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Whole-genome doubling (WGD) is common in human cancers, occurring early in

tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour
development*. Cells that undergo WGD (WGD" cells) must adapt to accommodate
their abnormal tetraploid state; however, the nature of these adaptations, and
whether they confer vulnerabilities that can be exploited therapeutically, is unclear.
Here, using sequencing data from roughly 10,000 primary human cancer samples and
essentiality data from approximately 600 cancer cell lines, we show that WGD gives
rise to common genetic traits that are accompanied by unique vulnerabilities. We
reveal that WGD" cells are more dependent than WGD™ cells on signalling from the
spindle-assembly checkpoint, DNA-replication factors and proteasome function. We
alsoidentify KIF18A, which encodes a mitotic kinesin protein, as being specifically
required for the viability of WGD" cells. Although KIF18A is largely dispensable for
accurate chromosome segregation during mitosis in WGD™ cells, its loss induces
notable mitotic errors in WGD" cells, ultimately impairing cell viability. Collectively,
our results suggest new strategies for specifically targeting WGD" cancer cells while
sparing the normal, non-transformed WGD™ cells that comprise human tissue.

The vast majority of human cells are diploid, and numerous cell-cycle
controls exist to help ensure that this state is maintained across succes-
sive cell divisions'. Despite these controls, errors can occur that result
inadoubling of the whole genome, whereby a natively diploid cell tran-
sitions to a tetraploid state'. Cells that have experienced a WGD event
(hereafter WGD" cells) are oncogenic and can facilitate tumorigenesis?.
WGD promotes tumorigenesis in at least two ways: first, proliferating
WGD' cells are genomically unstable and rapidly accumulate numerical
and structural chromosomal abnormalities’; and second, WGD" cells
are better able to buffer against the negative effects of deleterious
mutations and ongoing chromosome instability®®. Such traits enable
nascent WGD* tumour cells to proliferatein the presence of otherwise
lethal genomic alterations, while simultaneously sampling increased
genetic permutations, ultimately enabling phenotypic leaps that give
rise to tumours*’. WGD also carries important clinical implications,
with recent reports showingits correlation with advanced metastatic
disease and aworse overall prognosis®.

Given the oncogenic potential associated with WGD,
tumour-suppression mechanisms exist to limit the proliferation of
these unstable cells. WGD" cells activate both the p53 and the Hippo
tumour-suppressor pathways, and are prone to apoptosis, senescence
andimmune clearance’ ™, WGD also gives rise to numerous abnormali-
ties in cellular physiology that impair fitness>*'2. To promote tumori-
genesis, WGD" cells must adapt to overcome these barriers*’. Thus,

while WGD confers traits that favour tumorigenesis, it also imposes
adaptive requirements upon cells that could give rise to unique vulner-
abilities™™. Identifying and exploiting these vulnerabilities represents
anexcitingtherapeutic avenue, particularly because WGD is abroadly
shared, distinguishing characteristic of many tumours®,

Genetic alterations enriched in WGD* tumours

To understand the genetic differences between WGD* and WGD~
tumours, we first obtained calls regarding WGD status made by the
ABSOLUTE algorithm for roughly 10,000 primary tumour samples,
spanning 32 distinct tumour types, from The Cancer Genome Atlas
(TCGA). This allowed us to separate tumour samples by whether they
had (WGD") or had not (WGD") undergone a WGD event®. Consist-
ent with previous estimates, we found that approximately 36% of
tumours experienced at least one WGD during their evolution®'®. We
also observed a substantial range in the occurrence of WGD between
different tumour subtypes, implying that specific genetic, physiologi-
caland/or microenvironmental cues can favour or repress WGD-driven
tumorigenesis (Fig. 1a).

Having differentiated WGD* and WGD™ tumours, we then assessed
their mutational burdens. This analysis revealed that WGD* tumours
tend to have a higher total mutational burden®. However, we observed
several tumour subtypesinwhich the ploidy-corrected WGD™ tumours
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Fig.1| Genetic analysis of WGD" tumours. a, Quantification of WGD status
and total ploidy of 9,700 primary human solid tumour samples from the TCGA
using ABSOLUTE. ACC, adrenocortical carcinoma; BLCA, bladder urothelial
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell
carcinomaand endocervicaladenocarcinoma; CHOL, cholangiocarcinoma;
COAD, colonadenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell
carcinoma; ESCA, oesophageal carcinoma; GBM, glioblastoma multiforme;
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe;
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell
carcinoma; LGG, brainlower grade glioma; LIHC, liver hepatocellular
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD,
pancreatic adenocarcinoma; PCPG, pheochromocytomaand paraganglioma;
PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC,

had a higher mutational burden than the WGD* tumours (Extended
DataFig.1a-c). Thistended to occur in subtypes with a high mutational
load, characteristic of tumour types that are prone to microsatellite
instability (MSI) or exposure to exogenous mutagens. Conversely, in
subtypes with alower mutational burden, it was the WGD"* tumours that
had the higher ploidy-corrected mutational burden (Fig. 1b). This sup-
portsarecent report® predicting that highly mutated tumours, which
experience fewer somatic copy-number alterations (SCNAs), encounter
selection pressures that disfavour WGD, while tumour types with a
lower mutational burden and more SCNAs will favour WGD owing to
its capacity to buffer against deleterious mutations in genomicregions
of loss of heterozygosity. We also observed that tumours with MSI or
mutationsin the gene for DNA polymerase € (POLE), which have avery
high mutational burden, tend not to experience WGD events, as has
been shown in other cohorts®® (Extended Data Fig. 1d).

We next explored the mutational landscape of WGD* tumours,
where we observed a substantial enrichment of mutations in TP53
and PPPR21A (Fig. 1c), consistent with findings from individuals with
advanced cancer®', The positive selection for these mutations is clear:
p53representsamajor barrier to the proliferation of WGD" cells, and so
inactivating mutationsin 7P53are favoured in WGD" cancers. Mutations
in PPP2R1A promote centrosome clustering, animportant adaptation
for preventing multipolar cell division and cell death in WGD" cells
with supernumerary centrosomes>". We also identified mutations

Average log,(fold change)

sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;
TGCT, testicular germ cell tumour; THCA, thyroid carcinoma; THYM,
thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine
carcinosarcoma; UVM, uveal melanoma. b, Mean ploidy-corrected mutational
burdenintheindicated tumoursubtypes, plotted against the differencein the
ploidy-corrected mutational burden between WGD*and WGD™ tumours within
each subtype (two-sided Wilcoxon rank-sum test). ¢, Enrichment of mutations
intheindicated genesin WGD" tumours (log odds ratio generated by logistic
regression corrected for mutationburdenand tumour type). FDR, false
discoveryrate.d, Correlation of leukocyte infiltrationand WGD (Pearson’s
correlation). e, Fold changesingene expressionin WGD* tumours relative to
WGD™ tumours, plotted against combined FDR g values across all tumour
types, with genes from enriched gene sets highlighted.

that are negatively enriched in WGD* tumours, implying that these
mutations are either lessimportant for, or perhaps incompatible with,
driving tumorigenesis in the context of WGD (Fig. 1c). Many of these
negatively enriched genes are known to contain microsatellite indels,
providing further evidence for the diverging pressures that separate
the evolutionary trajectory of MSI and WGD* tumours',

To assess changes in the microenvironment of WGD tumours, we
obtained ABSOLUTE purity values (that s, the fraction of non-tumour
cells) for TCGA tumour samples®™. We found that WGD correlates with
decreased purity and increased non-immune stromal infiltration
(Extended DataFig.2a,b). We also assessed the correlation of WGD with
TCGA estimates of tumour-infiltrating leukocytes (TILs), and found a
negative correlation between WGD and TILs (Fig.1d). Analysis of gene
expression revealed that the most negatively enriched gene sets in
WGD* tumours were inflammatory processes, corroborating that these
tumours present with diminished host immune responses, similar to
highly aneuploid tumours (Fig.1e)*?°. We further identified that WGD*
tumours overexpress genesimportant for cellular proliferation, mitotic
spindle formation and DNA repair (Fig. 1e, Supplementary Table 1).
Genomic characteristics such as mutational burden, purity and TILs
interact in poorly understood ways to contribute to the response of
patients to immunotherapy, and we hypothesized that WGD may be
acontributing factor in this response. Indeed, individuals with WGD*
tumours respond better to drugs that block the immune checkpoint
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Fig.2|Identification and validation of PSL genes. a, Workflow used to
identify gene essentiality in WGD" cancer cells from Project Achilles data

