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BACKGROUND: The fields of molecular biology,
genetics, and genomics are at a critical
juncture—a moment in history when a con-
vergence of knowledge andmethods hasmade
it both technically possible and incredibly
useful to edit specific base pairs or segments
of DNA in cells and living organisms. The ad-
vent of clustered regularly interspaced short
palindromic repeat (CRISPR) genome editing,
coupled with advances in computing and im-
aging capabilities, has initiated a new era in
which we can not only diagnose human dis-
eases and even predict individual susceptibil-
ity based on personal genetics but also act on
that information. Likewise, we can both iden-
tify and rapidly alter genes responsible for
plant traits, transforming the pace of agricul-
tural research and plant breeding. The appli-
cations of this technology convergence are
profound and far reaching—and they are hap-
pening now. In the decade since the publica-

tion of CRISPR-Cas9 as a genome editing
technology, the CRISPR toolbox and its appli-
cations have profoundly changed biological
research, impacting not only patients with
genetic diseases but also agricultural practices
and products. As a specific example from the
field of genomic medicine, it has become fea-
sible to obtain a complete sequence of the
human genome in less than 24 hours—a stag-
gering advance considering the first such
sequence took 5 years to generate. Nota-
bly, designing and putting to use a potent
CRISPR genome editor to obtain clinically
actionable information from that genome—
previously a near-intractable challenge—now
takes only a matter of days. For additional
background and related topics, we refer read-
ers to in-depth reviews of the microbiology
and structural biology of CRISPR systems and
to articles about the considerable ethical and
societal challenges of this technology.

ADVANCES: The past decade has witnessed the
discovery, engineering, anddeployment ofRNA-
programmed genome editors across many ap-
plications. By leveraging CRISPR-Cas9’s most
fundamental activity to create a targeted ge-
netic disruption in a gene or gene regulatory
element, scientists have built successful plat-
forms for the rapid creation of knockout mice
and other animal models, genetic screening,
and multiplexed editing. Beyond traditional
CRISPR-Cas9–induced knockouts, base editing—
a technology utilizing engineered Cas9's fused
to enzymes that alter the chemical nature of
DNA bases—has also provided a highly useful
strategy to generate site-specific and precise
point mutations. Over the past decade, scien-
tists have utilized CRISPR technology as a
readily adaptable tool to probe biological func-
tion, dissect genetic interactions, and inform
strategies to combat human diseases and engi-
neer crops. This Review covers the origins and
successes of CRISPR-based genome editing and
discusses the most pressing challenges, which
include improving editing accuracy and pre-
cision, implementing strategies for precise
programmable genetic sequence insertions,
improving targeted delivery of CRISPR edi-
tors, and increasing access and affordability.
We examine current efforts addressing these
challenges, including emerging gene insertion
technologies and new deliverymodalities, and
describe where further innovation and engi-
neering are needed. CRISPR genome editors
are already being deployed in medicine and
agriculture, and this Review highlights key
examples, including a CRISPR-based therapy
treating sickle cell disease, a more nutritious
CRISPR-edited tomato, and a high-yield, disease-
resistant CRISPR-edited wheat, to illustrate
CRISPR’s current and potential future impacts
in society.

OUTLOOK: In the decade ahead, genome edit-
ing research and applications will continue to
expand and will intersect with advances in
technologies, such as machine learning, live
cell imaging, and sequencing. A combination
of discovery and engineeringwill diversify and
refine the CRISPR toolbox to combat current
challenges and enable more wide-ranging ap-
plications in both fundamental and applied
research. Just as during the advent of CRISPR
genome editing, a combination of scientific
curiosity and the desire to benefit society
will drive the next decade of innovation in
CRISPR technology.▪
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CRISPR: past, present, and future. The past decade of CRISPR technology has focused on building the
platforms for generating gene knockouts, creating knockout mice and other animal models, genetic screening, and
multiplexed editing. CRISPR’s applications in medicine and agriculture are already beginning and will serve as the
focus for the next decade as society’s demands drive further innovation in CRISPR technology.
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CRISPR technology: A decade of genome
editing is only the beginning
Joy Y. Wang1,2 and Jennifer A. Doudna1,2,3,4,5,6,7,8*

The advent of clustered regularly interspaced short palindromic repeat (CRISPR) genome editing,
coupled with advances in computing and imaging capabilities, has initiated a new era in which genetic
diseases and individual disease susceptibilities are both predictable and actionable. Likewise, genes
responsible for plant traits can be identified and altered quickly, transforming the pace of agricultural
research and plant breeding. In this Review, we discuss the current state of CRISPR-mediated genetic
manipulation in human cells, animals, and plants along with relevant successes and challenges
and present a roadmap for the future of this technology.

S
tarting with a 1987 report about repeti-
tive DNA sequences in a bacterial genome
(1), a small set of researchers working
in the fields of microbiology and food
science began studying mysterious DNA

sequence arrays known as clustered regularly
interspacedshortpalindromic repeats (CRISPRs),
commonly found in microbial genomes together
with genes encoding CRISPR-associated (Cas)
proteins. The presence of short DNA sequences
within CRISPRs matching those in viruses
hinted at the function of these systems as adap-
tive immunity pathways used to prevent viral
infection (Fig. 1A) (2). Curiosity-driven research
ultimately showed how CRISPR systems use
RNAmolecules transcribed from the sequence
arrays to guide Cas proteins to cut, and there-
by destroy, viral DNA or RNA (3, 4). Further-
more, this line of research showedhowCRISPR’s
RNA-programmed cutting action (5, 6) could
be used to alter DNA sequences in any cell with
unprecedented ease [reviewed in (7)]. Over the
past decade, scientists around the world have
rapidly adapted CRISPR to enable both funda-
mental research and wide-ranging applications
in animals, plants, and humans.
The most widely used genome editor is the

