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Spatially resolved mapping of cells 
associated with human complex traits

Liyang Song1,2,3, Wenhao Chen1,2,3, Junren Hou1,2, Minmin Guo1,2 & Jian Yang1,2 ✉

Depicting spatial distributions of disease-relevant cells is crucial for understanding 
disease pathology1,2. Here we present genetically informed spatial mapping of cells for 
complex traits (gsMap), a method that integrates spatial transcriptomics data with 
summary statistics from genome-wide association studies to map cells to human 
complex traits, including diseases, in a spatially resolved manner. Using embryonic 
spatial transcriptomics datasets covering 25 organs, we benchmarked gsMap through 
simulation and by corroborating known trait-associated cells or regions in various 
organs. Applying gsMap to brain spatial transcriptomics data, we reveal that the 
spatial distribution of glutamatergic neurons associated with schizophrenia more 
closely resembles that for cognitive traits than that for mood traits such as 
depression. The schizophrenia-associated glutamatergic neurons were distributed 
near the dorsal hippocampus, with upregulated expression of calcium signalling and 
regulation genes, whereas depression-associated glutamatergic neurons were 
distributed near the deep medial prefrontal cortex, with upregulated expression of 
neuroplasticity and psychiatric drug target genes. Our study provides a method for 
spatially resolved mapping of trait-associated cells and demonstrates the gain of 
biological insights (such as the spatial distribution of trait-relevant cells and related 
signature genes) through these maps.

The composition and spatial organization of cells within a tissue are 
critical to its function and can also serve as indicators of its health sta-
tus1. The advancement in spatial transcriptomics (ST), which enables 
the profiling of gene expression levels of cells in their native spatial 
positions, represents a promising avenue for investigating cell spatial 
organizations and uncovering related biological mechanisms3,4. In 
recent years, an increasing number of studies have utilized ST technolo-
gies to explore cell spatial organization in diverse tissues5–7. However, 
a substantial knowledge gap persists in identifying cells that are most 
relevant to complex traits or diseases and mapping their spatial dis-
tribution within a tissue.

To identify trait-associated cells or cell types, previous studies 
have proposed genetics-informed strategies that integrate data from 
genome-wide association studies (GWAS) of complex traits, includ-
ing diseases, with single-cell RNA-sequencing (scRNA-seq) data8–11. 
Although these methods can pinpoint trait-associated cells, they 
encounter challenges in mapping the spatial distribution of these 
identified cells owing to the lack of cell spatial positional information 
in scRNA-seq data. These scRNA-seq-based methods can, in princi-
ple, be applied to ST data. However, owing to the absence of model-
ling for cell spatial coordinates and the high level of technical noise 
in ST data12, they have limited power in spatially aware mapping of 
trait-associated cells. Although previous studies13 have associated 
spatial domains with complex traits, these analyses are not at single-cell 
resolution, limiting their ability to profile the spatial distribution of 
trait-associated cells. Consequently, there is a need for new methods 

that can integrate ST data into GWAS for fine-scale spatially resolved 
mapping of trait-associated cells.

In this study, we introduce gsMap, a method that integrates 
high-resolution ST data and GWAS summary statistics for spatially 
resolved mapping of trait-associated cells. Utilizing embryonic ST data-
sets covering 25 organs, we assessed the specificity of gsMap through 
simulated GWAS data and the sensitivity of the method by recapitulat-
ing known associations between cells in different organs and a range 
of complex traits. Applying gsMap to brain ST datasets, we generated 
extensive trait–brain cell association maps encompassing 30 human 
brain-related complex traits.

Overview of gsMap
The fundamental concept of gsMap involves assessing whether 
genetic variants, predominantly single nucleotide polymorphisms 
(SNPs), located in or near genes highly expressed in a spot in ST data 
are enriched for genetic associations with a trait of interest (Methods 
and Supplementary Note, sections 1–3). Each ST section is required to 
include transcriptome-wide gene expression profiles and spatial coordi-
nates of individual spots. Here, a ‘spot’ refers to a cell in high-resolution 
ST platforms (for example, Stereo-seq cell-bin mode) or a cluster of cells 
in conventional ST platforms (such as 10X Visium). gsMap consists of 
three steps. First, gsMap leverages spot homogeneity to address spar-
sity and technical noise in ST data. gsMap uses a graph neural network 
(GNN) to identify homogeneous spots for each focal spot in terms of 
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both gene expression patterns and spatial positions. The gene specific-
ity scores (GSSs) of each spot are computed by aggregating informa-
tion from these homogeneous spots, representing the relative rank 
of the expression level of each gene in a spot (Fig. 1a). Second, gsMap 
assigns the GSSs of each spot to SNPs within a window extending 50 kb 
upstream and 50 kb downstream of each gene’s transcribed region, 
along with SNP-to-gene maps established using epigenomic data14–16, 
giving rise to a unique set of SNP GSS annotations for each spot. Treat-
ing each spot as an SNP annotation set, gsMap assesses whether SNPs 
with higher GSSs disproportionately explain a larger proportion of 
heritability for the trait using the stratified linkage disequilibrium 
score regression (S-LDSC)17,18, conditional on the baseline annotations 
(Fig. 1b). The enrichment P value is used to measure the statistical sig-
nificance of association of a spot with the trait. Finally, to quantify 
the significance of association of a specific spatial region with a trait, 
gsMap utilizes the Cauchy combination test19 to aggregate P values of 
individual spots within that spatial region (Fig. 1c). In essence, gsMap 
can be considered as a method for genetically informed mapping of 
complex traits to ST data at cellular resolution.

Validation of gsMap
As a proof of principle, we sought to validate gsMap by corroborating 
known associations between different tissues and traits. For this vali-
dation analysis, we used ST data collected from the late embryo stage, 

as it covers a comprehensive spectrum of tissues. Owing to the lack of 
human ST data at the late embryonic stage, we used a mouse dataset 
from Chen et al.5, which included 25 different organs at the develop-
mental stage of embryonic day 16.5 (E16.5) (Fig. 2a and Methods). This 
strategy assumes that gene expression profiles in mice resemble those 
in humans, an assumption largely supported by previous evidence 
demonstrating more than 80% correlation in tissue-level expression 
across genes between mice and humans20, and more than 75% correla-
tion at the cell type level (Methods and Supplementary Fig. 1). The Chen 
et al. mouse ST dataset was generated using Stereo-seq, and contains 
data at ‘bin50’ resolution, whereby each spot represents a few cells, 
and single-cell resolution. For robustness, we began by using data at 
the bin50 resolution. We included publicly available GWAS summary 
statistics for 110 complex traits (average n = 385,000; Supplemen-
tary Table 1 and Supplementary Note, section 4) in this analysis. Our 
gsMap successfully recapitulated known associations between differ-
ent organs and traits8,21. For example, intelligence quotient (IQ) was 
mapped to spots located in the brain, mean corpuscular haemoglo-
bin concentration (MCHC) was associated with spots in the liver, and 
height was mapped to various tissues, with cartilage and its primordium 
showing the highest relevance (Fig. 2b). The aggregated tissue-level 
association P values, obtained using the Cauchy combination test, 
confirmed these observations (Fig. 2c and Supplementary Table 2). 
Sensitivity analyses suggested that these results were not driven by 
the few genes with the highest GSS at each spot (Supplementary Fig. 2).  
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Fig. 1 | Schematics of the gsMap method. a, gsMap begins by using a GNN to 
learn embeddings that integrate gene expression levels, spatial coordinates 
and optionally, cell type annotation priors. Subsequently, gsMap identifies 
homogeneous spots for each spot on the basis of their cosine similarity in the 
embeddings, to form a microdomain. Each spot is considered in turn as a focal 
spot, and the specificity score for each gene in each focal spot is computed by 
dividing the average rank of a gene’s expression level within the microdomain 
by its average rank across the entire ST section. D, microdomain of spots; F, gene 

expression specificity; G, spot spatial graph; R, rank; X, gene expression matrix;  
Z, embeddings. b, The GSSs of each spot are then mapped to SNPs on the basis of 
their distance to TSSs and SNP-to-gene linking maps, resulting in a unique set of 
SNP annotations for each spot. For the SNP GSS annotations of each spot, gsMap 
uses S-LDSC to assess whether SNPs with higher GSSs are enriched for heritability 
for the trait of interest. LD, linkage disequilibrium. c, To quantify the significance 
of a spatial region’s association with the trait, gsMap utilizes the Cauchy 
combination test to aggregate P values of spots within that spatial region.
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We have also applied gsMap to ST data from an intact human embryo 
at Carnegie stage 8 (CS8)7. Despite the incomplete formation of organs 
at this developmental stage, gsMap successfully mapped traits to their 
respective organ progenitors. For example, IQ was mapped to the ecto-
derm (P = 1.5 × 10−6), the progenitor of the brain, whereas MCHC was 
mapped to the endoderm (P = 1.5 × 10−9), the progenitor of the liver 
(Extended Data Fig. 1 and Supplementary Table 3).