(see Methods). b, Top hits from PSL analysis (text colour indicates genes
associated with the indicated pathways). ¢, Fold changesin gene expressionin
WGD' tumours relative to WGD™ tumours, plotted against combined FDR ¢
values across all tumour types, with select PSL genes highlighted. d, Population
doublings of the indicated tumour cell types after 8 days of treatment with the
smallmolecule AZ3146 (n=3 independent experiments; two-way analysis of

inhibitor PD1, and this applies across numerous tumour subtypes
(Extended DataFig. 2d). Collectively, our datademonstrate key genetic
and phenotypic differences between WGD* and WGD™ tumours, and
hint at potential adaptations and vulnerabilities that may inexorably
arise following a WGD.

WGD confers unique genetic vulnerabilities

We examined whether WGD confers unique genetic dependencies on
tumour cells by obtaining ABSOLUTE WGD calls on cancer cell lines
from Project Achilles. This is a comprehensive catalogue that quanti-
fies the essentiality of approximately 20,000 genes across roughly
600 celllines following gene depletion through both CRISPR and RNA
interference (RNAi) (Supplementary Table 2)*. We used Project Achilles
scorestoidentify genes that are enriched for essentiality in WGD" cell
lines relative to WGD™ cell lines (so-called ploidy-specific lethal (PSL)
genes™) (Fig.2a, b, Extended DataFig. 2c, Supplementary Tables 3, 4).
We mapped these PSL genes against the gene-expression signature of
WGD* samplesinthe TCGA, and found several PSL genes to be greatly
overexpressed, reinforcing their importance in the progression of
WGD* tumours (Fig. 2c).

To validate these PSL genes, we first generated three isogenically
matched diploid (WGD™ or 2N) and tetraploid (WGD" or 4N) cell lines
as previously described®. These lines included the non-transformed
epithelial cell lines RPE-1and MCF10A, as well as the colon-cancer cell
line HCT116. Growth of these tetraploid cell lines over multiple pas-
sages selects for genomically stable variants that have lost their extra
centrosomes (Extended Data Fig. 2e-h)*>*%. The development of these
isogenic lines enabled us to directly compare cellular dependencies
in cells that differ only by WGD status.
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variance (ANOVA) withinteraction; graph shows means +s.e.m.; interaction
Pvalues=0.0085,0.0020, 0.0156, from left to right). e, Relative viability of the
indicated cell lines 7 days after treatment with the indicated shortinterfering
RNAs (siRNAs) (n=3independent experiments; graph shows means +s.e.m.;
CTRL, control). f, Mean 50% lethal concentration (LCs,) values of theindicated
drugtreatments for SWGD~and 5WGD* breast-cancer celllines (n=3
independent experiments; nonlinear regression; graphs show mean LCs,+95%
confidenceinterval).*P<0.05,**P<0.01,***P<0.001, ****P<0.0001.

We first validated BUBIB and MAD2L1, the two strongest PSL gene
hits from our analysis. These genes encode proteins that are essen-
tial to the function of the spindle-assembly checkpoint (SAC), which
delays the onset of anaphase until allchromosomes have attached to
the mitotic spindle, promoting the accurate partitioning of genomic
content during mitosis®. Increasing the number of chromosomes
prolongs the time needed to achieve full chromosome attachment
and alignment?*, suggesting that premature anaphase induced by
disruption of the SAC should give rise to chromosome-segregation
errors atelevated ratesin tetraploid cells. Using live-cellimaging, we
found that tetraploid cells indeed require more time to attach and
align chromosomes relative to diploid cellsin all three cell lines tested
(Extended Data Fig. 3a). Consequently, we found that inhibiting the
SACusing the smallmolecule AZ3146, which inhibits the MPS1kinase
and abrogates the SAC in a manner similar to depletion of MAD2 or
BUBRI, leads to a substantial increase in chromosome-segregation
defects and micronuclei formation in tetraploid cells relative to
diploids (Extended Data Fig. 3b). The presence of micronuclei and
errors in chromosome segregation impair cell fitness; concordantly,
assays of population doubling confirmed that tetraploid cells are
much more sensitive to SAC inhibition than diploids (Fig. 2d). These
data corroborate previous work® and validate our methodology for
analysing PSL genes.

Theidentification of several genesinvolved in DNA replication as PSL
hits suggests that WGD" cells may also be more vulnerable to challenges
to DNA replicationthan WGD™ cells. We first validated that reductions
inthelevels of RRMI and RADSI (two PSL genes known to mitigate the
DNA damage associated with replication stress) preferentially impair
theviability of tetraploid cells (Extended DataFig. 3c-f). Asan orthogo-
nalapproach, wealso treated isogenic diploid and tetraploid cells with
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Fig.3|Depletion of KIF18A impairs the mitotic fidelity of WGD" cells.

a, Relative viability of the indicated cell lines 8 days after transfection with the
indicated siRNAs (n=3 independent experiments; each condition normalized
torespective control; two-sided Student’s unpaired ¢-test; graph shows
meansts.e.m.; Pvalues=0.0019,0.0109, 0.0017, from left toright; CTRL,
control). b, Duration of mitosis and cell fate after treatment with the indicated
siRNAs (n=200 cells per condition; black asterisks indicate Pvalues from
two-sided Student’s t-tests comparing mean mitotic duration; blue asterisks
indicate Pvalues from two-sided Fisher’s exact tests comparing the fraction of
mitoses that give rise to micronuclei; dotted lines represent mean mitotic
duration; NS, not significant). c, Measurement of spindle length
(centrosome-to-centrosome) after transfection with the indicated siRNAs
(n=20cells per condition; two-way ANOVA with interaction; graph shows
meansts.e.m.;scalebar,10 pum;interaction Pvalues=0.0001,0.0011,0.0032,

hydroxyureaor gemcitabine, whichinhibit the activity of ribonucleo-
tidereductase (RRM1) and inducereplication stress. We observed that
tetraploid cell lines show an increased sensitivity to these inhibitors
(Extended DataFig.4a,b). We also confirmed thisresultinapanel of ten
breast-cancer cell lines (five WGD" and five WGD") (Fig. 2e, f, Extended
DataFig.4c,d, f,g). These datareveal that WGD* tumour cells are more
dependent than WGD™ tumour cells on specific DNA-replication factors,
perhapsin compensation for theincreased replication stressinduced
by tetraploidy®*?.

We also identified several PSL genes that encode regulators of the
proteasome, suggesting that WGD confers vulnerability to disrup-
tions in protein turnover. Indeed, we found that WGD" cells are more
sensitive than WGD™ cells to the proteasome inhibitor MG132 (Fig. 2f,
Extended DataFigs. 4e, 5a). This vulnerability may be due to the highly
aneuploid nature of WGD" cells, asaneuploidy hasbeen shownto induce
proteotoxic stress®. Supporting this view, we found that tetraploid
RPE-1 cells, which maintain a euploid number of chromosomes (92)
(Extended Data Fig. 2h), were the only tetraploid cell line that was not
more sensitive to MG132 relative to diploids (Extended Data Fig. 5a).