CRISPR-Cas9 protein complexed with its part-
ner RNA (Fig. 1B). The power of CRISPR as a
genome editing technology stems from its
chemical mechanism of DNA cutting at a site

dictated by RNA-determined sequence recog-
nition. Because Cas proteins use RNA-DNA
base pairings for DNA recognition, the same
protein, such as Cas9, can target a wide range of
DNAsequencesby simply swappingguideRNAs
(Fig. 1B). In eukaryotic cells, DNA breaks are
efficiently repaired, enabling targeted changes
to DNA sequences at will (Fig. 1B). Mutating
the amino acids required for cleavage activity
in the Cas9 active sites allows targeted DNA
nicking (introducing a single-strandedDNA cut)
or DNA binding by a catalytically inactive Cas9.
As a result, the first examples of engineered
CRISPR-Cas involved transcriptional repres-
sion or activation to silence or up-regulate spe-
cific genes (8, 9). Other forms of engineeredCas9
are fused to enzymes that enable individual
nucleobase editing, chromatin modification,
or sequence insertion (10–13). Other Cas pro-
teins, including RNA-targeting proteins, have
been explored as genome-modifying tools, en-
abled by discovery efforts and extensive biochem-
ical and structural characterization [reviewed
in (14–17)]. Some of these enzymes have also
been harnessed for the development of im-
aging methods (18–20) and diagnostic ap-
proaches (21, 22).
Together, applications of CRISPR technol-

ogy have provided the foundation for clinical
trials of therapies to treat sickle cell disease,
beta-thalassemia, the degenerative disease
transthyretin (TTR) amyloidosis, and congen-
ital eye disease, as well as planned clinical
trials for both rare (progeria, severe combined
immunodeficiency, familial hypercholesterol-
emia) and common (cancer, HIV infection)
diseases. CRISPR technology has enabled agri-
cultural advances including slick-coat cattle
and a more nutritious tomato. It has spurred
research across fields of molecular and cell
biology, fueling the publication of thousands
of research articles and providing a tool base
for many companies focused on therapeutics,
agriculture, and synthetic biology. However,

CRISPR technology and its potential impact
are still in their early stages. As we discuss in
the next section, some genome editing appli-
cations have now become routine whereas
others remain difficult due to limitations of
today’s tools. These genome editing challenges
provide opportunities for new discoveries and
engineering to advance the field by offering a
more complete toolbox for geneticmanipulation.

CRISPR-induced gene knockouts

The past decade has witnessed the astounding
success of CRISPR-induced gene knockouts,
which have transformed basic and transla-
tional research and demonstrate tremendous
potential in agriculture and therapeutic devel-
opment. Traditional CRISPR-induced knock-
out methods in eukaryotic cells involve the
CRISPR-Cas9 ribonucleoprotein (RNP), com-
posed of the Cas9 nuclease and an engineered
single-guide RNA molecule (sgRNA) (23–26).
The sgRNAdirects Cas9 to the target site, where
it creates a double-stranded DNA break (DSB)
that is repaired by endogenous repair path-
ways including the nonhomologous end join-
ing (NHEJ) and the microhomology-mediated
end joining pathways and the more precise
homology-directed repair (HDR) pathway that
uses a repair template [reviewed in (27–29)]
(Fig. 2A). Because of the high targeting spec-
ificity and efficacy of CRISPR-Cas9, such gene
knockouts are now routine in research appli-
cations, providing a streamlined process to
disrupt genes for functional study.
CRISPR-Cas9 has proven to be successful in

enabling the rapid creation of knockout (KO)
mice and other animal models (30, 31) (Fig. 2B).
Traditional gene targeting methods used in-
efficient homologous recombination in em-
bryonic stem (ES) cells, followed by laborious
screening of modified ES cells for the desired
sequence change and injection into WT em-
bryos (32, 33). CRISPR-Cas9 provides a way to
introduce DSBs in a one-cell-stage embryo, by-
passing the screening stage of suitable targeted
ES cells and greatly simplifying the production
of gene-edited animals (34, 35). This has re-
duced the time needed for generating geneti-
cally modified mice, from 1 year to as few as
4 weeks (36). As a result, the production of KO
and transgenic mice has now become routine
for research applications. Additionally, because
most mammalian species lack established ES
cell lines, CRISPR-Cas9 editing has facilitated
the development of genetically engineered ani-
mal models in new species (37, 38). The gener-
ation of KO and transgenic animal models has
become evenmore efficientwith advancements
in strategies for introducing CRISPR-Cas9 com-
ponents into zygotes, including CRISPR RNP
electroporation of zygotes (CRISPR-EZ) (39),
CRISPR RNP electroporation and AAV donor
infection (CRISPR-READI) (40), and improved
genome editing through oviductal delivery of
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nucleic acids (i-GONAD) (41). Beyond germline
editing, CRISPR-Cas9 is also used in somatic
editing, which is useful in situations where
whole-body knockouts are lethal for embryos
and in many cases can more accurately model
cancer progression and realistic modes of
therapeutic treatment (42). Advancements
in in vivo delivery strategies (discussed later in
this review) have expanded the types of somatic
animal models that can be created. Through
CRISPR-genome engineering methods, animal
models have been developed for many diseases,
including tyrosinemia, Duchenne muscular dys-
trophy, cancer, osteoporosis, Huntington’s dis-
ease, amyotrophic lateral sclerosis, Alzheimer’s

disease, and HIV-1/AIDS as just a few examples
[reviewed in (38)]. The ability to rapidly create
animal models has advanced and will continue
to advance the study of genetic diseases, allowing
researchers to study the causal relationships of
specific genetic variations and disease and to de-
velop and test new treatments for these diseases.