To validate the reliability of the identified associations between 
traits and spots, we simulated four different null scenarios with vary-
ing levels of heritability and polygenicity, based on real genotype data 
from 100,000 unrelated individuals of European ancestry from the UK 
Biobank22 (Methods). In these scenarios, causal variants were either 
randomly distributed or concentrated in specific genomic regions 
but were not enriched in genes with spatially dependent expression. 
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Fig. 2 | Mapping human complex traits to mouse embryo. a, Mouse E16.5 
embryonic ST data at bin50 resolution5, with spots coloured by tissue types.  
GI, gastrointestinal. b, gsMap results for IQ, MCHC and height using the mouse 
E16.5 embryonic ST data, with colours indicating the significance of the 
association. The genomic inflation factor (λGC), serves as an indicator of GWAS 
statistical power. c, Tissue–trait associations, with rows representing tissue 
types and columns representing traits. Colours indicate the significance of the 
association. Trait abbreviations are listed in Supplementary Table 1. d, Mouse 
E16.5 embryonic ST data at single-cell resolution, with spots coloured by cell 
type5. e, Left, distribution of epithelial cells in the mouse E16.5 embryo, with 
white rectangles showing six spatial regions. Brown dots represent epithelial 
cells. Right, gsMap results for MPB, with spots coloured by the significance of 

the association. f, gsMap results for MPB in the six spatial regions. g, Densities 
of epithelial cells in the face (L2) region. The gradient colours from blue to 
yellow represent cell density from low to high. Black dots represent epithelial 
cells. h, Correlation between epithelial density and the significance of the 
association of epithelial cells with MPB in the face region. Epithelial densities 
were estimated as the smoothed relative count of epithelial cells within 100 
grids, and the significance of epithelial–MPB associations for each grid were 
estimated using the interpolate method. The x axis shows epithelial density 
and the y axis shows the significance of epithelial–MPB association. Data points 
represent grids, coloured by significance of the association. The black line 
indicates the regression line; P value from a two-sided t-test (n = 100).
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Under all null scenarios, the false discovery rate (FDR) of gsMap was 
well controlled, as it did not identify any spots showing significant 
associations at FDR < 0.05 (Extended Data Fig. 2 and Supplementary 
Figs. 3 and 4).

To showcase the capability of gsMap in spatially resolved mapping of 
cells to a trait, we applied it to mouse embryonic ST data at single-cell 
resolution5 (Fig. 2d and Methods). Taking male pattern baldness (MPB) 
as an example, we identified an association between MPB and epithelial 
cells in the face region (Fig. 2e). Notably, the MPB-associated epithelial 
cells were not randomly distributed but tended to cluster together 
spatially (Fig. 2f). The significance level of the cells’ association with 
MPB was strongly correlated (r = 0.78 and P = 2.2 × 10−13) with the density 
of epithelial cells (Fig. 2g,h). The tight spatial assembly of epithelial 
cells suggested that they may form hair follicles, supported by the 
expression profile of the hair follicle-associated marker genes KRT15, 
KRT5 and KRT17 (Supplementary Fig. 5).

As mentioned above, established methods for integrating GWAS with 
scRNA-seq data, such as single-cell disease relevance score (scDRS)9, 
can be repurposed for ST data, even though they do not contain spatial 
coordinate information. We compared gsMap and scDRS using both 
simulated and real GWAS datasets (Supplementary Figs. 6 and 7 and 
Supplementary Note, section 6).

Mapping human traits to mouse brain
We first applied gsMap to map human complex traits to brain regions, 
owing largely to the abundant availability of brain ST data, even though 
the majority are not derived from human samples. To ensure statistical 
power, we included 30 distinct brain-related traits with large GWAS 
sample sizes (average n = 315,000) in our analyses, which cover cogni-
tion, emotion and behaviour. Owing to the lack of human whole-brain 
ST data, we began by integrating GWAS summary statistics with mouse 
brain ST data and focused primarily on the evolutionarily conserved 
brain regions to ensure the broad extrapolation of the results. We 
processed adult mouse hemibrain coronal section ST data from Chen 
et al.5, which comprised 50,140 cells from 14 brain regions and 13 cell 
types (Fig. 3a). We began by assessing the association of an entire brain 
region with a trait by aggregating the P values of individual cells in each 
brain region using the Cauchy combination test (Fig. 3b). We observed 
that the cortex showed the highest relevance to most traits, such as 
IQ (P = 9.8 × 10−15), schizophrenia (SCZ) (P = 1.7 × 10−17) and depression 
(P = 1.0 × 10−18). The second-highest associated brain regions varied 
across traits: IQ was mapped to the hippocampus cornu ammonis area 
1 (CA1) (P = 7.2 × 10−13), SCZ to the hippocampus CA1 (P = 4.4 × 10−14) and 
depression to the midbrain (P = 1.1 × 10−15).

As brain regions contain various cell types, we explored their con-
tributions to the brain region–trait associations by assessing whether 
a higher proportion of a specific cell type correlates with increased 
significance in brain region–trait association. We discovered that, on 
average across traits, Glu-neurons showed the strongest contributions 
to the brain region–trait associations (median r = 0.73) among all cell 
types. For instance, the correlation between the significance of the asso-
ciation of a brain region with SCZ and its Glu-neuron proportion was 
0.80 (P = 6.3 × 10−4) (Fig. 3c–e). Such a relationship was replicated using 
brain sagittal section ST data from the mouse E16.5 embryo (Extended 
Data Fig. 3). However, there were two outliers, Parkinson’s disease and 
Alzheimer’s disease. We observed that brain regions with higher pro-
portions of dopaminergic neurons (DA-neurons) exhibited stronger 
associations with Parkinson’s disease (r = 0.81 and P = 4.9 × 10−4; Fig. 3e). 
Specifically, the substantia nigra/ventral tegmental area (SN/VTA), 
which is known to have the highest abundance of DA-neurons, dem-
onstrated the highest relevance to Parkinson’s disease (P = 5.2 × 10−5; 
Extended Data Fig. 4). This finding was in line with previous neurological 
studies that showed a notable impairment in the SN/VTA region among 
individuals with Parkinson’s disease23,24.

Having noted the important role of Glu-neurons in most of the 
analysed traits, we proceeded to explore whether the associated 
Glu-neurons were distributed in distinct patterns for different traits. 
Recognizing that direct comparison of gsMap results across traits might 
be confounded by variation in GWAS statistical power, we used odds 
ratio (OR), calculated as the ratio of trait-associated Glu-neurons to 
non-associated ones in a specific region, divided by that ratio in all other 
regions (Methods). Our analysis focused on SCZ, cognitive traits (such 
as IQ) and mood traits (such as depression), as Glu-neurons signifi-
cantly contributed to the association of these traits with brain regions 
(Fig. 3e), and their GWAS data were sufficiently powered (λGC > 1.3). 
We found that, beyond the cortex, Glu-neurons in the hippocampus 
CA areas were strongly associated with cognitive traits (for example, 
OR = 1.5 and P = 4.3 × 10−25 for IQ), while Glu-neurons associated with 
mood traits tended to be distributed in the midbrain (for example, 
OR = 6.7 and P = 7.9 × 10−221 for depression; Fig. 3f,g). Notably, although 
SCZ encompasses both cognitive and mood symptoms, we found that 
Glu-neurons associated with SCZ exhibited a similar spatial pattern to 
those associated with cognitive traits and are particularly enriched in 
the hippocampus CA areas (OR = 4.5 and P = 7.6 × 10−158; Fig. 3g).

Together, our results revealed that: (1) among the brain regions, 
the cortex exhibited the strongest association with most traits, but 
Parkinson’s disease was significantly associated only with the SN/VTA; 
(2) Glu-neurons contributed substantially to the associations between 
traits and brain regions; (3) Glu-neurons distributed in different brain 
regions displayed different associations with traits. Glu-neurons dis-
tributed in the hippocampus CA areas showed strong associations with 
cognitive traits and SCZ, whereas those in the midbrain exhibited strong 
associations with mood disorders such as depression.

Trait-associated neurons in mouse hippocampus
Having shown that the proportion of trait-associated Glu-neurons var-
ied across different brain regions, we next sought to explore whether 
these neurons exhibit specific patterns of spatial distribution within 
individual brain regions. We began by focusing on the hippocampus 
cornu ammonis area 1 (CA1), as the spatial structure of the CA1 region 
is relatively simple, and previous studies25,26 have suggested that the 
electrophysiological properties of pyramidal neurons in CA1 exhibit 
variation across their spatial positions. Cells within the CA1 region 
are densely arranged along three spatial axes: the proximal–distal 
(P–D) axis, the dorsal–ventral (D–V) axis and the deep–superficial 
(D–S) axis (Fig. 4a). As the brain ST data used in this study correspond 
to a coronal section, tracking the spatial distribution of Glu-neurons 
along the P–D axis was unfeasible. Consequently, our investigation 
focused on the spatial distribution of Glu-neurons along the D–V 
and D–S axes.

First, along the D–V axis, we observed that Glu-neurons closer to the 
CA1 dorsal side showed stronger associations with the traits (Supple-
mentary Fig. 8), and this trend was particularly evident for SCZ (r = −0.51 
and P = 3.5 × 10−190; Fig. 4b,c). We replicated this decline in association 
strength along the D–V axis between Glu-neurons and SCZ using a 
mouse brain multiplexed error-robust fluorescence in situ hybridiza-
tion (MERFISH) ST dataset, including both coronal and sagittal sections 
from multiple individuals27 (Extended Data Fig. 5). To investigate the 
underlying mechanisms, we conducted two expression association 
analyses to identify genes whose expression levels in Glu-neurons were 
associated with their positions along the D–V axis, and genes whose 
expression levels in Glu-neurons were associated with their relevance 
to SCZ (Methods). The z-statistics from these two analyses showed a 
strong correlation (r = 0.78 and P < 5 × 10−324) with HPCA (encoding a 
calcium-binding protein), PPP3CA (encoding a calcineurin subunit) and 
ATP2B1 (encoding a calcium-transporting protein) emerging as the top 
three genes prioritized in both analyses (Fig. 4d). A subsequent gene 
ontology (GO) term enrichment analysis revealed that the identified 
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genes were enriched in pathways related to calcium and ion transport 
(Fig. 4e).