WGD confers dependence on KIF1ISA

Ouranalysisidentified the gene KIFI8A, which encodes a mitotic kinesin
protein, asanimportant PSL hit (Fig. 2b). KIF18A functions to suppress
chromosomal oscillations at the metaphase plate by regulating micro-
tubule dynamics to facilitate proper alignment and distribution of
chromosomes during mitosis* 2. Notably, unlike the aforementioned
genes whichregulate essential cellular processes such as SAC function,
DNA replication and proteasome activity, KIFI8A is a non-essential
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fromleft toright). d, Images showing the measurement of chromosome
oscillationsimmediately before anaphase by assessing the widest
chromosome oscillationsin each poleward direction and the cross-sectional
areaof allthe chromosomes. Scale bar, 10 pm. e, Widest chromosome
oscillationsineach poleward directionimmediately before anaphase (n=20
cells per condition from 2 independent experiments; two-way ANOVA with
interaction;interaction P=0.0025,<0.0001,<0.0001, from top to bottom).
f, Two-dimensional cross-sectional area of the entire body of chromosomes
immediately before anaphase (n=20 cells per condition; two-sided Student’s
unpaired t-test; graph shows means +s.e.m.; Pvalues =0.0012,< 0.0001,
0.0525,<0.0001, 0.0318,0.0432, fromtop to bottom). g, Representative
confocalimages showing phases of mitosisintheindicated cell lines48 h after
transfection with the indicated siRNAs. Scale bar,10 pm. *P<0.05,**P<0.01,
***P<0.001,****P<0.0001.

gene in normal diploid cells, as attested by the fact that transgenic
KIF18A-knockout mice survive to adulthood™®. Further, KIF18A is com-
monly overexpressedin WGD* tumours (Fig. 2c), and its overexpression
correlates withaworse prognosis for individuals with cancer (Extended
DataFig. 5b).

We validated KIF18A as a PSL gene by confirming that depletion of
KIF18A greatly impairs the viability of tetraploid but not diploid cells
(Fig.3a, Extended DataFig. 5c). Tounderstand the mechanism under-
lying this reduction in viability, we used live-cell imaging to monitor
mitotic progression following KIF18A depletion. We observed that
depletion of KIF18A had no effect on mitotic duration in diploid cells,
butled tosignificantly prolonged mitosesin tetraploid cells (Fig. 3b).
Wealso observed that although diploid cells lacking KIF18A exhibited
subtle defects in chromosome alignment at anaphase onset, chro-
mosome segregation proceeded relatively normally with no substan-
tial increase in the formation of micronuclei (Fig. 3b, g). By contrast,
tetraploid cells depleted of KIF18A exhibited marked increases in
chromosome misalignment, lagging chromosomes in anaphase, and
micronucleiformation (Fig.3b, g, Extended Data Fig. 5d-f, Supplemen-
tary Videos1-4). We also observed that micronucleiin tetraploid cells
depleted of KIF1I8A were more prone to rupture of the nuclear envelope
than were micronucleiin diploid cells, thus exposing the chromosomal
contents within the micronuclei to the cytosolic environment and
inducing both DNA damage and activation of the cGAS-STING pathway
(Extended Data Fig. 6a)**%.

We speculated that the mitotic delays and defects in chromosome
segregation observed following KIF18A loss may be induced by changes
inspindle morphology intetraploid cells. Toaccommodate their dou-
bled chromosome content, tetraploid cells assemble larger mitotic
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Fig.4|WGD confers dependence on KIF18Ain a panel of breast-cancer cell
lines. a, Relative viability of the indicated cell lines 8 days after transfection
with theindicated siRNAs (n=3independent experiments; graph shows

means £s.e.m.). b, Mitotic duration and fate following transfection with the
indicated siRNAs (n =380 cells per condition across 2independent experiments;
dottedlinesrepresent mean mitotic duration; black asterisks indicate Pvalues
fromtwo-sided Student’s unpaired t-tests comparing mean mitotic duration;
blue asterisks indicate Pvalues from two-sided Fisher’s exact tests comparing
thefraction of mitoses that give rise to micronuclei; red asterisks indicate

spindles (Fig.3c)®. Depletion of KIF18A led to an additional increase in
spindlesize, and this effect was substantially more notable in tetraploid
cells thanin diploids (Fig. 3c).

We also measured the magnitude of chromosome oscillations imme-
diately before the onset of anaphase in diploid and tetraploid cells by
assessing the chromosomes with the widest oscillationineach poleward
direction, as well as the overall efficiency of chromosome alignment by
measuring the total two-dimensional area occupied by the entire body
of chromosomes (Fig.3d). These analyses revealed that the magnitude
of chromosomal oscillationsis much greater in tetraploid cells relative
todiploid cells following KIF18A depletion (Fig. 3e, ). One consequence
of the presence of hyperoscillating chromosomes in tetraploid cells
depleted of KIF18A is that they have a propensity to lose their attach-
ment to the mitotic spindle and to activate the SAC, thus explaining
the mitotic delays we observed (Extended Data Fig. 6b)***°. A second
consequenceisthat severely misaligned chromosomes must traverse
asubstantially greater distance during anaphase in tetraploid cells
thanindiploid cells, thus explaining the observed increase in lagging
chromosomes and micronuclei.

We used long-term live-cell imaging to track the fates of isogenic
diploid and tetraploid cells depleted of KIF18A. Our analysis revealed
that although most such diploid cells undergo normal cell-cycle pro-
gression, isogenictetraploid cells are proneto arrestingininterphase
following abnormal mitosis, concomitant with activation of the p53
pathway (Extended Data Fig. 6d, e). Thus, our data reveal that loss
of KIF18A in WGD* cells predisposes cells to lagging chromosomes,
micronuclei formation, micronuclei rupture and proliferative arrest.In
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Late anaphase

Interphase arrest

Pvalues fromtwo-sided Fisher’s exact tests comparing the fraction of cells that
diein mitosis). ¢, Depletion of KIF18A impairs the viability of WGD* cells
through two distinct mechanisms. A, Widely oscillating chromosomes fail to
properly attach to microtubules, thus activating the SAC and leading to
prolonged mitosis and death. B, Larger spindles and wider oscillationsincrease
the distance that some chromosomes must traverse inanaphase, leading to
lagging chromosomes, formation of micronuclei and cellular arrest.*P<0.05,
**P<0.01,***P<0.001,***P<0.0001.

support thismechanism, we found that cellular proliferationis required
for theloss of KIF18A to drive our observed viability defects (Extended
DataFig. 6f).

We sought to further validate the ploidy-specificlethality of KIF18A
across a panel of breast-cancer cell lines. Supporting our pan-cancer
analysis of gene expression (Fig. 2c), we found that KIF18A proteinlevels
aretypically elevated in WGD" cells (Extended Data Fig. 7a). Knockdown
of KIF18A from all ten cell lines (Extended Data Fig. 7b) confirmed that
WGD" lines experience a substantially greater reduction in viability
relative to WGD" cell lines (Fig. 4a, Extended Data Fig. 7c-e, Supplemen-
tary Videos 5, 6). Live-cell imaging revealed that WGD" breast-cancer
cells exhibited increased spindle lengths and chromosome hypero-
scillations relative to WGD™ cells after loss of KIF18A (Extended Data
Figs. 7f, g, 8a), thus promoting chromosome detachment, SAC activa-
tion and prolonged mitosis (Fig.4b and Extended Data Fig. 6¢). Notably,
we observed that alarge fraction of WGD' cells were never able to satisfy
the SAC, and exhibited a markedly prolonged mitotic arrest before
ultimately undergoing mitotic cell death (Fig. 4b). WGD" cells depleted
of KIF18A that achieved anaphase exhibited substantial increases in
both anaphase lagging chromosomes and micronucleirelative to the
WGD™ cell lines, similar to what was observed in the isogenic tetra-
ploid models (Fig. 4c, Extended Data Fig. 8b). However, in contrast to
the p53-proficient isogenic tetraploid cells, WGD* breast-cancer cell
lines depleted of KIF1I8A were not prone to cell-cycle arrest following
abnormal mitosis (Extended Data Fig. 8c). Instead, a fraction of these
cellsdiedininterphase after experiencing catastrophic mitoses result-
ing in micronuclei formation, while most initiated a second round of



mitosis without KIF18A, where they were just as, or even more, prone
to mitotic cell death (Extended Data Fig. 8d).