CRISPR screens

With the ease of introducing CRISPR-induced
gene knockouts, researchers have successfully
applied this technology to genetic screens, i.e.,
the systematic, targeted genetic alteration of a
number of genes in parallel. Such CRISPR
screens have become a powerful approach for

understanding genetic interactions and dis-
secting biological pathways and have given
rise to major advances in target discovery and
drug development. The capabilities of CRISPR
screens are continuing to expand, especially
when combined with advancements in single-
cell multiomics technologies. In general, genetic
screens involve one or multiple gene perturba-
tions, amodel system such as engineeredhuman
cells, and a selection assay or readout to evaluate
the effects of the perturbation(s) (43, 44) (Fig.
2C). Because of its efficiency and flexibility,
CRISPR editing is a powerful strategy for intro-
ducing perturbations that can be used for close
study of how a single gene disruption affects a
cell of interest, as well as high-throughput testing
of thousands of perturbations in pooled screens
(45,46). The ease of designing and cloning guide
RNA (gRNAs) has enabled the development
of gRNA libraries up to genome-wide scales,
allowing researchers to perturb every gene in
the human genome (47, 48). CRISPR technol-
ogy advancements have also expanded the
types of CRISPR screens that researchers can
use for different applications. Beyond CRISPR
KO screens, CRISPR interference (CRISPRi) and
CRISPR activation (CRISPRa) screens have
also become popular approaches that use re-
versible gene expression control [reviewed in
(49, 50)]. Saturation genome editing utilizing
Cas9-mediatedHDR enables the generation of
all possible single-nucleotide polymorphisms
(SNPs) for functional screening (51–53). More
recently, as alternatives to Cas9-mediated HDR,
researchers have also started applying CRISPR
base and prime editing (discussed later in the
Review) for genetic screens (54–56). Base edit-
ing, which can introduce pointmutationsmore
efficiently than Cas9-mediatedHDRwithmini-
mal indel formation, may serve as an improved
strategy for functional variant screening (54).
Prime editing allows for the introduction of
small insertions and deletions in addition to
pointmutations, which essentially enables sat-
uration mutagenesis across residues. This tech-
nology is still relatively new, and it remains to be
seen whether prime editing screens can achieve
similar levels of flexibility as HDR with re-
gard to target selection and targetable win-
dow size (56).
The successful editing of diverse cells and

organisms using CRISPR technologies pro-
vides flexibility for choosing a model system
for the genetic screen to best answer the rele-
vant biological question. Beyond primary cells,
CRISPR screens have been developed in more
complex model systems including organoids,
animals, and plants (57–60). CRISPR screens
are now a common method for probing gene
function in cancer and have allowed for iden-
tification of a variety of cancer drivers and
regulators [reviewed in (45, 46)].
Following the introduction of CRISPR com-

ponents into the model, a variety of techniques
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Fig. 1. CRISPR-based adaptive immunity provides programmable genome editing tools. (A) CRISPR
immune systems target DNA or RNA in microbes (illustration depicts DNA targeting). Three steps to
immunity include: (i) acquisition of CRISPR spacer sequence matching an infectious agent; (ii) transcription
and formation of Cas-RNA complexes; (iii) seek-and-destroy surveillance mechanisms. (B) CRISPR-Cas9
is the canonical genome editing tool for RNA-guided genetic manipulation. Cas9 searches for target sites
in a genome by engaging with PAM sequences, forming an R-loop with complementary DNA, generating a
double-strand DNA (dsDNA) break, and finally releasing DNA for repair.
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can be used for the selection assay and readout.
Common selection strategies include viability-
or proliferation-based screens, fluorescence-
activated cell sorting or microfluidics-assisted
cell screening-based screens using cell surface
proteins as markers (i.e., PD1, PDL1, MHC),
and in vivo screens assaying phenotypes, such
as tumor growth or sensitivity/resistance to

immunotherapy (45, 46, 61). One exciting area of
development in the readout of CRISPR screens
is new methods that provide simultaneous
proteomic, epigenetic, and/or transcriptomic
analyses, such as Procode (62), Perturb-ATAC
(63), Perturb-seq (64), and ECCITE-seq (65),
which can provide a wealth of information.
The successes of CRISPR screens will continue

to accelerate with new technologies that im-
prove the sensitivity of these assays and read-
outs. We are only beginning to see the impact
of combining CRISPR screens and single-cell
multiomics modalities with the rapidly ad-
vancing infrastructure for big data collection
and analysis (64, 66, 67). Further discovery
and engineering, including the enhancement
of orthologous Cas9 enzymes or other RNA-
guided nucleases such as Cas12a [reviewed in
(7)], can also greatly increase the potential of
combinatorial or multiplex CRISPR screens,
which can reveal novel and complex genetic
interactions.

Multiplexed editing in plants and beyond

Multiplex genome editing, or the simultane-
ous targeting of multiple specific DNA loci in
a genome, represents another area where
CRISPR-induced gene knockout technology
has been scaled up and adapted into a suc-
cessful platform—particularly in the plant sci-
ence fields [reviewed in (68, 69)] (Fig. 2D). Over
the past decade, CRISPR-Cas9 has become a
popular tool for plant editing. Traditional crop
trait engineering methods involved random
mutagenesis (e.g., with radiation) or trans-
genesis with Agrobacterium followed by labo-
rious crossing and screening to identify a plant
with a new trait of interest. These processes
are lengthy and hard to control in addition
to facing substantial regulatory hurdles. By
contrast, CRISPR-induced modifications are
targeted, can be made rapidly, and generally
represent small indels, i.e., insertions and/or
deletions, or pointmutations at locations spec-
ified by the trait engineer [reviewed in (70)].
CRISPR-Cas9 has been adapted for simulta-
neous multilocus editing, which is especially
useful for editing crop species that can carry
multiple copies of the target gene (e.g., hexa-
ploid wheat) (71) and for crop domestication,
which involves targeting multiple different
genes [reviewed in (72)]. One advantage of
CRISPR-Cas9 in regards to multiplexed edit-
ing is separation of the nuclease and gRNA,
such that multiple gRNAs can be used with
one Cas protein to edit different targets (23).
The gRNAs can be provided as multiple indi-
vidual expression cassettes, each transcribed
from their own promoters (73–75), or as a
single polycistronic cassette that is processed
posttranscriptionally (76–78). In the past few
years, CRISPRmultiplex genome editing has
become a successful strategy for creating new
crop genotypes and agriculturally useful traits
in a single generation. One area where multi-
plexed CRISPR-Cas9 editing has achieved suc-
cessful results is in crop domestication and
improvement. Examples include the use of
multiplexed editing to disrupt domestication
genes, introduce characteristics such as her-
bicide resistance, and increase crop yield and
quality (68, 79–81).
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Fig. 2. The genome editing toolbox, part 1: what works well. (A) CRISPR-induced gene knockouts in
eukaryotic cells result from the DNA DSB, created by the Cas9 RNP and then commonly repaired by
endogenous end joining repair pathways. (B) The speed of creating KO mice and other animal models has
greatly increased with the development of CRISPR-Cas9 editing technology, which can edit single-cell
embryos to generate gene-modified mice. (C) CRISPR screens are utilized for functional genetic screening.
CRISPR-Cas9 editors introduce genetic perturbations into a model, which is subjected to a selection assay,
followed by a readout to evaluate the effects of the perturbations. (D) CRISPR-Cas9 is a platform for
multiplexed editing in plants. Multiple gRNAs can be used with Cas9 to simultaneously edit multiple targets in a
genome. (E) CRISPR base editors, typically composed of nCas9 or dCas9 fused to a deaminase, enable site-
specific modifications without DSBs.
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Beyond its success in plants, multiplexed
CRISPR-Cas9 editing has been extended to other
cell types and organisms. One notable example
is the use of multiplexed editing to generate
porcine endogenous retrovirus-inactivated pigs,
addressing a major safety concern of transplant-
ing pig organs into humans (82). Multiplexed
editing has the potential to be particularly use-