The spatial scale of the D–S axis is narrow, yet we also observed het-
erogeneity among Glu-neurons along this axis. Leveraging gsMap, we 
found that Glu-neurons closer to the CA1 superficial side exhibited 

stronger associations with depression (r = 0.18 and P = 2.7 × 10−20; 
Fig.  4f). This finding aligns with a recent study suggesting that 
manipulating CA1 superficial neurons, but not deep neurons, could 
ameliorate depressive-like behaviours in mice28. Motivated by the 
result above showing that Glu-neurons in the midbrain were highly 
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b, Brain region–trait associations, with colours indicating the significance of 
the association. Rows represent brain regions and columns represent traits. 
The right bar shows the proportion of Glu-neurons per brain region and the top 
bar represents λGC, which serves as an indicator of GWAS statistical power. 
Abbreviations for brain region and cell types are listed in Supplementary Note, 
section 5. c, Cell type proportions across brain regions. d, Correlation between 
the significance of a brain region’s association with SCZ (x axis) and its 
proportion of Glu-neurons ( y axis). The grey line represents the regression line; 
P value from a two-sided t-test (n = 14). e, Correlation between the significance 
of association with a trait and the proportion of a cell type across brain regions 

(n = 30). The x axis displays different cell types and the y axis shows the Pearson 
correlation coefficient. Points represent traits and are coloured by cell type.  
In each box, the central line denotes the median, notches represent the 95% 
confidence interval, the box indicates the interquartile range and whiskers 
extend up to 1.5 times the interquartile range. AD, Alzheimer’s disease; PD, 
Parkinson’s disease. f, gsMap results for IQ, SCZ and depression in the midbrain 
and CA regions. Each point represents an individual Glu-neuron, with colour 
indicating the significance of its association with a trait. g, ORs of cortex (left), 
CA (middle) and midbrain (right). Error bars represent the 95% confidence 
interval, with the centre indicating the OR. P values from a two-sided Chi-square 
test (n = 19,598). Bar plots ensure visibility of small-range error bars (individual 
data points are not shown). CoPe, cognitive performance.
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relevant to depression (Fig. 3g), we further investigated associations 
between Glu-neurons in the CA1 superficial side and those in the mid-
brain. We found that genes highly expressed (at FDR < 0.05) in the 
midbrain showed a greater overlap with genes highly expressed in 
the CA1 superficial side than those in the CA1 deep side (55 versus 3 
genes, OR = 14.75, P = 2.25 × 10−9; Fig. 4g). GO term enrichment analysis 
indicated that genes highly expressed in both midbrain and the CA1 
superficial side were enriched in pathways related to axonogenesis 
and neuron ensheathment (Fig. 4h). The transcriptomic similarities 
of Glu-neurons between the CA1 and the midbrain increased along 

the CA1 D–S axis (r = 0.41 and P = 2.6 × 10−117; Fig. 4i). These results sug-
gested that there are functional overlaps between Glu-neurons in the 
midbrain and those at the CA1 superficial side.

In summary, our results revealed spatially patterned distributions 
of trait-associated Glu-neurons in the hippocampus CA1 region. 
Glu-neurons closer to the CA1 dorsal side showed stronger associa-
tions with SCZ, and showed increased expression of calcium signalling 
and regulation genes. Glu-neurons closer to the CA1 superficial side 
exhibited stronger associations with depression, and showed increased 
expression of axonogenesis-related genes.
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Fig. 4 | Trait-associated Glu-neurons in mouse hippocampus. a, Schematic 
of the three spatial axes of the mouse hippocampus. b, gsMap results of SCZ in 
CA1, with colours indicating the significance of the association. c, Correlation 
between the significance of the association of a Glu-neuron with SCZ and its 
spatial position along the CA1 D–V axis, with cells coloured by the significance 
of the association. The P value for the black regression line is from a two-sided 
t-test (n = 2,824). d, z-Statistics from correlation analyses. The x axis shows the 
z-statistic for correlation between gene expression levels in Glu-neurons and 
their spatial positions along the D–V axis and the y axis shows the significance 
of their association with SCZ. Genes with an FDR < 0.01 are highlighted in orange. 
e, GO term enrichment of genes whose expression levels were correlated with 
the spatial positions of Glu-neurons along the D–V axis (n = 241) or significance 
of the association with SCZ (n = 100). f, z-Statistic for the correlation between 

the significance of the associations of Glu-neurons with traits and spatial 
positions along the CA1 D–S axis. Dashed lines represent the threshold at 
FDR = 0.01. g, Top, overlap of genes that are highly expressed in the CA1 deep 
side, superficial side and midbrain. Bottom, OR of contrasting genes that are 
highly expressed in both the midbrain and CA1 superficial side versus those 
that are highly expressed in the midbrain and CA1 deep side. The error bar 
represents the 95% confidence interval, with the centre line indicating the OR 
(n = 259). h, GO term enrichment of genes highly expressed in both the midbrain 
and CA1 superficial side (n = 55). i, Correlation between CA1 Glu-neuron positions 
along the D–S axis (x axis) and gene expression cosine similarity with midbrain 
Glu-neurons ( y axis), with cells coloured by their position along the D–S axis. 
The P value for the black regression line is from a two-sided t-test (n = 2,824).  
P values in e,g and h are from a two-sided Chi-square test.
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Mapping human traits to macaque cortex
The analyses above with the adult mouse ST data focused on hippocam-
pus and midbrain, which are evolutionarily conserved across different 

mammalian species in terms of their spatial structures and biologi-
cal functions29–31. To extend our analyses to an evolutionarily more 
advanced brain area—the cerebral cortex32—we faced challenges owing 
to the functional and structural differences between human and mouse 
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cortices32–34. The currently available human cortical ST dataset13 is lim-
ited in coverage and resolution, as it encompasses only a small portion 
of the dorsolateral prefrontal cortex (DLPFC). We therefore utilized the 
macaque cerebral cortical ST dataset from Chen et al.35, which more 
closely resembles the human cortex and provides single-cell resolution 
across 143 cortical regions from three adult macaques (Supplementary 
Tables 4 and 5).

The availability of serial cortical sections in the macaque ST data 
provided an additional opportunity to validate the robustness of gsMap 
(Extended Data Fig. 6a). The gsMap results showed remarkable con-
sistency between adjacent ST sections (for example, median r = 0.92 
for SCZ; Extended Data Fig. 6b and Supplementary Figs. 9 and 10). 
We next compared gsMap results for SCZ between spatially matched 
ST sections from different biological replicates. These comparisons 
also showed strong consistency, with median r values of 0.84 using 
the macaque cortical ST dataset and 0.83 using the mouse embryonic 
ST dataset (Extended Data Fig. 7). In addition, although single-cell 
resolution human whole cortex data were unavailable, we examined 
the consistency between gsMap results in human DLPFC and macaque 
prefrontal cortex (PFC). We chose to use the macaque PFC owing to 
the ambiguity in the sampled positions of the human DLPFC, which 
made it difficult to accurately select the matched cortical lobe from 
the macaque (Methods). The gsMap results based on the macaque PFC 
ST data (Stereo-seq) were strongly correlated (r = 0.51, P = 8.6 × 10−8) 
with those based on the human DLPFC ST data (10X Visium), despite 
the discrepancies including differences in ST platform and definition 
of cortical lobe (Extended Data Fig. 8 and Supplementary Fig. 11). Given 
the consistency observed, we mapped 30 human brain-related traits to 
ST sections across the entire macaque left cerebral cortex at a spatially 
resolved single-cell resolution. These mapping results are available at 
https://yanglab.westlake.edu.cn/gsmap.

To systematically analyse the spatial association maps between 
brain-related traits and cortical cells, we began by estimating the correla-
tion between pairs of traits regarding their associations with cells across 
the cerebral cortex, hereafter referred to as cell relevance correlation 
(CRC). We observed that SCZ clustered with other cognitive traits (for 
example, cognitive performance), while mood traits formed another 
cluster (Extended Data Fig. 6c). This result remains consistent after 
adjusting for GWAS statistical power and aligns with our findings using 
the mouse brain ST data (Figs. 3 and 4 and Supplementary Figs. 12 and 13), 
indicating differences in relevant brain regions between cognitive and 
mood traits. Notably, CRC between two traits could differ substantially 
from their genetic correlation (Extended Data Fig. 6d). For instance, 
whereas the genetic correlation (rG) between glycated haemoglobin 
(HbA1c) and high-density lipoprotein (HDL) was negative (rG = −0.18 and 
P = 1.6 × 10−11), their CRC was positive (CRC = 0.79 and P < 5.0 × 10−324), 
owing to their shared associations with cells distributed in the liver (Sup-
plementary Fig. 14). SCZ is a complex psychiatric disorder that involves 
a combination of cognitive, mood and behavioural symptoms, and is 

typically not classified solely as a cognitive or mood disorder. However, 
in our study, we found a stronger CRC of SCZ with cognitive traits (for 
example, CRC = 0.72 between cognitive performance and SCZ) across 
cortex cells (Extended Data Fig. 6e) compared with mood traits (for 
example, CRC = 0.55 between depression and SCZ). This result indicated 
widely shared cells and cortical regions between SCZ and cognitive 
performance, suggesting that impairment in the brain areas associated 
with cognition might be a major pathological change in individuals  
with SCZ.

Trait-associated neurons in macaque PFC
Leveraging the spatially resolved cortex cell–trait association 
maps generated above, we investigated the spatial distributions of 
trait-associated neurons in the adult macaque PFC, considering that 
previous studies have indicated significant roles of the PFC in emotion 
and cognition36–38 (Fig. 5a). Neurons in the other cortical lobes are also 
crucial; however, owing to space limitations, we focused on the PFC 
lobe and presented results of other cortical lobes on our interactive 
website.