WGD is a discrete event with the capacity to fix a cell along an evo-
lutionary path towards tumorigenesis. It gives rise to supernumerary
centrosomes and a markedly increased chromosomal burden, and
the resultant chromosomal instability leads to substantial deviations
away from euploidy towards highly aneuploid states. Indeed, WGD*
cells comprise the vast majority of the highly aneuploid cells observed
in human cancers (Fig. 1a, Extended Data Fig. 8e, f, Supplementary
Table 5). Our data reveal that loss of KIF18A impairs mitotic fidelity
and cell viability in WGD* cancer cells.

Although many factors may promote KIF18A dependency, our data
show that the enhanced reliance of WGD" cells on KIF18A is predomi-
nantly due to theadded chromosomal burden thatinexorably follows a
WGD. Two key observations support this view. First, we observe viability
defectsin euploid tetraploid RPE-1cells depleted of KIF18A, despite the
fact that these cells possess anormal number of centrosomes and are
chromosomally stable (Fig. 3a)*°. Second, we find that the presence
of only one or two additional chromosomesin otherwise diploid cells
isnot sufficient to impart sensitivity to loss of KIF18A (Extended Data
Fig. 8g). This suggests that aneuploidy per se is insufficient to drive
the dependency onKIF18A that we observe; instead, notable increases
in chromosome number or the pronounced chromosomal instability
and highlevels of aneuploidy that arise predominantly through WGD
arerequired (Extended Data Fig. 8e, f). Our results are consistent with
recentstudies that have demonstrated dependency on KIF18A in highly
aneuploid and chromosomally unstable cancer cell lines***. Together,
our data highlight KIF18A as an attractive therapeutic target whose
inhibition may enable the specific targeting of WGD* tumours while
sparing the normal diploid cells that comprise human tissue. Sup-
porting this view, it has been shown that mice lacking KIF18A are pro-
tected from tumorigenesis, and that depletion of KIF18A from the WGD*
breast-cancer cell line MDA-MB-231impairs tumour growth in vivo*>*,

Herein, we have comprehensively catalogued genomic character-
istics unique to WGD"* tumours, and generated a list of PSL genes that
highlight vulnerabilities that can arise witha WGD event. Notably, many
ofthese dependencies are conserved in budding yeast, highlighting the
broad relevance of this phenomenon®. This work serves to underscore
the importance and untapped potential of exploring and targeting
WGD in human cancers.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

WGD, purity and ploidy calls

TCGA samples were analysed previously using the ABSOLUTE algo-
rithm®. ABSOLUTE takes data on gene copy numbers and mutation to
estimate sample purity, ploidy and number of whole-genome doublings.
ABSOLUTE calls for TCGA samples are available inref. . Briefly, the algo-
rithminfers from sequencing data what fraction of atumour sampleis
composed of tumour cells versus non-tumour cells (purity), as wellas the
ploidy of a tumour sample from analysis of copy number ratios across
the entire genome. WGD statusis inferred from the ploidy distribution
withinatumour type, frominformation onhomologous copy numbers
across the genome, and from the presence of duplicated mutations.

Ploidy-corrected mutational burden

To compare the ploidy-corrected mutational burden of WGD* and
WGD™ TCGA samples, we divided the non-synonymous mutations
per megabase (log,,-transformed)** of each sample by their ploidy
as defined by ABSOLUTE. We performed a linear regression using the
ImfunctioninR version 3.2.3. The formula was: mutational burden as
afunction of WGD + tumour type + MSI/POLE status. We applied a
Wilcoxon rank-sum test to analyse the total mutational burden and
ploidy-corrected mutational burdenbetween WGD* and WGD~samples
within each subtype.

Mutations in WGD* tumours

To identify the frequencies of gene mutations associated with WGD
status, we applied logistic regression to 631 genes that were found to
be driver genes in one or more tumour types by MutSig2CV (ref. ).
The formula for the logistic regression model was: mutation status as
afunction of WGD + mutation burden +tumour type, where ‘mutation
burden’was the number of non-synonymous mutations per megabase
(logl0-transformed)! and WGD status was defined by ABSOLUTE
calls retrieved from http://api.gdc.cancer.gov/data/4f277128-f793-
4354-a13d-30cc7fe9f6bS. The maffile from the TCGA PanCanAtlas MC3
project*® was used to derive the mutation status for each gene in each
tumour retrieved from https://api.gdc.cancer.gov/data/1c8cfe5f-e52d-
41ba-94da-f15ea1337efc. This file was filtered to include only those
variants with ‘PASS’, ‘wga’ or ‘native_wga_mix’ in the ‘FILTER’ column.
Variants with ‘Frame_Shift_Del’, ‘Frame_Shift_Ins’, ‘In_Frame_Del’, ‘In_
Frame_Ins’,‘Missense_Mutation’, 'Nonsense_Mutation’,‘Nonstop_Muta-
tion’, “Translation_Start_Site’, ‘Splice_Site’, ‘De_novo_Start_InFrame’,
‘De_novo_Start_OutOfFrame’, ‘Stop_Codon_Del’, ‘Stop_Codon_Ins’,
‘Start_Codon_Del’ or ‘Start_Codon_Ins’ in the ‘Variant_Classification’
column were considered non-synonymous. An FDR correction was
applied to the Pvalues for the WGD term to control for multiple hypoth-
esis testing.

Leukocyte infiltrate and stromal calls

Estimates of leukocyte fraction in the TCGA samples were generated
using a mixture model of DNA methylation in pure leukocytes versus
normal tissue. More details and all calls can be found inref. *. Stromal
calls were made by subtracting the leukocyte fraction from ABSOLUTE
purity estimates described above. Pearson’s correlation coefficients
were calculated after removing MSI/POLE mutant samples from the
data set and comparing TIL/stromal/purity scores against the binary
calls of WGD status for each analysis.

Immunotherapy response
Responses of individuals with cancer toimmunotherapy were deter-
mined according to response and evaluation criteriain solid tumours

(RECIST), where complete and partial responders were considered
asresponders and those with progressive disease were considered
non-responders. For each tumour subtype, the fraction of responders
and non-responders was determined by ABSOLUTE for people with
WGD™and WGD* tumours. For the composite analysis, all tumour types
were combined and the difference in responders was assessed using a
Fisher’s exact test*s*,

Analysis of gene expression

Data on gene expression and copy numbers from TCGA samples were
obtained from the PanCanAtlas project (https://gdc.cancer.gov/
about-data/publications/pancanatlas). RNA-seqV2 data were used for
expression analysis (http://api.gdc.cancer.gov/data/3586c0da-64d0-
4b74-a449-5ff4d9136611). Expression values were log,-transformed
afteraddinga pseudo-countof 1. Copy number ratios were obtained for
eachgene by running GISTIC2.0 on the PanCan segmentationfile (http://
api.gdc.cancer.gov/data/00a32f7a-c85f-4f86-850d-be53973cbc4d).

Analysis was limited to primary tumours across all cancer types.
Pvalues for WGD were corrected for multiple hypothesis testing with
the Benjamini-Hochberg false discovery rate (FDR).

Toidentify gene-expression profiles associated with WGD status, we
applied the following linear model to each gene within each tumour
type:expressionasafunction of WGD + purity + CN_Local, where ‘purity’
is the ABSOLUTE-estimated purity for each tumour, and ‘CN_Local’ is
the log,-transformed copy number ratio for that gene in each tumour
estimated by GISTIC2.0 (ref.*°).

Note that the CN_Local variable was different for each gene (aseach
gene has a different copy number profile), while the WGD and purity
variables were the same for all genes. The Benjamini-Hochberg method
was used to correct Pvalues from the WGD term for multiple hypothesis
testing. Genes were considered significantly associated with WGD
statusifthey had an FDR g value of less than 0.05. Genes upregulatedin
more than ten tumour types were analysed with hypeR (ref. ') using the
MSigDB Hallmark gene sets to identify biological categories enriched
among these genes. Similarly, genes downregulated in more than ten
tumour types were analysed with hypeR in the same fashion. To gener-
ate a volcano plot across tumour types, the coefficient for WGD was
averaged and the FDR-corrected g values were combined using Fisher’s
method.