ful in engineering cell therapy products for
cancer and studying the effects of complex
polygenic diseases. However, a challenge of
CRISPR-Cas9 editing in mammalian cells that
is exacerbated by simultaneous DNA cleavages
in multiplexed editing is the possibility of trig-
gering DNA damage-response mechanisms
governed by transcription factor p53 that can

lead to cellular senescence or apoptosis (82–84).
Addressing this challenge and extending the
applications of multiplexed editing may be-
come easier with the advancement of newer
CRISPR precision editing technologies that
do not involve DSBs, including base editing
and prime editing (discussed further below),
which have already been adapted for multi-
plexed editing (85, 86).

Site-specific modifications using base editing

Beyond traditional CRISPR-induced knock-
outs involving double-stranded DNA cutting,
base editing (11)—which uses Cas effectors fused
to enzymes that alter the chemical nature of
DNAbases—has provided a successful strategy
to generate site-specific and precise point mu-
tations without DSBs, eliminating the need for
repair templates and limiting undesired by-
products during editing (Fig. 2E). CRISPR base
editors generally consist of fusions between
a Cas9 nickase (nCas9), a Cas9 variant that
produces a single-stranded rather than a double-
stranded break (or a catalytically inactive or
“dead” Cas protein, such as dCas9, dCas12a, or
dCas13b), and an enzyme that catalyzes a nu-
cleobase deamination reaction [reviewed in
(87,88)]. The sgRNAdirects the nCas9-deaminase
fusion to the genomic target, where ternary
complex formation exposes a region of ssDNA
to the deaminase for chemical modification.
The resulting base mismatch is then resolved
through cellular repair mechanisms. Over the
past few years, the toolbox of DNA and RNA
base editors has expanded to enable C>T, A>G,
C>G, A>I, and C>U conversions (10, 11, 89–93),
though there is still need for further improve-
ment, especially for C>G editing. Site-specific
modificationsbroaden theabilities of researchers
to study the effects of mutations within genes
and can treat genetic disorders by correcting
point mutations, which represent the largest
class of human pathogenic genetic variants
(94–97). Furthermore, base editing can intro-
duce modifications in dividing and nondividing
cells, providing an advantage over HDR, which
is restricted to dividing cells (98). Base editing
has already shown promising results in cor-
recting loss-of-function mutations in a num-
ber of mouse models [reviewed in (87, 88)],
with a notable example being the recent use
of in vivo base editing to correct Hutchinson-
Gilford progeria syndrome in mice (99). By
eliminating the introduction of DSBs, the
development of base editing technology rep-
resents an important step in precision editing.
Refining these tools to the levels of accuracy
andprecisionneeded for treatments inhumans
will be one of themain challenges in the next
decade. An early-stage clinical trial using base
editing for familial hypercholesterolemia has
already begun, and others using base edit-
ing for sickle cell disease are set to begin this
year (100).
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Editing accuracy and precision
Aswe transition into the next decade of CRISPR
genome editing, several key challenges demand
innovative solutions. Two of these are editing
accuracy (i.e., specificity for the target site) and
precision (i.e., producing the exact desired
editing outcome) (Fig. 3A). To reduce the off-
target effects of CRISPR-Cas nucleases result-
ing from unintended binding and cleavage,
researchers have utilized a combination of ra-
tional design and selection to develop high-
fidelity Cas variants [such as SpCas9-HF1 (101),
evoCas9 (102), HiFiCas9 (103)] and the Cas9_
R63A/Q768A variant (104) and guide optimi-
zation methods [such as E-Crisp (105, 106),
CasOFFinder (107), and sgDesigner (108)].
These efforts have been productive: Neither the
CRISPR Therapeutics/Vertex nor the Intellia
sgRNAs used in clinics today have measur-
able off-target sites using US Food and Drug
Administration (FDA)–grade assays (109, 110).
However, off-target editing inaccuracies can
also occur as a result of the Cas9-independent
behavior of effector domains including deam-
inases, reverse transcriptases, and transcrip-
tional regulators, as exemplified by analysis
of base editing outcomes (111, 112). Progress
is currently being made through use of high-
fidelity Cas variants and rational engineering
of the deaminase domain to reduce nucleic
acid binding without Cas assistance (111–115),
and early-stage clinical trials of base editing
(31, 116) offer encouragement in this regard. At
the same time, innovating new methods to
deliver Cas editors to the target site and refin-
ing existing ones (described further below) can
also minimize off-target effects. Editing pre-
cision poses a larger challenge. In traditional
CRISPR-Cas9 editing in eukaryotic cells, the
scientist still does not fully control the editing
outcome following the introduction of the
DSB. Recentmachine learning tools have been
developed to help predict repair outcomes, al-
though these have yet to be demonstrated for
in vivo applications (117–119). Following the
DSB, NHEJ—the default repair pathway for
human cells—competes with the less-efficient
HDR pathway and results in a spectrum of
indels at the target site (120, 121). Although this
may be acceptable for a number of CRISPR-
induced knockout applications (including clin-
ical), many therapeutic applications require
much higher levels of precision and cannot
afford undesired indels. Increasing editing
precision requires a better understanding of
DNA repair processes and a combination of
innovation and engineering. One approach is
improving HDR efficiency and/or suppressing
NHEJ. Strategies that have been developed in-
clude chemically inhibiting key enzymes in the
NHEJ pathway, using single-stranded oligo-
deoxynucleotide templates (which have been
shown to increase HDR efficiency to 60% in
human cells for a single-nucleotide substitu-