We first explored the distributions of trait-associated Glu-neurons 
in different PFC regions. We found that Glu-neurons in the PFC 14r 
region (gyrus rectus) exhibited a strong association with depression 
(OR = 5.3, P = 5.2 × 10−123; Fig. 5b,c), and these results remained consist-
ent when using data from adjacent PFC ST sections (Supplementary 
Fig. 15). This robust association was evident across most subtypes (lay-
ers) of Glu-neurons, except for rare Glu-neurons annotated as L3/4/5 
(Fig. 5d,e and Supplementary Fig. 16). Furthermore, we found that the 
associations between traits and Glu-neurons in the PFC 14r region cor-
related with their local spatial distributions. Along the lateral–medial 
(L–M) axis of the 14r region, we observed an increasing relevance of 
Glu-neurons to mood disorders, particularly within the superficial 
cortex layers (such as L2 and L3; Fig. 5f,g). When dividing the 14r 
region into lateral and medial sides, depression (lateral side OR = 4.1, 
P = 2.9 × 10−78; medial side OR = 6.7, P = 3.6 × 10−169) exhibited more pro-
nounced associations with Glu-neurons in the medial side (Fig. 5h). To 
investigate the underlying biological mechanisms, we compared gene 
expression levels of Glu-neurons in the medial side of the PFC 14r region 
with those in the other PFC regions and identified 143 highly expressed 
genes (at FDR < 0.05) in the 14r medial side (Supplementary Fig. 17). GO 
term enrichment analysis revealed that these genes were enriched in 
pathways related to synapse organization and cell junction assembly 
(Fig. 5j). Recalling the findings above that Glu-neurons distributed in 
both the midbrain and CA1 superficial side showed high relevance to 
depression (Figs. 3 and 4), we also assessed the overlap between these 
genes and the genes highly expressed in midbrain or CA1 superficial 
side in the mouse brain ST data. This overlap was significantly higher 
compared with the overlap with genes highly expressed in the other 
PFC regions (OR = 6.0, P = 4.4 × 10−11; Fig. 5i). Moreover, genes highly 

Fig. 5 | Trait-associated Glu-neurons in macaque PFC. a, Macaque PFC ST 
data, with cells coloured by cortical regions. EBZ denotes the position of the 
section. b, ORs of Glu-neurons, with bottom annotations indicating ST sections. 
c, gsMap results for depression, with cells coloured by the significance of the 
association. d, Proportions of Glu-neuron subtypes in 14r. e, gsMap results for 
Glu-neuron subtypes in 14r and other regions. Two-sided Wilcoxon rank-sum 
test P values are shown in each graph (n = 88,857). The central line denotes the 
median, notches represent the 95% confidence interval, the box indicates the 
interquartile range, and whiskers extend up to 1.5 times the interquartile range. 
f, Correlation between the L2 (L2/3) Glu-neuron positions along the L–M axis  
(x axis) and the significance of the association with depression ( y axis). Points 
denote individual Glu-neurons, and are coloured by subtype. The black line is 
the regression line, with the shaded area indicating the 95% confidence interval. 
g, z-Scores for the correlation between the significance of the association with 

Glu-neuron traits and their positions along the L–M axis. Rows correspond to 
Glu-neuron subtypes and columns represent traits. h, ORs of Glu-neurons in 
the 14r lateral (left, n = 1,344) and medial (right, n = 1,340) side. Bar plots ensure 
visibility of small-range error bars (individual data points are not shown). The 
dashed line represents the OR of 14r. i, Fold enrichment of genes that are highly 
expressed in the mouse midbrain or CA1 (S) and macaque PFC 14r medial side 
(n = 143), compared with other PFC regions (n = 601). j, GO term enrichment  
of genes that are highly expressed in the 14r medial side (n = 143). k, Fold 
enrichment of genes that are highly expressed in the 14r medial side (n = 143) in 
psychiatric drug targets, compared with all other detected genes (left, n = 13,313) 
or genes highly expressed in other PFC regions (right, n = 601). Error bars in h,i,k 
represent the 95% confidence interval, with the centre indicating the OR. P values 
from a two-sided Chi-square test.

https://yanglab.westlake.edu.cn/gsmap/home
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expressed in the midbrain and CA1 superficial side were enriched in 
pathways of axonogenesis and cell adhesion (Fig. 4i), which are closely 
interconnected with pathways of synapse organization and cell junc-
tion assembly identified in the PFC 14r medial side. These pathways 
collectively contribute to neural plasticity, a fundamental mechanism 
of neuronal adaptation to environmental stimuli, which might be dis-
rupted in individuals with depression39–41.

Next, to demonstrate the clinical value of the PFC 14r region pri-
oritized by gsMap, we conducted an enrichment analysis to explore 
whether genes highly expressed in the PFC 14r region are enriched in 
target genes of approved or launched psychiatric drugs. We collected 
417 psychiatric drug target genes from the Drug Repurposing Hub and 
DrugBank database42,43 (Methods). Genes that were highly expressed in 
the PFC 14r region showed significant enrichment in psychiatric drug 
targets, compared with genes that were highly expressed in the other 
PFC regions (OR = 5.2, P = 1.6 × 10−10) or all other genes captured in the 
macaque ST data (OR = 5.1, P = 3.7 × 10−4; Supplementary Fig. 18). This 
enrichment was even more pronounced for genes highly expressed in 
the medial side of the PFC 14r region (OR = 16.0, P = 2.2 × 10−10; Fig. 5k). 
These genes also showed substantial overlaps with genes identified by 
commonly used gene prioritization methods for complex traits (Sup-
plementary Fig. 19 and Methods). Consistently, we observed that cells 
that were distributed in the PFC 14r medial side exhibited the highest 
drug module score compared with those that were distributed in other 
PFC regions (Extended Data Fig. 9). We further explored drugs whose 
target genes were enriched in genes that were highly expressed in the 
PFC 14r medial side compared with all other genes (Supplementary 
Note, section 7 and Supplementary Table 6).

Together, our results revealed spatially patterned associations 
between Glu-neurons and traits in the PFC lobe. We found that 
Glu-neurons near the medial side of the PFC 14r (gyrus rectus) region 
were strongly associated with depression, and genes that were highly 
expressed in this area were enriched in neural plasticity-related path-
ways and targets of psychiatric drugs.

Discussion
Here we introduced gsMap, which integrates cellular gene expres-
sion profiles, cell spatial coordinates, SNP-to-gene linking maps and 
GWAS summary data to spatially map cells to human complex traits. 
The gsMap method has been implemented in a Python package and is 
freely available at https://github.com/JianYang-Lab/gsMap. Through 
extensive benchmark analyses with real ST and both real and simulated 
GWAS datasets, we demonstrated that gsMap was accurate, robust 
and powerful in spatially aware identification of associations between 
traits and cells (Supplementary Figs. 20–25). By applying gsMap to 
high-resolution brain ST datasets, we generated trait–brain maps 
that detail associations with 30 complex traits at spatially resolved 
single-cell resolution. These maps cover both evolutionarily conserved 
brain regions (such as hippocampus) and advanced brain regions 
(such as cerebral cortex), and various complex traits related to cogni-
tion, emotion and behaviour, and several of our findings hold clinical 
value (Supplementary Note, section 8). We have developed an interac-
tive web tool (https://yanglab.westlake.edu.cn/gsmap) to visualize 
and download these trait–brain association maps. Although we have 
primarily used gsMap as a genetic analysis tool for this study, it can 
be integrated into ST data analysis toolkits to explore associations 
of individual cells with human diseases, providing insights into the 
disease relevance of spatially patterned human cells for improved 
diagnosis and treatment, and into the relevance of animal cells to 
human diseases for better disease modelling. Furthermore, we have 
provided an option in gsMap to jointly analyse multiple ST sections 
(Methods) and have demonstrated consistency between the results 
from separate and joint analyses (Supplementary Fig. 26). Therefore, 
we recommend the joint analysis mode for better interpretability 

of gsMap results from ST data obtained from multiple technical or 
biological replicates.

Cells in the brain are usually assigned to conventional cell types (for 
example, Glu-neurons) to study their relevance to diseases10,21,44. Our 
results suggest that owing to within-cell type heterogeneity, assigning 
cells to such cell types only is not sufficient to understand their roles 
in diseases. For instance, cells of the same conventional cell type in the 
brain exhibit a wide heterogeneity regarding their relevance to traits 
or diseases, and such heterogeneity is correlated with their spatial 
distributions (Figs. 3–5). Therefore, using spatial context annotations 
to capture intra-cell type heterogeneity not only allows for mapping 
of the spatial distribution of trait-associated cells within cell types, 
but also enhances the power to detect trait-associated tissues or cell 
types (Supplementary Figs. 20 and 21). Our findings, in conjunction 
with previous morphology, electrophysiology and RNA-sequencing 
studies29,45–48, indicate that spatially patterned within-cell type het-
erogeneity might be the fundamental organization rule for cells in the 
mammalian brain (Supplementary Note, section 9).

Another question is whether gsMap relies on the assumption of 
spatial context-dependent expression quantitative trait locus (eQTL) 
effects. Context-dependent eQTL effects are often detected on the 
basis of gene expression levels that are standardized within each 
context, and findings have consistently shown that most eQTLs 
are not context-dependent49–51. However, even in the absence of 
context-dependent eQTL effects for the standardized expression 
levels, the effect of the eQTL variant on a complex trait, as medi-
ated by different cell groups, can differ owing to differences in 
the variance of raw expression levels across cell groups (Extended 
Data Fig. 10 and Supplementary Note, section 10). Exploring spatial 
context-dependent genetic regulation of gene expression would 
require population-scale ST data, which are currently not available. 
An alternative approach would be to deconvolute the abundances 
of spatial domains in bulk samples, analogous to the deconvolution 
of cell-state abundances52, followed by an interaction model (spa-
tial domain-by-genotype interaction) to detect spatially dependent 
genetic effects on gene expression.