Analysis of PSL scores

Thresholded analysis. Genes were assigned a binary classification
(essential or non-essential) on the basis of cutoffs established by Pro-
ject Achilles. In the database, a score of -1 is assigned to a gene when
itsdepletioninagiven cell line results ina viability defect equal to the
depletion ofa curated list of gold standard common-essential genes*>*,
On the basis of this scoring system, we defined any gene with a score
of -1 or less for a given cell line as essential. We then compared the
fraction of cell lines in the WGD™~ and WGD" groups where a gene was
essential. When a gene was essential in a significantly greater frac-
tion of WGD* cell lines than WGD™ cell lines (Fisher’s exact test, P< 0.1)
in a specific tumour subtype, it was considered a ‘hit’ in this analysis
(Extended Data Fig. 3a).

Non-thresholded analysis. Within each tumour type, the median
essentiality scores for each gene inthe WGD™and WGD* cell lines were
identified. When a gene showed a statistically significant enrichment
in its median essentiality score in the WGD* compared with the WGD"~
celllines (Wilcoxon’s test, P< 0.05), and also had an essentiality score
of -0.5 or less in the WGD" cell lines, it was considered at ‘hit’ in this
analysis (Extended Data Fig. 3a).

Final PSL score. We used the thresholded analysis with the Fisher’s
exacttestand non-thresholded analysis with the Wilcoxon’s rank-sum
testin each individual tumour type (n =12) as well as in a combined
pan-cancer analysis. These analyses were also performed separately for
the CRISPR and RNAi data sets. Only genes that had measurable datain
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95% of total cell lines were analysed. The final PSL score for each gene
was the total number of instances a gene was found tobe a hit acrossall
analyses (Fig. 2b, Supplementary Tables 3, 4). As aresult, some hits may
have come entirely from either the CRISPR or the RNAi datasets, such
as KIF18A, which was enriched for essentiality only in the CRISPR data
set, probably because of insufficient knockdown in the RNAi data set.

Cox proportional-hazards regression

To identify hazard ratios for progression-free survival and overall
survival based on expression of KIFI8A in samples in the TCGA, we
separated the expression of KIF18A into tertiles within each subtype
and compared outcomes in the upper tertile against the bottom two
tertiles using a Cox proportional-hazards model. An FDR correction
was applied to the Pvalues to control for multiple hypothesis testing.
The formula used was: outcome as a function of KIFI8A expression.

Cell culture

All breast-cancer cell lines were authenticated by ATCC and used at
early passage numbers. Isogenic tetraploid cell lines were generated
asdescribed®. hnTERT-RPE-1cells were cultured in Dulbecco’s modified
Eagle medium (DMEM) with F12 medium (HyClone) supplemented
with10% fetal bovine serum (FBS; ThermoFisher) plus 50 IU mI™ peni-
cillin and 50 pg ml™ streptomycin (ThermoFisher). HCT116, CAMA-1,
MDA-MB-415, MDA-MB-453, MDA-MB-134-VI, MDA-MB-157, Hs578T,
MDA-MB-231 and MDA-MB-361 cells were cultured in high-glucose
DMEM (Gibco) supplemented with 10% FBS plus 50 IU mI™ penicillin
and 50 pg ml™ streptomycin. ZR-75-30 and HCC1806 cells were cultured
in RPMI medium (Gibco) supplemented with 10% FBS plus 50 IU ml™
penicillin and 50 pg ml™ streptomycin. MCF10A cells were cultured
in DMEM/F12 (HyClone) supplemented with 5% horse serum (Ther-
moFisher), 20 ng mI™ epidermal growth factor (EGF; ThermoFisher),
500 ng ml™ hydrocortisone (ThermoFisher),100 ng ml™ cholera toxin
(Sigma) and 10 pg ml™ insulin (ThermoFisher), plus 50 IU mI™ penicillin
and 50 pg ml™* streptomycin. RPE-1, HCT116 and MCF10A 2N and 4N
cell lines were tested for mycoplasma contamination and confirmed
to be negative.

siRNA transfections

siRNA transfections using lipofectamine RNAiMAX (Invitrogen) were
performed according to the manufacturer’s instructions. The final
concentration of KIF18A or control siRNA in the cell culture medium
was 10 nM, excepting MCF10A KIF18A siRNA transfections, which were
performed at a final concentration of 1 nM, and RRM1/RAD51 siRNA
transfections, which were performed atafinal concentration of 50 pM
with control siRNA adjusted accordingly.

siRNA sequences

The following sequences were used: non-targeting control (Dharma-
con), 5-UGGUUUACAUGUCGACUAA-3’; KIF18A (silencer select s37882;
Ambion)*, 5-UCUCGAUUCUGGAACAAGCAG-3’; RAD51 (silencer select
s11735; Ambion), 5-UGAUUAGUGAUUACCACUGCT-3’; RRM1 (on-target
plus SMARTpool; Dharmacon), 5’-UAUGAGGGCUCUCCAGUUA-3/,
5’-UGAGAGAGGUGCUUUCAUU-3’,5-UGGAAGACCUCUAUAACUA-3,
5’-CUACUAAGCACCCUGACUA-3".

Inducible short hairpin (sh)RNA

We infected cells with a SMARTvector inducible lentiviral ShRNA
(Horizon) targeting KIF18A, and selected cells with puromycin (Santa
CruzBiotechnology) at2 pg ml™. Cells were induced with doxycycline
(Sigma) at 1 ug ml™ for 7 days and viability was assessed. The sShRNA
sequence was 5'-CGATGACACACATATAACACT-3'.

Inducible CRISPR-Cas9
We infected cells with pCW-Cas9 plasmid (Addgene catalogue num-
ber 50661) and selected cells with puromycin at 2 pg ml™. Toimprove

knockout efficiency, cells were then infected with two distinct KIFI8A
single guide (sg)RNA plasmids. Each sgRNA sequence was cloned
into its own lenti-sgRNA-blast plasmid (Addgene catalogue number
104993), and these plasmids were co-packaged into lentivirus and
used toinfect cells, which were then selected with blasticidin (Sigma)
at 5 pg ml™. The sequences for both KIF18A-targeting sgRNAs are
available in ref. %,

Cell viability

Allassays of cell viability were done using CellTiter-Glo (Promega) and
performed according to the manufacturer’sinstructions. Viability was
assessed vialuminescence and analysed using BMG Labtech Optima
v2.0R2 software.

Drug treatments

AZ3146 (Tocris) was used at a concentration of 1 pM in HCT116 cells,
2 UM in MCF10A cells and 4 pM in RPE-1 cells. These concentrations
were experimentally determined to be the minimum concentration
required toinhibit the SACineachrespective cellline. MG132 (Selleck
Chemicals) was used at the indicated concentrations (Fig. 2f).

Antibodies

Antibodies were used at the following dilutions: rabbit polyclonal
anti-KIF18A, 1:1,000 (Bethyl, catalogue number A301-080A); rabbit
monoclonal anti-RRM1, 1:1,000 (Cell Signaling Technology, cata-
logue number 8637); rabbit polyclonal anti-RADS51, 1:1,000 (Santa
Cruz Biotechnology, catalogue number sc-8349); rabbit monoclo-
nal anti-cGAS, 1:250 (Cell Signaling Technology, catalogue number
15102); mouse monoclonal anti-phospho-histone H2A.X (Ser 139),
1:250 (Sigma-Aldrich, catalogue number 05-636-1); mouse monoclonal
anti-p53,1:2,000 (Santa Cruz Biotechnology, catalogue number sc-126);
rabbit monoclonalanti-p21,1:500 (Cell Signaling Technology, catalogue
number 2947); rabbit monoclonal anti-Cas9,1:1,000 (Active Motif, cata-
logue number 61978); rabbit monoclonal anti-GAPDH, 1:10,000 (Cell
Signaling Technology, catalogue number 2118); mouse monoclonal
anti-vinculin, 1:5,000 (Abcam, catalogue number ab18058); mouse
monoclonal anti-tubulin (clone DM1A), 1:500 (immunofluorescence),
1:10,000 (western blot) (Sigma-Aldrich, catalogue number 05-829);
rabbit polyclonal anti-pericentrin, 1:250 (Abcam, catalogue number
ab4448).

