave epitope of a target, e.g., pore of ion
channels and pocket of enzymes, can be challenging. This
is largely due to the relatively short CDRH3 length, typi-
cally 7-12 and 8-20 amino acids for mouse and human
respectively, which tend to form a cave or flat
paratope.'®®'7° Therefore, concave-shaped conformation
of a target is usually inaccessible for conventional antibo-
dies. Although antihuman immunodeficiency virus (HIV)
broadly neutralizing antibodies with extended CDRH3 of
around 30 amino acids have been isolated, they were only
found in a minority of infected population and require
years of development.'”"'”* Interestingly, antibodies from
some species, such as cow and camelid, are unusual in
having a natural elongated CDRH3 (e.g., up to 70 amino
acids for cow), which provides extra diversity and paratope
complexity.'”>'”* The cow ultralong CDRH3 generally
adopts a “stalk and knob” structure, in which a p strand
“stalk” supports a structurally complex “knob” domain
stabilized with multiple disulfide bonds.'”> The “knob”
domain protrudes out from the antibody surface, making
it accessible to the concave epitope. In a proof-of-concept
study, a synthetic Fab phage display library carrying elon-
gated CDRH3 (23-27 amino acids) was constructed.'”® By
panning against the library, a number of antibodies that
potently inhibited matrix metalloproteinase-14 were identi-
fied. Of note, one of the antibodies was indicated to bind
to the vicinity of the enzyme activity pocket. Libraries
displaying atypical antibodies with elongated CDRH3
further extend the application of phage display technology.
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Conclusions and prospects

Phage display has proven to be an unequivocal success for
antibody discovery, evidenced by 17 approved mAbs and an
increasing number of phage-derived antibodies under clinical
investigation. As an entirely in vitro technology, phage display
not only compensates for many limitations inherited by in vivo
antibody discovery approaches, it also provides a highly versa-
tile and customizable platform that continuously evolves to
meet distinct development goals.

Affinity is a key factor used to evaluate the quality of
a phage library. It has been observed that affinity that can
be achieved is correlated with the library size. We investi-
gated the correlation between highest affinity values obtained
from published universal phage libraries and library size
(data not shown). In agreement with previous observations,
there is a positive correlation between the two parameters.
This is because a universal library is designed for antibody
discovery against any given target. Therefore, a larger library
(higher diversity) offers a greater chance of identifying high
affinity antibodies. In the case of a synthetic library, although
a limited number of frameworks are used, the designed CDR
diversity usually far exceeds the natural CDR diversity.
Therefore, the chance to obtain high affinity antibodies
mainly depends on CDR sequence diversity. In the case of
a naive library, the library diversity comes from not only the
sequence diversity, but also from light and heavy chain rear-
rangement. Of note, the random heavy and light chain rear-
rangement is a process highly resembling chain shuffling,
which is a routine strategy for in vitro antibody affinity
maturation. This may explain why antibodies with very
high affinity were isolated from naive phage libraries, even
when the libraries were constructed from germline sequences
with no or very limited somatic hypermutations. While it was
expected that identification of library size is a key factor that
determines the affinity, a correlation with either library type
or library generation was not observed (data not shown). One
reason is that, except for a few early libraries, the library size
difference among three generations of phage libraries is mini-
mal. Also, the advancements of three generations of phage
libraries mainly reflects improvements of overall developabil-
ity properties.

It has been reported that the presence of library clones that
do not display antibody fragments (bald phage) is partially due
to stop codons or frameshifts present in the antibody gene.
These clones often outgrow because of the decreased burden
on production of antibody fusion proteins and higher infectiv-
ity due to all wild type pIII molecules on phage particle,
resulting in loss of library diversity. In efforts to increase
functional library size, several strategies have been developed.
For example, anti-tag antibody was used for proofreading
panning to select in-frame sequences due to the tag being in-
frame with the antibody sequence.'”” In the design of the
HuCAL GOLD library, the B-lactamase gene was used to
eliminate frame-shifted sequences.”®

Regarding framework usage in a phage display library, it is
generally accepted that a library using multiple frameworks
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will perform better than one using a single pair of frameworks,
since multiple scaffolds provide more structural diversity.'*
For selection of framework, parameters, such as frequency in
natural repertories, stability, expression, and display level, have
been taken into consideration. Moreover, it should be noted
that several heavy chain germline genes, e.g., certain IGVH4
family genes, have been found to be deselected during phage
panning.”>*® Also, VH4-34 has been found to be associated
with B cell cytotoxicity.'"”® Thus, these germlines should be
excluded from the library design. For the majority of the phage
display libraries, Vi and Vi are randomly rearranged, which
agrees with the observation that there is no obvious preference
of Vy/Vy pairing in natural repertories.'”” However, in terms
of drug development, since different V/V, pairings do exhibit
very distinct biophysical characteristics,'°*'*” attention should
be given to the choice of framework pairing.

Compared to in vivo antibody discovery approaches,
another advantage of phage display is that the sequence infor-
mation can be retrieved rapidly and readily. However, this
advantage is partially attenuated by the conventional screening
approach of characterization of individual clones, in which
only a small percentage of sequence information, i.e., the
most abundant sequences, from panning output is assessed.
This is partially due to intrinsic amplification bias of antibody-
displaying phages in E.coli host cells, which leads to some of
the sequences becoming rare over several cycles of
panning.m’182 To overcome the limitation, NGS, which allows
deep mining of sequence space in a sample, has recently been
applied to antibody phage display technology, especially for
identification of those rare sequences with potential interesting
features.'®>'®* Most recently, machine learning combined with
NGS has been applied to predict binding features (e.g., affinity,
epitope, developability) of sequences from phage panning, and
even generate new sequences with improved properties.'®>'%

Despite many advantages of phage display, developability
has been a concern for mAbs derived in vitro due to lack of
in vivo protein quality control process."® '*° As aforemen-
tioned, either in vitro or eukaryotic quality control steps were
integrated into the construction of the third-generation phage
display libraries. Thus, only library members with favorable
developability were selected. Indeed, it has been reported that
mAbs selected from the third-generation libraries showed
overall enhanced developability properties, including high affi-
nity, improved stability and solubility, and less self-interaction.
Alternatively, mammalian display can be used to further
screen or optimize developability properties of mAbs, based
on a strong correlation between optimal biophysical properties
and display level."” It is worthwhile to mention that the
emergence of in vivo delivery of nucleic acid-encoded biolo-
gics, i.e., DNA and mRNA technologies, enables direct pro-
duction of therapeutic mAbs in vivo. These delivery
technologies bypass the complex protein manufacturing, sto-
rage, and transport processes, which require proteins with
excellent biophysical properties.'”"'** Therefore, it would be
envisioned that, with the advancements of new drug delivery
technologies, many requirements on developability, particu-
larly manufacturability, can be mitigated in the future.

As phage display technology continues to evolve, and in
concert with other state-of-the-art technologies, such as NGS

and machine learning, phage display technology will continue
to make great contributions to innovative drug discovery in

the future.
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