tion) (122), utilizing cell cycle stage control to
favor HDR repair (123–125) and using site-
specific Cas9-oligonucleotide conjugates to
recruit the donor DNA template to the target
site (126). Even with these strategies, there
are still risks of large deletions and chromo-
somal rearrangements associated with DSB
formation that can lead to genome instabil-
ity (127, 128). Base editing and prime editing
(addressed further below) represent another
approach for precision editing intended to
avoid DSB formation. Base editing and prime
editing have reduced indel formation com-
pared with classic Cas9-mediated editing. How-
ever, in some cases, unintentional DSBs can still
form at the editing site and lead to indels. It has
been demonstrated that fusing base editors to
Gam—a bacteriophage Mu protein that binds
DSBs—can minimize indel formation during
base editing (129). For base editing, editing
precision is also challenged by bystander edit-
ing (or undesired conversions of neighboring
editable bases within or near the editing win-
dow in addition to the target base) (87, 88). The
correction precision of base editors decreases
by a large margin when there is more than one
target base in the editing window, limiting
their therapeutic potential (130) (Fig. 3B). In
a recent study, about half of the pathogenic
single-nucleotide variants (SNVs) correctable
by adenine base editors revealed ≥50% correc-
tion precision (130) (Fig. 3B). However, of the
subset of SNVs containing more than one
target base in the editing window, only 26%
revealed ≥50% correction precision (Fig. 3B).
Unfortunately, with current base editors, by-
standers are a fairly common occurrence. In a
recent study of 21 different base editing sys-
tems, about half of the targetable pathogenic
point mutations had bystanders in the editing
window (131). Reducing the size of the editing
window can increase precision; however, this
also limits the genomic sites that can be tar-
geted because of PAM constraints. A variety of
strategies involving structure-guidedmutagen-
esis, directed evolution, and computational-
aided design are currently being employed to
increase the targeting scope of CRISPR-Cas9
and reduce the bystander effects of base editors
(132–134). For base editing to be an effective
strategy for a wider breadth of applications, fur-
ther engineering is required to build on current
strategies to develop base editors with narrower
editing windows and different PAM compatibil-
ities without compromising on efficiency and
targeting specificity.

Genetic sequence insertions

In recent years, emerging technologies are
expanding the functional capabilities of the
CRISPR toolbox to make precise programma-
ble genetic sequence insertions, and an im-
portant challenge in the next decade will be
refining and effectively implementing these

technologies for genome engineering appli-
cations. Traditional Cas9 editing can introduce
transgenes by relying on HDR to incorporate
genetic material from a co-delivered donor
template into the target site (Fig. 3C) (27).
Currently, this approach is being widely used
in many areas of genome engineering. A no-
table recent example of its application is the
use of targeted integration to fluorescently
tag more than 1000 human proteins to study
their localization and interactions (135). HDR-
mediated CRISPR-Cas9 editing has also shown
promising results in preclinical and clinical
testing for therapeutic development, with key
examples in correcting alpha1 antitrypsin de-
ficiency (136) and in cancer immunotherapy
(137, 138). Despite these successes, HDR-mediated
CRISPR-Cas9 editing has its limitations, includ-
ing being restricted to dividing cells (123), the
difficulty of donor template delivery, and the
precision-related challenges introduced by
the DSB. Although certain single-nucleotide
mutations can be addressed by base editing,
many human pathogenic genetic variants re-
quire a small sequence insertion to repair an
indel, calling for high-precision alternatives
to HDR-mediated CRISPR-Cas9.
Prime editing represents one such alterna-

tive that can insert and delete DNA sequences
without introducing DSBs (12), though this
technology still needs further refinement (Fig.
3C). Prime editors consist of nCas9 fused to a
reverse transcriptase (RT) and a prime edit-
ing gRNA (pegRNA) that serves both to direct
nCas9 to the target site and act as a template
containing the desired edit for the RT (12).
UnlikeHDR, prime editing can introducemod-
ifications in both dividing and nondividing
cells, which is useful for correcting mutations
in quiescent cells, such as neurons or hemato-
poietic stem cells (139). Prime editing also pro-
vides advantages over base editing in situations
where there are multiple target bases in the
editing window (132) and where a PAM se-
quence is not immediately adjacent to the
desired editing site (140). Currently, prime edit-
ing has shown promise as an accurate and fairly
precise editing tool that has been demonstrated
to work in multiple cell types, organoids, mouse
embryos, and plants but is still limited in its
applications as a result of low editing effici-
ency [reviewed in (139, 141)]. In two separate
demonstrations of prime editing in organoids
and mice, there were no detectable off-target
edits (142, 143). Although low levels of undesired
indel formation have been reported, the ratio of
correct editing to indel formationwas ~30 times
higher for prime editing than for HDR (12, 142).
Unfortunately, prime editing efficiencies are
low formany applications. In one study, prime
editing was more than 30 times less efficient
than HDR in repairing a mutation in intesti-
nal CF organoids (144). Although more effi-
cient prime editors have been developed, these