We note several limitations in our study, which could serve as poten-
tial avenues for future research. First, owing to limitations in the pres-
ently available human ST data, we relied on brain ST data obtained 
from mice and macaques to spatially map brain cells associated with 
human complex traits. Despite the replication of our findings across 
diverse ST datasets and the demonstration of consistent gsMap results 
across mouse, macaque and human data, the use of non-human ST data 
inevitably leads to a reduction in statistical power owing to inherent 
differences between humans and these animal models, although the use 
of GWAS summary data from large-scale studies may partially offset this 
power loss. Given the rapid development of spatial omics technologies 
and the reduction in associated costs3,4,53, we anticipate the generation 
of extensive, high-quality spatial omics data using human tissues in 
future studies. These datasets would serve as valuable resources for 
further validating our results and making novel discoveries that cannot 
be achieved using non-human ST data. Second, associations between 
traits and cells identified by gsMap do not imply a causal relationship. 
Because of the correlation of gene expression profiles among cells, it 
is possible for cells that do not biologically contribute to a trait to be 
identified as being associated with the trait. For example, we detected 
associations of root ganglion cells with SCZ using the mouse embryonic 
ST data, which might be caused by the correlated gene expression val-
ues between root ganglion cells and brain neurons. Third, this study 
focused on separately analysing each ST section or jointly analysing 
multiple anatomically homogeneous sections, leaving the joint analysis 
of multiple anatomically heterogeneous ST sections for further explo-
ration. Fourth, incorporating gene regulatory networks (for example, 
pathways)54 into the GSS calculation could potentially improve the 
power of gsMap. Finally, the primary focus of this work was to apply 

https://github.com/JianYang-Lab/gsMap
https://yanglab.westlake.edu.cn/gsmap
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gsMap to explore the spatial distribution of trait-associated cells in the 
brain, leaving the exploration of other tissues for further investigation.
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Methods

Inclusion and ethics
This study was approved by the Ethics Committee of Westlake Univer-
sity (approval no. 20200722YJ001).

gsMap method
Design principles. To effectively illustrate gsMap, we first summarize 
its design principles. gsMap utilizes the framework of S-LDSC17 to as-
sess whether genetic variants, mainly SNPs, located in or near genes 
specifically expressed in a spot in ST data are enriched for genetic as-
sociations with a trait of interest. To precisely estimate gene expression 
specificity for individual spots, gsMap aggregates information from 
homogeneous spots, a crucial step given the sparsity and high technical 
noise in gene expression profiles of individual spots in ST data12,55. Using 
spatial coordinates alone is inadequate to identify homogeneous spots 
because spatially neighbouring spots may not necessarily belong to the 
same cell type. Using gene expression profiles alone could also lead to 
biased identification of homogeneous spots owing to technical noise. 
To address these limitations, gsMap uses a GNN to learn embeddings 
that integrate spatial coordinates and gene expression profiles, and 
then identifies homogeneous spots for each focal spot on the basis of 
their similarity in the embedding matrix. gsMap then estimates GSSs 
for each focal spot by aggregating information from its homogeneous 
spots. Note that although spot embeddings for ST data generated from 
existing tools56,57 can be applied in gsMap, to enhance usability of our 
software tool and improve embedding quality, we developed a built-in 
GNN model (see below) that incorporates spot annotations when avail-
able and uses a graph attention layer (GAT) to prevent over-smoothing 
during the process of identifying homogenous spots for a focal spot.

Data input. gsMap requires inputs of (1) GWAS summary statistics; 
(2) sequencing-based ST data comprising transcriptome-wide gene 
expression profiles and spatial coordinates of individual spots;  
(3) LD reference data; and (4) optionally, SNP-to-gene linking maps. We 
noted that the resolution of ST data varies significantly across different 
platforms, ranging from one spot on sequencing array chips represent-
ing a cluster of cells (for example, 10X Visium) to spots at sub-cellular 
resolution (for example, Stereo-seq). To ensure the robustness of gsMap 
when handling ST data at sub-cellular resolution, cell segmentation58 
analysis is required, which merges original spots on sequencing array 
chips into individual cells. For simplicity, we continue to use spots to 
denote data points in ST data, where one spot represents an individual 
cell (after cell segmentation analysis) in high-resolution ST platforms 
or multiple cells in conventional ST platforms.

Processing gene expression data. The gene expression count matrix 
is log-transformed and normalized according to the library size of each 
spot. Subsequently, the normalized gene expression matrix is stand-
ardized to attain a zero mean and unit variance, and the top h (default, 
3,000) highly variable genes (HVGs) are retained. We select HVGs based 
on the normalized variance of each gene, which adjusts for 
mean-variance associations, as implemented in Scanpy59. The resulting 
processed gene expression matrix is represented as RX ∈ n h× , with n 
denoting the number of spots and h representing the number of HVGs. 
To accelerate the training process in the GNN, users can optionally 
provide a principal component analysis-reduced matrix (default, 300 
components). The normalized HVG matrix (or principal component 
analysis-reduced matrix) serves as the feature matrix in the GNN.

Building a spatial graph of the spots. The spatial coordinates of in-
dividual spots are transformed into an undirected graph, denoted as 
G V E= ( , ). In this graph, each vertex v V∈  represents a spot, and E rep-
resents the set of connected edges between spots. For balancing the 
performance and computational efficiency, gsMap, by default, 

considers the ten nearest neighbouring spots for each spot, determined 
by their Euclidean distance in spatial coordinates. The resulting graph 
can be delineated by the adjacency matrix RA ∈ n n×  with n denoting 
the number of spots. If spots i and j are connected in the graph, A = 1ij ; 
otherwise, A = 0ij .

Learning embedding matrix. The standardized gene expression ma-
trix X and the adjacency matrix A are then integrated into an embedding 
matrix Z ∈ n m×R , where m represents the number of features (set as 32), 
using the GAT auto-encoder framework. The advantage of GAT60 lies 
in its trainable edge weights among connecting spots, enabling higher 
weights for spots with analogous gene expression patterns during 
information aggregation. A detailed description of the graph attention 
auto-encoder can be found in section 1 of the Supplementary Note.

The loss function of the graph attention auto-encoder in gsMap 
includes two parts: (1) the mean squared error used for reconstruct-
ing gene expression matrix; and (2) the cross-entropy loss used for 
predicting cell types of spots:
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Here, xig  represents the normalized expression value of spot i for 
gene g with ̂xig being the reconstructed value. pik represents the prob-
ability of spot i belonging to cell type k, coded as 1 if spot i is of cell type 
k, and 0 otherwise. qik  represents the predicted probability, c is the 
number of cell types, and γ is the hyperparameter that balances the 
reconstruction loss and cross-entropy loss. In practice, γ is set to 0.5 
in most cases. In scenarios where annotated cell types are unavailable, 
γ is set to 1. Of note, cell type annotations are included to improve 
embedding accuracy, but they are not strictly necessary, as they can 
largely be captured by gene expression profiles (Supplementary 
Fig. 22). During the training process, the Adam optimizer61 is utilized 
to minimize the loss function and the exponential linear unit (ELU)62 
is used as the activation function. The weight decay is set to 10−4, and 
the maximum number of iterations is set to 1,000. The iteration is con-
sidered as converged when L L− < 10t t+1 −4.

Identification of homogeneous spots. The embedding matrix Z inte-
grates information from gene expression values, spatial locations of 
spots, and cell type priors. We then identify homogeneous spots for 
each focal spot on the basis of their cosine similarity in this latent space:

Z Z
Z Z
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i j∥ ∥∥ ∥
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where R∈i
m×1Z  is the embedding vector of spot i. For each focal spot, 

we select the top d spots that show the highest cosine similarity with 
it. This process aligns each individual spot with d spots that are spatially 
close and share similar transcriptomic profiles, referred to as the micro-
domain (D). In this study, we set d to 20 for ST data generated from the 
10X Visium platform and 50 for ST data generated from the Stereo-seq 
platform.

Estimation of GSS. We rank genes in individual spots on the basis of 
their expression levels, with higher expression values receiving higher 
ranks. We opt to use gene expression ranks instead of gene expression 
values because the ranks are more robust against artefacts across dif-
ferent technical and biological replicates (Supplementary Fig. 23), as 
previously suggested63. For each gene, its expression specificity with-
in each focal (individual) spot is assessed by calculating the geometric 
mean of its expression rank across the microdomain of the focal spot, 
divided by the geometric mean of its expression rank across all spots 
in the ST data. For gene g, Fig  represents its expression specificity in 
spot i, calculated as:
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where Rig denotes the expression rank of gene g in spot i, and Di repre-
sents the microdomain (that is, set of homogonous spots) of spot i with 
d denoting the spot number. If F < 0ig , indicating that this gene is not 
specifically expressed within the focal spot, we set it to 0. Additionally, 
we compare the expression proportion of each gene across the focal 
spot microdomain to its proportion across all spots. If this ratio is 
smaller than 1, suggesting that the large Fig  might be due to outliers 
with discordant high expression ranks, we also set Fig to 0. To align the 
scale between GWAS summary statistics and the estimated gene spec-
ificity, we performed an exponential projection to further distinguish 
genes with high expression specificity:

S F= exp{ } − 1ig ig
2

where Sig denotes the final specificity score of gene g in spot i.

Mapping GSSs to SNPs. We map the specificity score of each gene to 
the corresponding SNPs within a window extending 50 kb upstream and 
50 kb downstream of each gene’s transcribed region. We have shown 
through a sensitive analysis that gsMap is robust to different window 
sizes (Supplementary Fig. 24). We have included an option in the gsMap 
software tool for mapping SNPs outside the 100-kb window to genes, 
based on SNP-to-gene linking maps derived from epigenomic data (for 
example, Roadmap15 and Activity-by-Contact model16). This process 
yields a unique set of SNP annotations for each spot. On average, across 
the ST datasets used in this study, there are more than 150,000 SNPs 
and 3,000 genes with a non-zero GSS per spot.

Linking genomic annotations with GWAS data. Treating each spot as 
a set of SNP annotations, gsMap assesses whether SNPs with higher GSS 
are enriched for heritability for the trait of interest using the S-LDSC17 
framework, conditional on the baseline SNP annotations. The S-LDSC in 
gsMap can be considered as a linear regression analysis between GWAS 
χ2 statistics and stratified LD scores computed using SNP annotations 
from individual spots. A detailed explanation of S-LDSC can be found 
in section 2 of the Supplementary Note. The LD reference data used 
in this study were obtained from the 1000 Genomes Project Phase 3 
(1KGP3)64. Following previous studies10,65, we use block-jackknife to 
estimate the standard error of the regression coefficient in S-LDSC. 
P value is computed using a one-sided z-test, assessing whether the 
regression coefficient is significantly larger than 0. A smaller P value 
indicates a stronger relevance of the focal spot to the trait of interest.