Population doubling assay

We seeded 10,000 cells in a10-cm dish with AZ3146 at the indicated
concentrations (Fig. 2d). Fresh drug was added every 3 days. After
8days, cells were counted, and population doublings were calculated

using the formula PD= log2)

Live-cellimaging

Cells that stably expressed histone H2B fused with green fluorescent
protein (GFP) were grown on glass-bottomed 12-well tissue culture
dishes (Cellvis), and treated with drugs or transfected with siRNAs of
interest. At 24 h post-treatment, imaging was performed on a Nikon
TE2000-E2 inverted microscope equipped with the Nikon Perfect
Focus system. The microscope was enclosed within a temperature-
and atmosphere-controlled environment at 37 °C and 5% humidified
CO,. Fluorescent images were captured every 3 min with a x20 0.5 NA
Plan Fluor objective at multiple points for 72 h. Captured images were
analysed for mitotic defects using NIS Elements software.

Measurements of chromosome alignment

Live-cell imaging was used to track cells expressing H2B-GFP to the
frame immediately preceding anaphase, and the distance from the
metaphase plate to the widest oscillating chromosomes in each pole-
ward direction was measured manually. We also measured the total
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chromosomal distributionimmediately before anaphase by recording
the area of automatically generated regions of interest (ROIs) based
on fluorescence intensity using NIS Elements software.

Analysis of cell fate

Live-cellimaging was used to track cells treated with control siRNA to
obtain the average cell-cycle time for each cell line. Cells treated with
siKIF18A were called as ‘arrested/delayed’ if they spent greater than
three standard deviations above the mean cell-cycle time of control
cellsininterphase.

Immunofluorescence microscopy

Cells were plated on glass cover slips and then washed in
microtubule-stabilizing buffer (MTSB) (4 M glycerol, 100 mM PIPES,
pH6.9,1mMEGTA, 5mM MgCl,) for 1 min, extracted in MTSB plus 0.5%
Triton for 2 min, and washed again in MTSB for 2 min. Cells were then
fixed in 1% electron-microscope-grade glutaraldehyde for 10 min.
Glutaraldehyde was quenched by washing twice in NaBH, in water for
12 min each. Cells were then blocked for 30 minin Tris-buffered saline
(TBS)-bovine serum albumin (BSA) (10 mM Tris, pH 7.5,150 mM NacCl,
5% BSA, 0.2% sodium azide), and incubated with primary antibodies
diluted in TBS-BSA for 60 minin a humidified chamber. Primary anti-
bodies were visualized using species-specific fluorescent secondary
antibodies (Molecular Probes) and DNA was detected with 2.5 ug ml™
Hoechst. Confocal immunofluorescence images were collected at
405nm, 488 nmand 561 nm on a Nikon Ti-E inverted microscope with
a C2+laser scanning head. A series of 0.5-pum optical sections were
acquired using a x60 objective lens. Images presented in figures are
maximum intensity projections of entire z-stacks.

Spindlelength

Spindles were measured usingimmunofluorescence microscopy. Cells
were stained for tubulin/centrosomes, and spindle length was assessed
by measuring the distance from centrosome to centrosome of cellsin
metaphase using NIS Elements software.

Westernbotting

Cells were rinsed with ice-cold 1x phosphate-buffered saline (PBS)
(Boston Bioproducts) and lysed immediately with cell lysis buffer (2%
w/v SDS, 10% glycerol, 60 mM Tris-HCI) supplemented with 1x HALT
protease and phosphatase dual-inhibitor cocktail (ThermoFisher).
Cell lysates were then sonicated for 15 s at 20 kHz, and sample buffer
(Boston Bioproducts) was added to a final concentration of 1%, after
which protein samples were incubated at 95 °C for 5 min.

Celllysates were resolved via SDS-PAGE (resolving/separating gel:
7.5% acrylamide, 375 mM Tris-HCI (pH 8.8), 0.1% SDS, 0.25% ammo-
nium persulfate, 0.15% tetramethylethylenediamine; stacking gel:
4% acrylamide, 125 mM Tris-HCI (pH 6.8), 0.1% SDS, 0.5% ammonium
persulfate, 0.3% tetramethylethylenediamine) in SDS-PAGE running
buffer (25 mM Tris-HCI, 192 mM glycine, 0.1% SDS). Samples were
passed through the stacking gel layer at 130 V for 15 min, followed by
resolution of samples at 230 V for 25 min. Samples were transferred
to 0.45-pm Immobilon polyvinylidene difluoride (PVDF) membranes
(EMD Millipore) using a wet-tank transfer system (Bio-Rad) in Towbin
transfer buffer (25 mM Tris-HCI, 192 mM glycine, 10% methanol) for16 h
at30 mA at 4 °C. Following transfer, membranes were blocked in TBS
with 0.5% Tween-20 (10 mM Tris-HCI, 150 mM NaCl, 0.5% Tween-20)
containing 5% non-fat dried milk (NFDM) for 1 h and then incubated
overnight at 4 °C with primary antibodies diluted in 1% NFDM TBS
with 0.5% Tween-20 solution. Following incubation, membranes were
rinsed in TBS with 0.5% Tween-20 solution for 30 min with vigorous
shaking, and then incubated with secondary antibodies diluted in 1%
NFDM TBS with 0.5% Tween-20 solution for 1h at room temperature,
followed again by 30 min of rinsing with vigorous shaking in TBSwith
0.5% Tween-20 solution.

Primary antibodies were detected using horseradish-peroxidase-
conjugated species-specific secondary antibodies (1:5,000, Cell Signal-
ing Technology) and Clarity ECL blotting substrate (Bio-Rad) or Clarity
Max ECL blotting substrate (Bio-Rad). Imaging of blots were performed
using the ChemiDoc XRS+imaging system (Bio-Rad), and quantitative
densitometry was performed using Bio-Rad ImageLab software.

Aneuploidy scores

Aneuploidy scores were calculated for 998 cell linesin the Cancer Cell
Line Encyclopedia (CCLE) according to previously published meth-
ods'®**, Briefly, we used ABSOLUTE to determine the total copy number
of chromosome armsin the genome, and designated eacharmaseither
amplified or deleted depending on whether the longest altered seg-
ment covered more than 80% of the chromosome arm. Each arm was
assigned -1if lost, +1if gained, O if unchanged (with less than 20% of
the arm affected), or ‘not called’ if intermediate-sized copy number
alterations occurred. The total aneuploidy score for each cell line was
then calculated as the sum total of altered arms, with arange of 0 (no
arm alterations) to 39 (all arms altered: long and short arms for each
non-acrocentric autosomal chromosome, and long arms only for chro-
mosomes 13,14,15,21and 22).