Wang et al., Science 379, eadd8643 (2023) 20 January 2023 5 of 11

RESEARCH | REVIEW
D

ow
nloaded from

 https://w
w

w
.science.org at M

em
orial Sloan K

ettering L
ibrary on A

ugust 15, 2024



also result in higher rates of indel formation
(12). Currently, base editors still have an ad-
vantage over prime editors in editing effici-
ency and precision (139). Amain goal for prime
editing in the next decade is improving effi-
ciency without compromising editing product
purity—an outcome that has the potential to
turn prime editing into one of the most ver-
satile tools for precision editing. Future studies
should also address remaining uncertainties
about themechanism of prime editing. Recent
results show that physical untethering of Cas9
and the RT has no effect on prime editing lev-
els in cells, suggesting that the RT could en-
gage the editing site without being fused to
Cas9 and raising questions about whether it
could induce unintended integration at other
RNA-DNA hybrid sites (13). Refining prime
editing tools will require engineering and op-
timizing the different constituent components,
including the pegRNAs (145).
For large gene insertions, an emerging area in

CRISPR genome engineering is RNA-guided
DNA transposition. CRISPR-associated trans-
posons (CASTs) enable the precise RNA-guided
integration of large DNA cargo up to 10 kb
(146–149). So far, this has only been demon-
strated in a few prokaryotes and has not yet
been reported to work in mammalian cells
(146, 147, 150, 151). There is potential for new
developments as this area is still in the early
stages of research with limited mechanistic
understanding of how these systems work
(15), and very few computationally predicted
CAST systems have been characterized (149).
Further discovery, testing, and engineering
will be required to harness the potential of
CASTs for genome engineering applications.
Recombinases, which perform a wide array

of activities, including insertions, deletions,
inversions, and replacements (152, 153), are
another area of tool development with the
potential to combine with Cas proteins and
may be able to further diversify the CRISPR
toolbox (154). This has recently been dem-
onstrated with the development of two new
approaches that have enabled programmable
integration of large DNA sequences in human
cells (155, 156). One approach, programmable
addition through site-specific targeting ele-
ments, uses engineered fusion proteins of Cas9,
a reverse transcriptase, and a serine integrase
that have enabled multiplexed insertions of
large DNA cargo, including the fluorescent
tagging of different endogenous genes (155).
Another approach uses twin prime editing,
which involves a prime editor and two prime
editing guide RNAs that have enabled large
gene insertions and inversions when com-
bined with a site-specific serine recombinase
(156). This approach was used to correct a large
sequence inversion associated with Hunter
syndrome in human cells with up to ~9% ef-
ficiency (156). Notably, these studies report no

detectable off-target insertions. These ap-
proaches for programmable gene insertions
will require further characterization and re-
finement to increase editing efficiencies and
to serve as potential therapeutic strategies.
The potential impact of programmable gene
insertion for genome engineering will con-
tinue to motivate discovery and innovation
in search of new strategies in addition to im-
proving existing technologies.

Delivery of editors ex vivo and in vivo

Despite all of the recent advances in CRISPR
editors, delivery of editors remains a major
bottleneck for genome editing in organisms;
both innovation and engineering are needed
to ensure high delivery efficiency, target spec-
ificity, and safety. Advances in delivery tech-
nologies have played a large role in developing
CRISPR-based therapeutics. The liver repre-
sents a clear example where efficient delivery
of CRISPR editors has been a clinically trac-
table challenge (110). However, for less accessible
organs, the feasibility of CRISPR therapeutics
is limited by low delivery efficiencies and will
largely depend on improved delivery strat-
egies. Current delivery strategies for potential
CRISPR-based treatments in humans are di-
vided into two types of approaches: ex vivo,
where cells are isolated from and modified out-
side of the patient before being reintroduced,
and in vivo, where cells are edited directly in
the patient following delivery of CRISPR com-
ponents [reviewed in (157–160)]. Ex vivo ap-

proaches, often used for editing hematopoietic
stem and progenitor cells and leukocytes, offer
higher cell-type specificity and tighter qual-
ity control of editing; however, they are limited
to cell types that can survive and be expanded
in culture (to achieve a minimum number for
reengraftment) and retain in vivo function.
In vivo approaches expand CRISPR editing to
cell types where ex vivo approaches are not
possible, allowing CRISPR to treat a wider range
of genetic diseases. Two notable examples
where in vivo delivery has had some success in
humans are the treatment of transthyretin
amyloidosis, which represents the first systemic
in vivo delivery of CRISPR to the liver using
targeted lipid nanoparticle (LNP) delivery (110),
and treatment of Leber congenital amaurosis
type 10, which involves direct injection of an
adeno-associated viral vector harboring the
RNA-guided enzyme into the eye (161, 162).
These successes show the tremendous po-

tential of in vivo therapeutic genome editing;
however, in general, in vivo delivery of CRISPR
editors remains a formidable challenge. Many
biological obstacles stand in the way of ef-
fective in vivo delivery of editors to targets. In
the case of systemic delivery, delivery vehicles
need to prevent degradation of the cargo, op-
sonization, and phagocytosis extravasate from
the blood vessel; pass efficiently through the
interstitial space; and effectively release cargo
upon endocytosis (Fig. 3D). Once the CRISPR
cargo is released, it also needs to localize to
the nucleus and access the target locus in the
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Box 1. Cost, regulation, and access.

With the growing therapeutic potential of CRISPR technologies, other important considerations include
affordability, regulation, and access. For a more in-depth examination of the ethical and societal chal-
lenges of these technologies, we refer readers to refs. (196, 197). One main challenge to the development
and accessibility of CRISPR therapeutics is cost. In many cases, manufacturing costs encompass the
expenses of producing both the CRISPR editors and the delivery vehicles, which can be difficult to scale
up. For instance, viral-based delivery is a popular strategy for developing CRISPR therapeutics, but the
manufacturing of viral vectors depends on expensive culture systems and facilities to produce required
quantities of virus (175). Improving process development and providing the infrastructure to scale up the
production of viral vectors will be important to reduce costs. Treatment administration can also be expensive,
especially for ex vivo approaches, which consume time and resources to expand cells in culture and, in cases
of bone marrow transplantation with autologous hematopoietic stem cells, require preconditioning patients
with chemotherapy (198).