Estimating the strength of enrichment for a spatial region. To evalu-
ate relevance between a specific spatial region and the trait of interest, 
gsMap uses the Cauchy combination test19 to aggregate P values of 
individual spots within the spatial region:

∑T P= tan{(0.5 − )π}
i

ϕ

iCauchy
=1

where Pi represents the P value of spot i belonging to the spatial region. 
The aggregated P value for the spatial region is approximated as:

P T≈
1
2

− π{arctan( )}region Cauchy

The Cauchy combination test combines signals from all spots within 
a spatial domain, demonstrating high consistency (median r = 0.82) 
with the previous domain-level approach13 while offering improved 
statistical power (Supplementary Fig. 21).

Running time. We have optimized the gsMap code to ensure its effi-
ciency in handling large ST data. gsMap analyses large ST datasets with 
120 K spots within 3 CPU hours, whereas even with the single-spot GSS 
available, using S-LDSC software for the same task would require over 
20,000 CPU hours (~10 min per spot). A summary of the gsMap runt-
ime for each step is available in section 3 of the Supplementary Note.

Diagnostic tools. We have included a module in the gsMap software 
tool, which enables users to plot spatial distributions of expression 
levels and GSS for selected genes, as well as generate Manhattan plots 
highlighting SNP association signals mapped to these genes, aiding in 
the diagnostic analysis of the data (Supplementary Fig. 25).

Joint analysis mode. We have developed a joint analysis mode to ana-
lyse ST data with multiple technical and/or biological replicates, pro-
ducing unified results and simplifying interpretation (Supplementary 
Fig. 26). In brief, a GSS is calculated for each spot as the mean rank of a 
gene within homogeneous spots, normalized by its mean rank across 
all spots (including those from different biological replicates). This 
step harmonizes GSS annotations across biological replicates. We then 
perform heritability enrichment analysis (for example, using S-LDSC) 
to associate each spot with traits and apply the Cauchy combination 
test to combine P values across all spots with the same annotations

Quantifying the association of a spatial region with a trait 
relative to all other regions
We used an OR, computed as the ratio of trait-associated spots to 
non-associated ones in a specific region divided by the ratio in all 
other regions, to compare gsMap results of a specific spatial region 
across traits with varied GWAS statistical power. This metric quantifies 
the strength of a region’s association with a trait, relative to all other 
regions. Consequently, it compensates for differences in gsMap results 
owing to variations in GWAS statistical power, allowing for a more mean-
ingful comparison of gsMap results across traits. The significance of 
the OR was evaluated using a Chi-square test.

Simulations
The simulation study was conducted using real genotype data on 
100,000 unrelated individuals of European ancestry from the UK 
Biobank22. We used the HapMap3 SNPs and filtered out SNPs with a 
minor allele frequency (MAF) < 0.01 or Hardy–Weinberg equilibrium 
test P value < 10−6, resulting in a total of 1,195,548 SNPs. We used GCTA 
(V1.94.1)66 to generate quantitative traits based on real genotype data 
of a set of selected causal variants. We simulated four null scenarios 
where causal variants were: (1) randomly distributed across the genome; 
(2) enriched in the candidate cis-regulatory elements (cCREs)67;  
(3) enriched within LD blocks; and (4) enriched in the cis-regions of 
non-spatially variable genes (NSVGs), respectively. Here ‘null’ means 
that the simulated causal variants are not enriched in or around genes 
with context-dependent expression, meaning that the simulated trait 
is not expected to be associated with any specific group of spots.

In scenario 1, we simulated phenotypes with varying levels of poly-
genicity (that is, proportion of SNPs being causal) and heritability (that 
is, proportion of variance in the phenotype attributed to the causal 
SNPs). The number of causal SNPs varied from 10,000 to 500,000, and 
the heritability ranged from 0.1 to 0.6. In scenarios 2 to 4, we fixed the 
number of causal SNPs at 100,000 and heritability at 0.3. For scenario 
4, we used two strategies to select NSVGs. First, we chose genes with a 
maximum GSS smaller than 1.5, computed by gsMap. Second, to select 
genes entirely independent of the gsMap analysis process, we used 
SPARK-X68 to test for spatially dependent expression and selected genes 
with a P value greater than 0.85. Each simulation was replicated three 
times. We used PLINK (V1.90)69 to associate SNPs with the simulated 
phenotypes with the first ten principal components, derived from 
SNPs, fitted as covariates.
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GWAS summary statistics
We collected GWAS summary statistics from the public domain for 
a broad range of complex traits and diseases, spanning eight major 
categories: autoimmune, psychiatric, reproductive, behavioural, meta-
bolic, haematological, anthropometric and cancer. To ensure sufficient 
GWAS power, we included only those traits for which the Chi-square 
statistic for the LDSC estimate of heritability exceeded 25, as suggested 
by prior work8,10. In summary, we analysed GWAS summary statistics 
for 110 complex traits, including diseases, from the UK Biobank and 
other publicly available sources (average n = 385,000, Supplementary 
Table 1). We excluded the major histocompatibility complex (MHC) 
region from all analyses owing to its complexity17.

Spatial transcriptomics datasets
We included six spatial transcriptomics datasets in this study: mouse 
embryonic data (Stereo-seq)5, human embryonic data (Stereo-seq)7, 
mouse brain data (Stereo-seq and MERFISH)5,27, macaque cortical data 
(Stereo-seq) and human DLPFC data (10X Visium)13. To align mouse or 
macaque genes with human genes, we utilized the biomaRt (V3.18) R 
package to conduct homologous gene transformations. The average 
gene numbers after homologous transformation are 16,330 for the 
mouse datasets and 13,536 for the macaque dataset. Following the 
standard analysis pipeline, we utilized the Scanpy (V1.9.6)59 Python 
package to process each ST dataset. Details of each dataset are sum-
marized below.

Mouse embryonic ST data. We analysed 54 coronal sections from the 
mouse embryonic dataset, sourced from eight C57BL/6J mice, with 
an average of 81,125 spots per section, spanning from the embryonic 
stage of E9.5 to E16.55. Data at both bin50 resolution (53 sections) and 
single-cell resolution (1 section) were included in this study. We ob-
tained access to the h5ad files, each including the gene expression count 
matrix, cell type annotations, and spot spatial coordinates for a section. 
We validated the cell type annotations based on known marker genes.

Human embryonic ST data. We analysed 62 transverse sections from 
the human embryonic dataset, sourced from a CS8 human embryo of 
Chinese ancestry, with a total of 38,562 spots7. We had access to the 
h5ad files, each containing the gene expression count matrix, cell type 
annotations, and spot spatial coordinates.

Mouse brain ST data. We analysed two sections from the mouse 
brain dataset: one coronal section from an adult C57BL/6J mouse 
brain (50,140 spots) and one sagittal section from an E16.5 embryonic 
C57BL/6J mouse brain (65,303 spots)5. Both sections are at single-cell 
resolution. We had access to the h5ad files and verified the cell type 
annotations using known marker genes.

Mouse brain MERFISH ST data. We analysed a mouse brain MERFISH 
ST dataset27 consisting of two sections: a coronal section from an adult 
C57BL/6J-1 mouse brain containing 41,181 spots and a sagittal section 
from an adult C57BL/6J-3 mouse brain containing 105,934 spots. This 
dataset was generated using an image-based platform, where a panel 
of ~1,100 genes was imaged. The remaining genes were imputed by 
the authors using paired scRNA-seq data. We accessed the imputed ST 
dataset, which includes expression levels for 15,768 genes, cell spatial 
coordinates, cell type annotations, and brain region annotations.

Macaque cortical ST data. We analysed 162 coronal sections from 
the macaque cerebral cortical dataset, sourced from three adult male 
cynomolgus monkeys, with an average of 266,654 spots per section35. 
All sections are at single-cell resolution. We obtained access to the sc-
transform70 gene expression matrices and the metadata files. For each 
section, we aligned the spots spatial coordinates, cell type annotations, 

cortical region annotations, and section-cutting positions (EBZ) and 
compiled all the aforementioned information into an h5ad file.

Human DLPFC ST data. We analysed eight coronal sections from the 
adult human DLPFC dataset, sourced from two donors of European 
ancestry, with an average of 3,973 spots per section13. These data were 
generated using 10X Visium, with each spot containing a few dozen 
cells. We had access to the h5ad files, each including the gene expression 
count matrix, spots spatial coordinates, and cortex layer annotations.

Single-cell RNA-seq datasets
We used six scRNA-seq datasets in this study to estimate gene expres-
sion correlations between mice and humans47,71–75. These datasets 
contain 9 million cells, covering 25 major tissues from both mice and 
humans. The cell type annotations were provided by the authors of 
the scRNA-seq datasets, and we re-clustered them into eight primary 
cell categories: endothelial cells, epithelial cells, glial cells, neurons, 
immune cells, muscle cells, stem cells and others.

Comparison of the gsMap results from the human and macaque 
datasets
We applied gsMap to eight human DPLFC ST sections and observed 
highly consistent results across these sections. We then calculated an 
OR for each cortex layer, representing the strength of association of a 
cortex layer with a trait, relative to all other layers. To ensure a robust 
comparison between the human and macaque results, we compared 
the median OR value of each cortex layer across eight human DPLFC 
ST sections to that across nine macaque PFC ST sections. Considering 
that there were only five matched cortex layers between the human and 
macaque datasets, we pooled the OR values from 22 brain-related traits, 
resulting in 110 data points in the comparison analysis.