TCGA abbreviations

ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma;
ESCA, oesophageal carcinoma; BRCA, breastinvasive carcinoma; CESC,
cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC,
lymphoid neoplasm diffuse large B-cell ymphoma; GBM, glioblastoma
multiforme; HNSC, head and neck squamous cell carcinoma; KICH,
kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP,
kidney renal papillary cell carcinoma; LGG, brain lower grade glioma;
LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovar-
ian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma;
PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adeno-
carcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM,
skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT,
testicular germ cell tumours; THYM, thymoma; THCA, thyroid carci-
noma; UCS, uterine carcinosarcoma; UCEC, uterine corpus endometrial
carcinoma; UVM, uveal melanoma

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.1|Mutationalburdenin WGD*and WGD ™ tumours.

a, Total mutational burdenin the indicated tumour subtypes across 9,240
TCGA samples (horizontal dotted lines show medians; two-sided Wilcoxon
rank-sumtest; red asterisksindicate higherburdenin WGD~samples and blue
asterisksindicate higher burdenin WGD*samples). b, Ploidy-corrected
mutational burdenintheindicated tumour subtypesacross 9,240 TCGA
samples (dotted lines show medians; two-sided Wilcoxon rank-sum test; red

asterisksindicate higher burdenin WGD ™ samples and blue asterisks indicate
higher burdenin WGD* samples). ¢, Ploidy-corrected mutational burdenin
WGD*and WGD~samples in the TCGA (n=9,414 samples; dotted line shows
means+s.d.).d, Ploidy-corrected mutational burden of TCGAWGD*and WGD~
samples with MSI/POLE mutations (n=174 samples).*P<0.05,**P<0.01,
***P<0.001,****P<0.0001.
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Extended DataFig. 2| Characteristics of WGD" cells. a, Correlation of the
fraction of stromal cellsin the indicated tumour subtypes with WGD (Pearson’s
correlation). b, Correlation of purity with WGD (Pearson’s correlation).

¢, Illustration of our PSL analysis using gene essentiality scores for KIFI8Ain the
Project Achilles CRISPR dataset. Asterisked Pvaluesinbluerepresent
instances where the cutoff for enrichmentin WGD* cell lines was met in either
our thresholded (two-sided Fisher’s exact) or our non-thresholded (two-sided
Wilcoxon’s) analyses (see Methods). CNS, central nervous system. d, Fractions
ofindividuals whose cancersresponded or did not respond to blockade of PD1,

according to WGD status (two-sided Fisher’s exact test; P=0.0351). See
refs.*#*, e, Rate of chromosome missegregationin HCT116 cells (n=3,107 2N
cells, 2,594 4N cells; shown are means £s.d.). f, DNA fluorescence-activated cell
sorting (FACS) profile of diploid and tetraploid HCT116 cells at 40 and 70 days
of culture. g, Karyotype of diploid and tetraploid HCT-116 cells with the modal
chromosome number and range (n=20 karyotypes analysed per condition).

h, Previously published data®>**showing the stability of isogenic diploid and
tetraploid RPEand MCF10A celllines.*P<0.05,**P<0.01, ***P<0.001,
****P<0.0001.
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means +s.e.m. at each dose; for gel source data, see Supplementary Fig. 1).

d, Relative viability of 2Nand 4N MCF10A cells seven days after treatment with
theindicated siRNAsat 50 pM concentration (n=3independent experiments;
one-sided Student’s unpaired t-test; means +s.e.m.; P<0.0001, < 0.0001).

e, Relative viability of 2Nand 4N RPE cells five days after treatment with the
indicated siRNAsat 50 pM concentration (n =3 independent experiments;
one-sided Student’s unpaired t-test; means +s.e.m.; P=0.090,0.0007,
respectively). f, Representative western blot showing knockdown of the
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Extended DataFig. 4| Validation of WGD" vulnerabilities in breast-cancer
cells.a, b, Dose-response curves for theindicated cell lines following the
indicated treatments after seven days, withaccompanying LCs, values (n=3
independent experiments; nonlinear regression with variable slope; graphs
show meanrelative viability +s.e.m.ateach dose or mean LCs, + 95%
confidenceinterval).c-e, Dose-response curves for SWGD~and 5 WGD" breast
cancer celllines seven days after treatment with the indicated drugs and
concentrations (n=3independent experiments; nonlinear regression with
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variable slope; means +s.e.m. ateach dose). f, Representative western blot
showing knockdown of the indicated proteinsinbreast-cancer celllines48 h
after treatment with the indicated siRNAs (n=3 independent experiments; for
gelsourcesee Supplementary Fig.1). g, Relative viability decrease in WGD" and
WGD™ breast-cancer cell lines seven days after treatment with the indicated
siRNAs (two-sided Wilcoxon’s rank-sum test; means +s.e.m.; P<0.0001 and
P=0.0027, respectively).*P<0.05,**P<0.01, ***P< 0.001, ****P<0.0001.
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Extended DataFig. 5| Mitoticfidelity in WGD" cells following KIF18A
depletion. a, Dose-response curves for the indicated cell lines following a
seven-day treatment with MG132, withaccompanying LC;, values (n=3
independent experiments; nonlinear regression with variable slope; graphs
show meanrelative viability +s.e.m.at each dose and mean LCy, + 95%
confidenceinterval). b, Progression-free survivaland overall survival for
individualsinthe upper tertile of tumour K/IF18A expression in the TCGA (Cox’s
proportional-hazards regression; graph shows hazard ratios + 95% confidence
interval). c,Representative western blot showing KIF18A levels following
transfection with the indicated siRNAsin theindicated celllines (n=3
independent experiments; for gel source data, see Supplementary Fig.1).

d, Anaphase phenotypes following depletion of KIF18A (n=20 cells per

condition; asterisks indicate Pvalues from two-sided Fisher’s exact tests
comparingthe fraction of anaphases with lagging chromosomes; P<0.0001,
0.0033,0.0187, respectively). e, Representative confocalimages showing
phases of mitosisintheindicated cell lines 48 hafter transfection with the
indicated siRNAs (representative images from two independent experiments;
scale bar,10 um). f, Representative stillimages from 2Nand 4N MCF10A cells
progressing through mitosis after transfection with the indicated siRNAs.
Chromosomes labelled with H2B-GFP are shown in white. Arrows inenlarged
images show oscillating chromosomes during metaphase and the generation
of amicronucleus (shown are h:min; scale bar,10 um).*P<0.05,**P<0.01,
***P<0.001,****P<0.0001.
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Extended DataFig. 6 | Analysis of cell fatein WGD" cells following KIF18A
depletion. a, Left, representative images of a4N MCF10A cell four days after
transfection with siKIF18A and stained for DNA, cGAS and y-H2AX. Right,
fraction of micronucleiin 2N and 4N MCF10A cells with the indicated
treatments that stained positive for cGAS (n=200 micronuclei per condition;
two-sided Fisher’s exact test; scale bar, 10 pm; P<0.0001, P=0.0069,
respectively).b, ¢, Representative confocal images of the indicated cell lines

48hafter transfection with theindicated siRNAs. Arrowheads highlight MAD1-

positive kinetochores in misaligned chromosomes (scale bar, 10 pm;
representative images from two independent experiments).d, Right,
representative westernblot showinglevels of the indicated proteins after
treatment with the indicated siRNAs, and left, graphs showing relative protein

levels normalized to loading control (n=3 independent experiments; one-
sided Student’s unpaired t-test; means +s.e.m.; P=0.0337,0.0030, 0.0674,
0.0421,0.0067,0.0227, respectively; for gel source data, see Supplementary
Fig.1).e, Cellfates of the indicated lines, tracked for 3 days beginning 18 h after
transfection with theindicated siRNAs (n=40 cells per condition; two-sided
Fisher’s exact test comparing the fraction of cells arresting/delayingin
interphaserelative to the control group; P=0.0016,<0.0001,<0.0001,
respectively). f, Relative viability of the indicated cell lines four days after
transfectionwiththeindicated siRNAs (n=3 independent experiments; two-
sided Student’s unpaired ¢t-test; means +s.e.m.; P=0.0132,0.0310, 0.8808,
0.8615, respectively). *P<0.05,**P< 0.01, ***P< 0.001, ****P< 0.0001.
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Extended DataFig.7 | PSL effect of KIF18A depletion. a, Bottom left, western
blotshowingendogenous KIF18Alevelsintheindicated cell lines; top and right,
graphsshowingrespective protein levels normalized to the GAPDH loading
control (representative blot from three independent experiments; for gel
source data, see Supplementary Fig.1). b, Representative western blot showing
KIF18Alevels 48 hafter transfection with the indicated siRNAs (n=3
independent experiments; for gel source data, see Supplementary Fig.1).