Manufacturers also face the burden of regulatory costs to provide extensive characterization and strict
safety and quality controls, which can be challenging for investigational or academic manufacturing
facilities. As increasing numbers of CRISPR-based treatments move to later stages of clinical trials,
manufacturers will need to build the infrastructure and bear the costs to support a current good man-
ufacturing practice–compliant operation. The challenges of bearing these costs and getting FDA approval
can lead to abandonment of the therapeutic development in a for-profit setting, as was recently the case
for a gene therapy for adenosine deaminase severe combined immunodeficiency (ADA-SCID) that had
promising long-term results (199, 200). Even if a treatment passes through all clinical trial phases and
gets FDA approval, the potential retail price charged to cover manufacturing costs may be unaffordable
to most patients without changes to the current health care infrastructure. Although many of the costs
associated with developing new therapies are unavoidable, the motivation to make future CRISPR
therapeutics widely accessible to those who need them will drive innovation of more efficient and cost-
effective strategies for large-scale production that can meet regulatory standards.
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chromosome. Each of these intermediary steps
or requirements between the initial intra-
venous injection and the actual editing of
the target locus has its own set of challenges
that will necessitate both engineering and
innovation to overcome. One of these is con-
trolling delivery vehicle size (often restricted
by cargo size), which may present a challenge
for bypassing the vascular endothelium and
interstitial space between blood vessels and
target cells (157). This challenge has motivated
efforts to engineer and discover smaller CRISPR
editors that can be delivered more efficiently
(163–167). Another challenge is preventing up-
take and editing in off-target cells; this could
be addressed by utilizing a targeting mole-
cule, such as a single-chain variable fragment
or glycoprotein, through conjugation to the
CRISPR RNP (168). Other approaches include
engineering or evolving the delivery vehicle to
target specific cells (160). An alternative strat-
egy to systemic delivery is direct injection to a
specific tissue, which largely avoids editing
other unintended tissues and organs. How-
ever, direct injection results in genome editing
of relatively few cells within a localized space
and is practical only for organs directly acces-
sible to such injection (161, 169).
In these various approaches, the cargo is

delivered as one of three forms: a plasmid DNA
(>6400 kDa for a 10-kb plasmid DNA) encoding
the CRISPR-Cas9 and gRNA (either together
or separately), the Cas9 mRNA (1400 kDa)
and gRNA (34 kDa), or the Cas9-gRNA RNP
(194 kDa) [reviewed in (158, 170)]. DNA cargo
is relatively stable compared with RNA or
protein, but its delivery results in the slowest
initiation of editing and offers lower control
over the functional RNP concentration in the
system at any given time. In some cases, DNA
cargo can permit prolonged expression of
Cas9, but this increases the probability of
off-target effects and immunogenic reactions
(170, 171). Of the three, RNP delivery results in
the fastest initiation of editing and generally
results in lower off-target effects, but methods
for delivering RNPs are still limited.
Currently, a variety of delivery methods exist

for CRISPR gene editing in mammalian sys-
tems, though each has its own set of challenges
and limitations. These are broadly divided
into physical delivery, viral-based delivery, and
synthetic material–based delivery [reviewed
in (158, 159)]. Common physical delivery ap-
proaches include microinjection and electro-
poration, which can deliver CRISPR editors in
all three forms of cargo (170). These methods
allow for controlled dosage and high-efficiency
delivery; however, both methods are effec-
tively limited to ex vivo delivery. Viral-based
delivery methods include adeno-associated
viruses (AAVs), adenoviruses (AdVs), and lenti-
viruses, which deliver CRISPR cargo in the
form of plasmid DNA and offer high delivery

efficiencies by harnessing delivery vehicles
that viruses have had thousands of years to
evolve. Of these, AAVs are the most promising
for in vivo clinical use for CRISPR therapeutics,
with notable examples being an ongoing clin-
ical trial for Leber congenital amaurosis type 10
(161), a soon-to-begin trial for HIV (172), and
advanced preclinical work for Hutchinson–
Gilford progeria syndrome (99). However, one
main limitation of AAVs is their low packag-
ing capacity (173). Compared with AAVs, AdVs
and lentiviruses offer higher packaging effi-
ciencies and have also been used for CRISPR-
Cas9 delivery but have faced other challenges,
including immunogenicity concerns [reviewed
in (157, 159, 174)]. Another important consid-
eration for viral-based delivery is the high cost
and labor-intensive production, especially for
AAVs and AdVs (175), which represents a ma-
jor challenge for large-scale manufacturing
and patient treatment (Box 1). Compared with
viral-based delivery, synthetic material–based

delivery methods, which include LNPs (176),
cationic polymers and peptides (177–181), and
gold nanoparticles (182), are often safer and
offer high levels of control and flexibility be-
cause they can be more easily tailored to all
three forms of cargo (DNA, mRNA, and RNP)
and be optimized for immunocompatibility
(157). Notably, as mentioned above, LNPs are
the delivery strategy used in the first systemic
in vivo delivery of CRISPR in humans for the
successful treatment of transthyretin amyloid-
osis (110). In general, however, these syn-
thetic material–based delivery methods offer
lower delivery efficiencies compared with
viral-based methods (159), limiting their effec-
tiveness for in vivo delivery to less accessible
target organs. Although improvements can be
made with further optimization, their maxi-
mum efficiency may be limited by the mate-
rials’ bulky size and cationic nature, which
result in poor interstitial dispersion. Recently,
extracellular vesicles and virus-like particles
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clinical trials
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against neurodegenerative or
cardiovascular disease
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Fig. 4. Future directions: where we could be 10 years from now. The future of CRISPR genome editing will
intersect with advances in technologies such as machine learning, live-cell imaging, and sequencing. In the near
future, we may witness FDA approval for the first CRISPR-based medicine, as well as increasing numbers of
CRISPR treatments moving to later stages of clinical trials and approval of new clinical trials using improved in vivo
delivery methods. We expect approval of more CRISPR-edited crops for sale and more demonstrations of CRISPR
used to engineer multigenic traits in plants and animals. In the more distant future, we may one day see many
widely accessible CRISPR-based treatments and even use genome editing to safely harvest pig organs for
transplant patients or as a prophylactic against disease. In agriculture, CRISPR may be routinely used to generate
disease-resistant, high-yield crops to increase global food supply and security.
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(VLPs) (assemblies of the viral envelope and/or
structural proteins that can transduce cells but
lack viral genetic material) are emerging as
promising delivery platforms that utilize the
strengths from both viral-based delivery and
synthetic material–based delivery (183–186).
These have the potential to achieve the high-
delivery efficiencies of viral-based methods
without the safety concerns of random trans-
gene integration or prolonged expression of
the editors. One especially exciting area of de-
velopment is programming the cellular tropism
of VLPs by using different envelope glycopro-
teins to target specific cell types, as recently
demonstrated for ex vivo and in vivo delivery
and editing (185, 186). The future of CRISPR
treatments in humans will largely depend on
improving current delivery strategies, innovat-
ing new delivery modalities, discovering and
engineering more compact CRISPR editors, or
a combination of the above.
Beyond mammalian systems, advances are