Integration of GWAS summary statistics with ST data using scDRS
scDRS9 is a method that can integrate GWAS summary statistics with 
scRNA-seq data to identify cells relevant to a trait. In brief, scDRS com-
putes a trait-enrichment score to examine whether a cell has excess 
expression levels across a set of trait-associated genes. These genes 
were derived from GWAS summary statistics using gene-based associa-
tion tests (for example, MAGMA76). To assess the statistical significance 
of the trait-enrichment score, a P value is calculated by comparing the 
trait-enrichment score to those computed from control genes with 
matched expression characteristics. Though originally developed 
for scRNA-seq data, scDRS can, in principle, be applied to ST data by 
regarding each spot in the ST data as a cell. Following the standard 
analysis protocol of scDRS (V1.03), we first used MAGMA to generate 
gene-based test statistics from the GWAS summary statistics, utilizing 
reference LD data obtained from 1KGP3, as done in gsMap analysis. 
Next, we used the ‘munge-gs’ command in scDRS and set the ‘n-max’ 
parameter to 1,000, to generate a gene-weight file for the top 1000 
trait-associated genes identified from the MAGMA analysis. Finally, we 
used the ‘compute-score’ command in scDRS and set the ‘n-ctrl’ param-
eter to 1,000, which generated 1,000 sets of control genes using Monte 
Carlo sampling, to obtain the trait-enrichment P value for each spot.

Expression association analysis
We performed two expression association analyses to identify genes 
whose expression levels in Glu-neurons were associated with their 
positions along the CA1 D–V axis, and genes in Glu-neurons whose 
expression levels were associated with their relevance to SCZ.

Expression association analysis-1 (for gene g):

β α e= + +g x c

where R∈ k×1g  represents the normalized expression levels of a gene 
in k Glu-neurons, Rx ∈ k×1  represents the spatial positions of k  



Glu-neurons along the D–V axis, with β being the coefficients, ∈ k×1Rc  
represents the spot library size vector (a sum of all UMI counts per 
spot) to adjust for the gene expression variation attributed to spot 
library size, and e represents the residuals.

Expression association analysis-2 (for gene g):

g z cγ α e= + +

where Rz ∈ k×1 represents the −log10 gsMap P values of associations 
between k Glu-neurons and a trait of interest (for example, SCZ), with 
γ being the coefficients. The other parameters are defined as above.

Gene prioritization for complex traits
We compared the genes prioritized by gsMap to those identified by 
other gene prioritization methods, including COLOC77, FUSION78, SMR79 
and PoPS80 for the psychiatric disorders (including depression, bipolar 
disorder and schizophrenia) for which a number of drug target genes 
are available for validation. We used all eQTL datasets from GTEx81 for 
FUSION (V1.0.0), all eQTL datasets from GTEx81 and MetaBrain82 for 
COLOC (V5.2.3) and SMR (V1.3.1), and the feature matrix provided by 
the PoPS authors for PoPS (V0.2).

Psychiatric drug targets
We collected drug target genes from the DrugBank database43 and Drug 
Repurposing Hub database42. For the DrugBank database, we selected 
drugs intended to treat psychiatric disorders categorized under the 
International Classification of Diseases (ICD) codes F00 to F99. From 
the Drug Repurposing Hub database, we selected drugs categorized 
under the psychiatric disease areas. In total, we identified 417 target 
genes from drugs that are either approved or undergoing clinical tri-
als for treating psychiatric disorders. Based on the identified drug 
target genes, we used Fisher’s exact test to assess whether genes highly 
expressed in the macaque PFC 14r region are enriched in these drug 
target genes, compared to all detected genes, or genes highly expressed 
in other PFC regions. The module score of these 417 drug targets genes 
for individual spots was computed using the AddModuleScore function 
in the Seurat (V4.4.0) R package with the default settings83,84

GO term enrichment
We performed GO term enrichment analysis using the clusterProfiler85 
(V3.18) R package with the default settings.

Genetic correlation
We used the bivariate LDSC65,86 (V1.01) to estimate genetic correlations 
between trait pairs. The reference LD data used in the genetic correla-
tion analysis was generated from 1KGP3.

Statistics and reproducibility
We analysed only existing datasets without using any statistical meth-
ods to predefine the sample size. Our study did not involve a design 
requiring randomization or blinding. We validated our results by per-
forming the same analyses on independent datasets, and all replication 
analyses were successful.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
This study used GWAS summary statistics for 110 traits, as summa-
rized in Supplementary Table 1. The mouse embryonic and brain ST 
data are available at China National GeneBank DataBase (CNGBdb) 
under accession CNP0001543. The human embryonic ST data are 
available at The National Genomics Data Center (NGDC) Genome 

Sequence Archive (GSA) under accession HRA005567. The mouse brain 
MERFISH ST data are available at https://cellxgene.cziscience.com/
collections/0cca8620-8dee-45d0-aef5-23f032a5cf09. The macaque 
cortical ST data are available at CNGBdb under accession CNP0002035. 
The human DLPFC ST data are available at https://research.libd.org/
globus/. The scRNA-seq data from human and mouse are available at: 
https://cellxgene.cziscience.com/. The reference LD data, generated 
from 1KGP3, are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/2013050. The LDSC baseline functional annotations are 
available at https://data.broadinstitute.org/alkesgroup/LDSCORE. 
The DrugBank database is available at https://go.drugbank.com/
releases/latest. The Drug Repurposing Hub database (version of 24 
March 2020) is available at https://repo-hub.broadinstitute.org/
repurposing#download-data. The human, mouse, and macaque ref-
erence genome data are available at https://nov2020.archive.ensembl.
org/index.html. The gsMap results for different traits and ST datasets 
can be visualized and downloaded at https://yanglab.westlake.edu.cn/
gsmap/home. Source data are provided with this paper.

Code availability
The source code for gsMap is available on GitHub (https://github.
com/JianYang-Lab/gsMap) and Zenodo (https://doi.org/10.5281/
zenodo.14744887 (ref. 87)).
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Extended Data Fig. 1 | Mapping human complex traits to human embryo.  
a) Human CS8 embryonic ST data7, with spots colored by their tissue types.  
b) gsMap results for IQ, MCHC, and height using the human CS8 embryonic  
ST data, with colors indicating the significance of spot-trait associations.  

The genomic inflation, λGC, serves as an indicator of the GWAS statistical power. 
c) Tissue-trait associations, with colors indicating the significance of the 
associations and the colored annotations on the right indicating tissue types. 
Rows correspond to tissue types, and columns represent traits.
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Extended Data Fig. 2 | gsMap results in null simulations where causal 
variants were randomly distributed across the genome. a-b) Boxplot of 
gsMap results at the spot level (a, n = 121,767) and region level (b, n = 25) in null 
simulations with the number of causal SNPs set to 10 K, 100 K, and 500 K. The 
x-axis displays trait heritability, varying from 0.1 to 0.6, and the y-axis shows the 

association −log10 P value. In each box, the central line denotes the median, 
notches represent the 95% CI, the box indicates the IQR, and whiskers extend 
up to 1.5 times the IQR, with outliers shown as individual dots. The dashed line 
represents the threshold at FDR = 0.05.



Extended Data Fig. 3 | Mapping human complex traits to embryonic mouse 
brain. a) Mouse E16.5 embryonic brain ST data, with spots colored by brain 
regions (Left) or cell types (Right). Abbreviations for brain region and cell types 
are listed in section 5 of the Supplementary Note. b) Cell type proportions in 
each brain region. c) Associations of brain regions with different traits, with 
colors indicating the association significance. Rows represent brain regions, 
and column represent traits. The colored bar on the right representing the 
proportion of glu-neurons in each brain region, while the colored bar on the top 
represents the genomic inflation, λGC, which serves as an indicator of the 

statistical power of the GWAS data. d) Correlation between the significance of a 
brain region’s association with SCZ (x-axis) and its proportion of glu-neurons 
(y-axis). The grey line represents the regression line, with the p-value from a 
two-sided t-test (n = 17). e) Correlation between significance of association with 
a trait and proportion of a cell type across brain regions. The x-axis displays 
different cell types; the y-axis shows the correlation coefficient. Point represent 
traits (n = 30), colored by cell types. In each box, the central line denotes the 
median, notches represent the 95% CI, the box indicates the IQR, and whiskers 
extend up to 1.5 times the IQR, with outliers shown as individual dots.
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Extended Data Fig. 4 | Mapping Parkinson’s Disease to adult mouse brain. 
a) The distribution of dopaminergic neurons (DA-neurons) on the adult mouse 
brain ST data, where green points denote DA-neurons. Abbreviations for brain 
region and cell types are listed in section 5 of the Supplementary Note. b) gsMap 

results for Parkinson’s Disease (PD), where points represent an individual cells 
colored by the association significance. c) Proportions of DA-neurons in 
different brain regions (x-axis) and the significance of their associations with 
PD (y-axis).



Extended Data Fig. 5 | Spatially dependent associations of CA1 glu-neurons 
with SCZ using mouse brain MERFISH ST datasets. a) MERFISH ST data of the 
mouse brain coronal section from mouse individual #1. Points represent 
individual cells, colored by brain regions. b) gsMap results for SCZ using the 
mouse brain coronal ST section. c) MERFISH ST data of the mouse brain sagittal 
section from mouse individual #2. Points represent individual cells, colored by 

brain regions. d) gsMap results for SCZ using the mouse brain sagittal ST section. 
e-f) Correlation between the significance of a glu-neuron’s association with 
SCZ and its spatial position along the CA1 D-V axis, using mouse brain coronal 
(e, n = 883) and sagittal ST data (f, n = 556). The black lines represent the regression 
line, with p-values from a two-sided t-test.
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Extended Data Fig. 6 | Mapping human complex traits to adult macaque 
cerebral cortex. a) Representative ST sections from the left prefrontal cortex 
of an adult macaque8, with cells colored by cell types. The title of each image 
displays the cutting position of each ST section, ranging from ear bar zero (EBZ, 
mm) 32.05 to 36.02. The white texts on the image label cortical regions. b) Cell 
type-SCZ associations in each of the cortical region estimated using the EBZ 
32.05 ST section vs. those estimated using the other ST sections. In each cortical 
region, we aggregated the individual cells’ associations with SCZ into the 
association of each cell type using the Cauchy combination test. We next 
calculated the Pearson correlation of -log10(p-values) between ST sections across 
different cell types and cortical regions. The x-axis displays the associations of 

cell types with SCZ estimated using the EBZ 32.05 ST section; the y-axis shows 
the corresponding associations estimated using the ST sections from EBZ 32.54 
to EBZ 36.02. Points represent cell types, colored by cortical regions. The black 
line is the regression line, and the grey dashed line represents the line of equality. 
c) CRC between traits estimated using gsMap with the macaque cortical ST data. 
d) Genetic correlations between traits estimated using the bivariate LDSC 
method. Each column or row represent a trait. e) Scatter plot showing the CRC 
between traits (x-axis), and the corresponding genetic correlations (y-axis). 
The orange and blue points highlight the CRC between SCZ and cognitive traits, 
and mood traits, respectively. The texts in square brackets show the 95% CI of CRC.