c, Relative viability decreasein WGD"and WGD™ breast-cancer cell lines
sevendays after treatment with the indicated siRNAs (n=3independent
experiments; two-sided Wilcoxon'’s rank-sum test; means +s.e.m.; P<0.0001).
d, Right, relative viability seven days afterinduction of Cas9in cells with sgRNA
targeting KIF18A. Left, western blot showing protein depletion 72 h after
induction (n=3independent experiments; means +s.e.m.; two-sided Student’s

unpaired t-test; P=0.0007,<0.0001, respectively; for gel source data, see
Supplementary Fig.1). e, Relative viability seven days after induction of shRNA
targeting KIF18A, withawestern blot showing proteindepletion120 h after
induction (n=3independent experiments; means t+s.e.m.; one-sided Student’s
unpaired t-test; P<0.0001; for gel source data, see Supplementary Fig.1).

f, Chromosomes with the widest oscillationsin each poleward direction
immediately before anaphase (n =20 cells per condition; two-sided Student’s
unpaired t-test; P=0.0022,0.1781,0.1487,0.0136,0.0820,< 0.0001,< 0.0001,
<0.0001,<0.0001,0.4132, respectively). g, Two-dimensional cross-sectional
areaofthe entirebody of chromosomesimmediately before anaphase (n=20
cells per condition; two-sided Student’s unpaired t-test; P=0.1178,0.7545,
0.1440,0.0034,0.9989,0.0005,0.0033,0.0012, 0.0110, 0.9089, respectively;
means+s.e.m.).*P<0.05,**P<0.01,**P<0.001,****P< 0.0001.
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Extended DataFig. 8 | Effects of KIF18 depletioninaneuploid cells.
a,Measurement of spindle length (centrosome-to-centrosome) after
transfection with theindicated siRNAs (n=20 cells per condition; two-sided
Student’sunpaired t-test; shownare means +s.e.m.). b, Anaphase phenotypes
following depletion of KIF18A (n=20 cells per condition; asterisks indicate
Pvalues from two-sided Fisher’s exact tests comparing the fraction of
anaphases withlagging chromosomes). ¢, Fractions of cellsin each cellline
undergoing theindicated fates after completing a KIF18A-deficient mitosis
thatresultedin the formation of micronuclei (n=25cells per condition).

d, Fractions of cellsin each cell line that experience mitotic death in their first
and second mitoses following KIF18A depletion (n =25 cells per condition).

e, KIF18A essentiality scores for WGD~and WGD* cell lines, segregated into
‘highly aneuploid’ (aneuploidy score (AS) score of 10 or more) and ‘non-highly
aneuploid’ (AS <10) categories on the basis of aneuploidy scores (see Methods)
(dotted lines show means; two-sided Wilcoxon’s rank-sum test; P=0.02583,
0.3682, respectively).f, Aneuploidy scores and WGD status for 998 cancer cell
linesinthe CCLE. g, Relative viability of theindicated cell lines seven days after
transfection with theindicated siRNAs (n=3 independent experiments; each
condition normalized to respective control; one-way ANOVA with Dunnett’s
posthoctest; meansts.e.m.;P=0.1676,>0.9999,0.0040, 0.2698,0.0007,
respectively).*P<0.05,**P<0.01,***P<0.001, ****P<0.0001.
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Sample size

Data exclusions

Replication

Randomization

Blinding

Sample sizes were not predetermined based on statistical methods, but were chosen according to the standards of the field (at least three
independent biological replicates for each condition), which gave sufficient statistics for the effect sizes of interest.

No data were excluded for this study.

Where statistical comparisons are being made, experiments were performed using at least three independent biological replicates to ensure
reproducibility. All experiments were consistently reproducible.

Experimental groups were not randomized. All experiments were performed with appropriate positive and negative controls. The experiments
performed herein were performed using cell culture or analysis of previously collected patient data. Randomization is not applicable to these
experimental modalities.

Investigators were blinded to group allocation for breast cancer cell lines studies, as WGD status was confirmed after data collection.
Investigators were blinded for all live cell imaging studies. Other experiments were not blinded because experimental manipulations required
knowledge of cell lines, but all experiments were performed and analyzed using unbiased methodology.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
|Z Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology |:| MRI-based neuroimaging

XXX X[ s

|:| Clinical data

Antibodies

|:| Animals and other organisms

|:| Human research participants

Antibodies used

Validation

Rabbit polyclonal anti-KIF18A (Bethyl Cat # A301-080A)

Rabbit monoclonal anti-RRM1 (Cell Signaling Technology Cat # 8637)

Rabbit polyclonal anti-RAD51 (Santa Cruz Biotechnology Cat # sc-8349)

Rabbit monoclonal anti-cGAS (Cell Signaling Technology Cat # 15102)

Mouse monoclonal anti-phospho-histone H2A.X (Ser 139) (Sigma-Aldrich Cat # 05-636-1)
Rabbit monoclonal anti-GAPDH (Cell Signaling Technology Cat # 2118)

Mouse monoclonal anti-VINCULIN (Abcam Cat # ab18058)

Mouse monoclonal anti-Tubulin (clone DM1A) (Sigma-Aldrich Cat # 05-829)

Rabbit polyclonal anti-PERICENTRIN (Abcam Cat # ab4448)

All antibodies are commercially available and validated by their manufacturer.

Bethyl Validation Statement: By analyzing western blots of immunoprecipitates, in conjunction with a western blot of the whole-
cell lysate, we can verify the mobility of the target protein. Using multiple dilutions and a broad spectrum of whole-cell lysates,
our scientists can verify selective binding as well as the antibody’s specificity, reproducibility, and sensitivity. At the conclusion of
this two-phase process, only antibodies exhibiting the following characteristics qualify to be released: Specific recognition of the
target protein, Selective recognition of the target protein, Acceptable sensitivity, and Reproducibility.

Cell Signaling Validation Statement: ST™ antibodies are produced in-house and validated extensively according to a rigorous
protocol. Validation Steps Include: Examination of several cell lines and/or tissues of known expression levels allows accurate
determination of species cross-reactivity and verifies specificity. Treatment of cell lines with growth factors, chemical activators
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Eukaryotic cell lines

or inhibitors, which induce or inhibit target expression, verifies specificity. Phosphatase treatment confirms phospho-specificity.
The use of siRNA transfection or knockout cell lines verifies target specificity. Side-by-side comparison of lots to ensures lot-to-lot
consistency. Optimal dilutions and buffers are predetermined, positive and negative cell extracts are specified, and detailed
protocols are already optimized, saving valuable time and reagents.

Sigma-Aldrich Validation Statement: We are a global company with manufacturing facilities worldwide. Our development and
manufacturing processes are subject to rigorous quality control and quality assurance measures, and each of our antibody
products is supplied with a comprehensive Certificate of Analysis and Product Information Sheet.

Abcam Validation Statement: Antibodies are validated in western blot using lysates from cells or tissues that we have identified
to express the protein of interest. Once we have determined the right lysates to use, western blots are run and the band size is
checked for the expected molecular weight. We will always run several controls in the same western blot experiment, including
positive lysate and negative lysate. When possible, we also include knock-out (KO) cell lines as a true negative control for our
western blots. We are always increasing the number of KO-validated antibodies we provide. In addition, we run old stock
alongside our new stock. If we know the old stock works well, this also acts as a suitable positive control. If the western blot
result gives a clear clean band and we are happy with the result from the control lanes, these antibodies will be passed and
added to the catalog.

Policy information about cell lines

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

ATCC: RPE, HCT-116, MCF10A, CAMA-1, MDA-MB-415, MDA-MB-134-VI, MDA-MB-157, Hs578T, MDA-MB-231, MDA-
MB-361, ZR-75-30, MDA-MB-453, and HCC180

All cell lines were purchased directly from ATCC, but we did not independently authenticate them.

RPE, HCT, and MCF10A cell lines tested negative for mycoplasma. All breast cancer cell lines were passaged initially in media
containing Plasmocin (anti-mycoplasmic agent) after purchase from ATCC but were not tested for mycoplasma.

None of the cell lines used are commonly misidentified.
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