also being made for CRISPR reagent delivery
in plants. The plant’s cell wall, which has a size
exclusion limit of 5 to 20 nm, presents a major
challenge for cargo to pass through (187). The
two predominant methods are delivery of plas-
mid DNA using agrobacterium, which inte-
grates the transfer DNA into the plant genome,
and particle bombardment, which physically
breaches the cell wall barrier to introduce the
cargo [reviewed in (187)]. The main drawback
of these methods is random integration of the
CRISPR cassette into the plant genome. The
goal of enabling transgene-free breeding has
motivated alternative approaches, including
direct RNP delivery by polyethylene glycol–
mediated cell transfection, particle bombard-
ment, electroporation, or lipofection [reviewed
in (188)]. Though these methods hold promise,
the broad application of RNPs in many plant
species requires further work in improving
delivery efficiency and plant regeneration from
edited protoplasts.

Current and future applications

The advent of programmable genome editing
technologies has paved the way for appli-
cations of cell and gene therapy to treat and
even cure disease. Although applications of
CRISPR are too numerous to list comprehen-
sively, the treatment of sickle cell disease (SCD)
provides an excellent example of the value and
risks ahead. There are now at least eight FDA-
approved clinical trials of CRISPR-based ther-
apies for SCD and related blood disorders that
are ongoing or soon to begin, and FDA ap-
proval of the first is expected in 2023 (189).
However, the challenges to widespread deploy-
ment of CRISPR cures for SCD remain for-
midable. For genome editing to become a
standard of care, the field will need to address
the difficulty in manufacturing edited cells for
each individual patient, the logistical limita-

tions conferred by the need for bone marrow
transplantation, and the cost, which can run
up to $2,000,000 per patient (190). But suppose
a new delivery modality for genome editors
obviates the need for both ex vivo cell editing
and bone marrow transplantation? Such an
advance would be game changing, propelling
the field into a new era where much broader
deployment of genomic therapies would be
possible.
Beyond clinical applications, CRISPR is be-

ginning to have impacts in agriculture and
animal husbandry. CRISPR-edited foods are
already beginning to enter the market. This
includes a CRISPR-created tomato with en-
hanced nutritional qualities and two CRISPR-
edited fish (a faster-growing tiger puffer and a
red sea bream with greater edible yield), which
have been approved for sale in Japan (191, 192).
Among these agronomic applications aremany
examples where CRISPR has enabled the pre-
cise “transfer” of small genetic changes that
confer desirable traits from one variety of a
species to another—a transfer that is either
impossible or impractical using any other
approach. Beyond small perturbations, CRISPR
has also shown potential to generate new ge-
netic variation and complex editing previously
not seen in nature. A key example is the recent
use of multiplexed editing to simultaneously
knock out and activate different genes to intro-
duce disease resistance in wheat and restore
growth and yield (193). These constitute just the
beginning of a wide range of genome editing
advances that will increasingly affect our lives in
the coming years.
CRISPR-Cas9, part of a bacterial immune

system, uses an RNA-guided mechanism to
recognize and cut DNA sequences. This fun-
damental biochemical activity forms the basis
for genome editing technology that spans all
realms of basic and applied biological re-
search, ranging from developmental biology
and plant genetics to sickle cell disease and
animal husbandry. The discovery of new
CRISPR-based and CRISPR-related enzymes
has accelerated rapidly, leading to continued
expansion of understanding about the natural
biology of these systems in microbes and their
utility for genome editing in other cells and
organisms. CRISPR-Cas9 and CRISPR-Cas12a,
the most widely adopted genome editing en-
zymes, have become workhorses in research
laboratories worldwide. Fundamental research
enabled by genome editing speaks to the cross-
cutting nature of CRISPR technology and to
the timeliness of its arrival as a readily adapt-
able tool. These wide-ranging applications
have in turn enabled expansion of the CRISPR
toolbox to enable more precise editing of spe-
cific nucleotides or the targeted integration of
new genetic information. In the decade ahead,
genome editing research and applications will
continue to accelerate and will increasingly

intersect with technologies includingmachine
learning, live cell imaging, and faster, cheaper
DNA sequencing (Fig. 4). Just as the past de-
cade has focused on CRISPR platforms, the
decade ahead will increasingly apply those
platforms for real-world impacts. In the clinic,
we will undoubtedly see increased numbers
and types of clinical trials, providing data that
will guide next-generation gene and cell ther-
apies. As clinical applications expand, there
may be an opening for CRISPR to be used to
protect health. For example, as safety and ef-
ficacy are established for disease treatment,
genome editing might become a prophylactic
against neurodegenerative or cardiovascular
disease (31). Such opportunities would require
detailed knowledge of the genetics of multi-
genic disease and the means to deliver to or-
gans including the brain and heart—neither of
which are small tasks. But the potential bene-
fits may drive innovation in these areas well
beyond what is possible today. In agriculture,
CRISPR screening will provide increasing in-
sights into paths to engineering multigenic
traits in both plants and animals. Products gen-
erated using CRISPR—whether pig organs
for transplant patients (194), rice that resists
drought with increased yield, or microbiomes
fine-tuned for health using CRISPR editing—
may all become routine. CRISPR also serves as
a notable example of the connection between
curiosity-driven research, innovation, and tech-
nological breakthroughs. By continuing to ex-
plore the natural world, we will discover what
cannot be imagined and put it to real-world
use for the benefit of the planet.
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