Extended Data Fig. 7 | Correlation of gsMap results among biological 
replicates. a) Spatially matched embryonic ST sections from mouse individuals 
#1 and #2, with spots colored by tissue type. b) Tissue-SCZ associations, 
comparing the E1S2 section from mouse individual #1 (x-axis) with the E2S11 
section from mouse individual #2 (y-axis). c) Correlation heatmap of gsMap 
results for SCZ across 15 pairs of biological replicates, with the x-axis representing 
embryonic ST sections from mouse individual #1 and the y-axis representing 
those from mouse individual #2. d) Spatially matched cortical ST sections from 
macaque individuals #1 and #2, with spots colored by cell type and the cortical 
regions annotated by text. These sections are from different macaque individuals 

but were taken at approximately the same cutting positions, calibrated by their 
distance from the ear bar zero (EBZ). e) Cell type-SCZ associations in each 
cortical region, comparing the EBZ 21.40 ST section from macaque individual 
#1 (x-axis) with the EBZ 21.36 ST section from macaque individual #2 (y-axis).  
f) Correlation heatmap of gsMap results for SCZ across 18 pairs of macaque 
biological replicates. The x-axis represents ST sections from macaque individual 
#1, and the y-axis represents those from macaque individual #2. Shown are 
results from spatially matched ST sections, where the absolute differences in 
EBZ are smaller than 5 mm and there are more than 10 matched cortical regions.
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Extended Data Fig. 8 | Comparison of gsMap results between human and 
macaque. a) Macaque prefrontal cortex (PFC) ST data. Points represent 
individual cells, with colored by cortex layers. b) Schematic of the PFC and 
DLPFC. c) Human DLPFC ST data generated by the 10X Visium platform. Points 
represent individual spots (a few dozen cells), colored by cortex layers.  
d) Correlation between ORs of cortex layers estimated from the macaque PFC 
ST data and those estimated from the human DLPFC ST data. To ensure a robust 

comparison between human and macaque results, we compared the median 
OR of each cortex layer across 8 human DLPFC ST sections (y-axis) to that 
across 9 macaque PFC ST sections (x-axis). Considering that there were only  
5 matched cortex layers between the human and macaque datasets, we pooled 
ORs from 22 brain-related traits. Each data point represents the OR of a cortex 
layer for a trait. The center black line is the regression line, with the shaded area 
indicating the 95% CI. The p-value is from a two-sided t-test (n=110).



Extended Data Fig. 9 | Psychiatric drug module score. a) Drug module scores 
of individual cells in the macaque PFC ST data were calculated as the average 
expression level of 417 psychiatric drug target genes minus the average 
expression level of randomly selected control genes with matched expression 
characteristics, where each point represents a cell colored by its drug module 
score. b) Violin plot of drug module score in the medial side of PFC 14r, compared 

to that in each of the other regions. The black text shows the two-sided Wilcoxon 
rank sum test p-value (n = 4,027). In each box, the central line denotes the 
median, notches represent the 95% CI, the box indicates the IQR, and whiskers 
extend up to 1.5 times the IQR, with outliers shown as individual dots. 14r_L, 14r 
lateral side; 14r_M, 14r medial side.
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Extended Data Fig. 10 | Schematic representation of genetic effect mediated 
by eQTL effect in different cell groups with variable gene expression levels, 
in the absence of context-specific eQTL effects when expression levels are 
standardized within each context. a) There are mean and variance differences 
in expression of gene G between cell groups A and B. However, the eQTL effect 
size, which measures variations in gene expression levels amongst individuals 
carrying different genotypes, can remain consistent across these cell groups, 

irrespective of the differences in mean and variance of expression levels. b) Gene 
G exhibits higher expression levels in cell group A compared to group B. Even in 
the absence of context-dependent eQTL effects for the scaled expression levels, 
the impact of the eQTL variant on a complex trait, as mediated by different cell 
group, can differ due to variations in raw expression levels between cell groups. 
Note that a higher gene expression level often corresponds to a larger variance 
in gene expression due to the mean-variance relationship.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No data-collection software was used.

Data analysis We implemented our method in a Python package called gsMap.  
The source code is freely available at https://github.com/JianYang-Lab/gsMap.  
 
The other software or packages used in this study are summarized as follows:  
GCTA (v1.94.1): https://yanglab.westlake.edu.cn/software/gcta/#Overview 
plink (v1.90): https://www.cog-genomics.org/plink/2.0/ 
scanpy (v1.9.6): https://github.com/scverse/scanpy 
seurat (v4.4.0): https://github.com/satijalab/seurat 
scDRS (v1.03): https://github.com/martinjzhang/scDRS 
clusterProfiler (v3.18): https://github.com/YuLab-SMU/clusterProfiler 
LDSC (v1.01): https://github.com/bulik/ldsc 
biomaRt (v3.18): https://github.com/grimbough/biomaRt 
SMR (v1.3.1): https://yanglab.westlake.edu.cn/software/smr 
COLOC (v5.2.3): https://github.com/chr1swallace/coloc/ 
FUSION (v1.0.0): https://github.com/gusevlab/fusion_twas?tab=readme-ov-file 
PoPS (v0.2): https://github.com/FinucaneLab/pops

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

We  used GWAS summary statistics for 110 traits, as summarized in Supplementary Table 1.  
The human embryonic ST data are available at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA005567/.  
The mouse embryonic and brain ST data are available at https://db.cngb.org/search/project/CNP0001543/.  
The mouse brain MERFISH ST data are available at https://cellxgene.cziscience.com/collections/0cca8620-8dee-45d0-aef5-23f032a5cf09.  
The macaque cortex ST data are available at https://db.cngb.org/search/project/CNP0002035/.  
The ST data for human DLPFC are available at https://research.libd.org/globus/.  
The scRNA-seq data from human and mouse are available at: https://cellxgene.cziscience.com/.  
The reference LD data, generated from 1KGP3, are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/2013050.  
The baseline annotations of LDSC are available at https://data.broadinstitute.org/alkesgroup/LDSCORE.  
The DrugBank database is available at https://go.drugbank.com/releases/latest.  
The Drug Repurposing Hub database (version of 3/24/2020) is available at https://repo-hub.broadinstitute.org/repurposing#download-data.  
The human, mouse, and macaque reference genome data are available at https://nov2020.archive.ensembl.org/index.html.  
The gsMap results for different traits and ST datasets can be visualized and downloaded at https://yanglab.westlake.edu.cn/gsmap/home. 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and age were controlled for in the GWAS summary statistics in the original studies.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Participants were grouped into European, East Asian, Latino, and African American ancestral categories based on the 
reported information from the original GWAS studies. A detailed summary of the racial (ancestral) composition of each 
GWAS dataset is provided in Supplementary Table 1.

Population characteristics Ancestries were controlled for in the GWAS summary statistics in the original studies.

Recruitment We analyzed existing datasets. Thus, no recruitment was performed. 

Ethics oversight Ethics Committee of Westlake University (No. 20200722YJ001)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Spatial transcriptomics (ST) data:  We included 54 coronal sections from 8 C57BL/6J mice (Mouse Embryonic ST Data), 62 transverse sections 
from a Carnegie Stage 8 (CS8) human embryo of Chinese ancestry (Human Embryonic ST Data), 2 sections from an adult C57BL/6J mouse 
brain and an E16.5 embryonic C57BL/6J mouse brain (Mouse Brain ST Data), 2 sections from an adult C57BL/6J-1 mouse brain (Mouse Brain 
MERFISH ST Data), 162 coronal sections from 3 adult cynomolgus monkeys (Macaque Cortical ST Data), and 8 coronal sections from 2 adult 
donors of European ancestry (Human DLPFC ST Data). 
 
Human GWAS data: Summary statistics from 110 complex traits GWAS were analyzed, with an average sample size of 385,000 individuals. 
Detailed sample sizes for each GWAS are provided in Supplementary Table 1.

Data exclusions For the human dorsolateral prefrontal cortex (DLPFC) spatial transcriptomics (ST) data, we excluded the ST sections from individual #3 
(sections 151669, 151670, 151671, and 151672) because these four sections lacked spots corresponding to cortical layers 1 and 2. All other 
data from the original dataset were included and utilized in this study.

Replication We replicated our results using independent biological samples from different datasets. 
Mouse Embryonic ST Data: We replicated results across 54 sections from 8 mice. 
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Human Embryonic ST Data: We replicated results across 68 sections from 1 human donor. 
Mouse Brain ST Data: We replicated results across 4 sections from 4 mice. 
Macaque Cortical ST Data: We replicated results across 162 sections from 3 monkeys. 
Human DLPFC ST Data: We replicated results across 8 sections from 2 human donors. 
All replication analyses were successful.

Randomization We conducted analyses using existing datasets, thus no randomization was applied to data generation. Covariates such as sex, age, and 
ancestry PCs were controlled for in the GWAS summary statistics from the original studies.

Blinding We conducted analyses on existing datasets, and therefore, no blinding measures were implemented during this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes NA

Seed stocks NA

Authentication NA

Plants
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