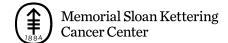


The African Research Group for Oncology (ARGO): technology and cancer in low- and middle-income countries

Isaac Alatise, MD, WACS
Professor, Dept. of Surgery
Obafemi Awolowo University Teaching Hospital

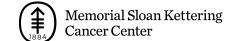
T. Peter Kingham, MD, FACS
Director, Global Cancer Research and Training Program
Professor, Hepatopancreatobiliary Surgery
Memorial Sloan Kettering Cancer Center


No conflicts

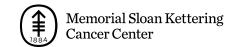
Cancer is a growing problem in Lowand Middle-Income Countries (LMIC)

 By 2050, 70% of the predicted people with cancer in LMIC

Lancet Oncology
 Commission on Global
 Cancer Surgery: majority
 of cancer patients require
 surgical intervention



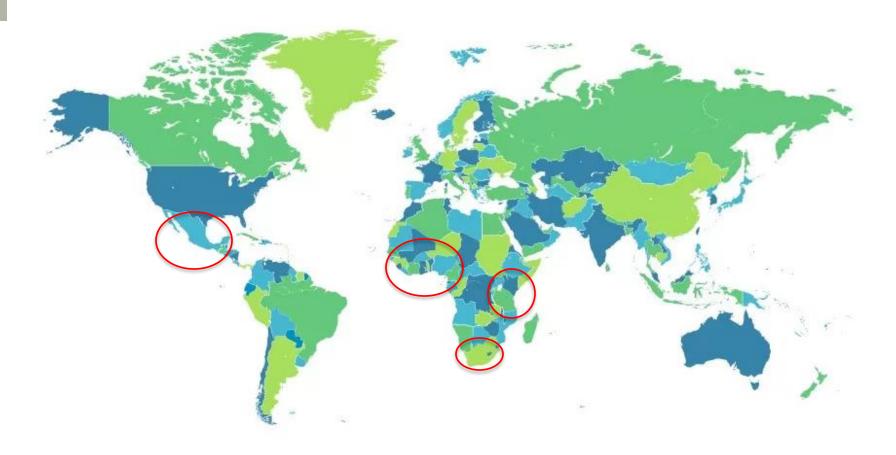
"Obesity Was Rising as Ghana Embraced Fast Food. Then Came KFC."

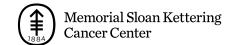


The New Hork Times

Why does this matter to us?

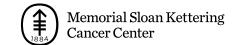
- We cannot understand the biology of cancer by studying cancer regionally
- As cancer rates rise globally, we can learn about overcoming screening/early diagnosis barriers
- We will learn about environmental and cultural impacts on cancer by studying in LMIC
- Cancer research in LMICs is cost effective



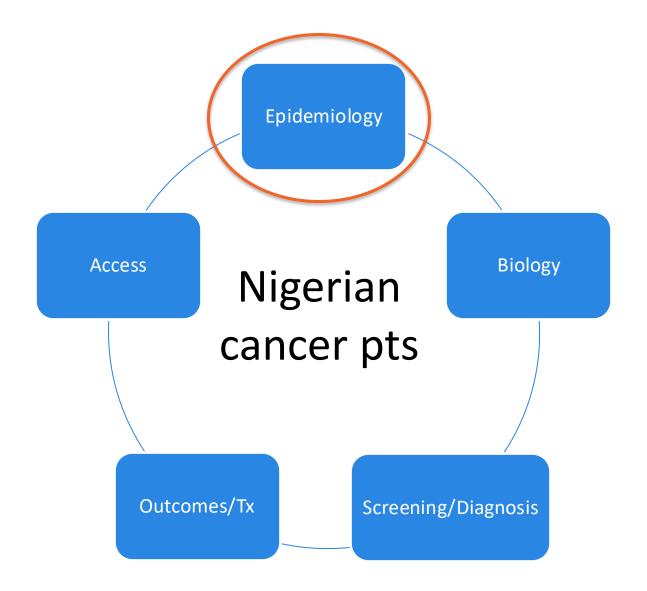

MSK Global Cancer Research and Training (GCRT) Program

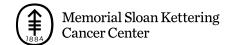
To improve <u>outcomes</u> for cancer patients in sub-Saharan Africa using collaborative research and training efforts.

GCRT active collaborations

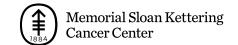


GCRT spans all Departments at MSK


- Clinical focus:
 - Cancers:Breast/CRC/Cervix/Gastric/Sarcoma/Lung
 - Psycho-oncology; Palliative Care; Nursing

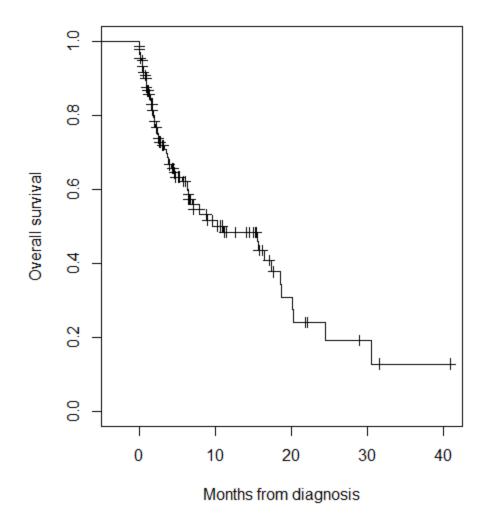

- 20 active faculty members
- 6-person research/admin team at MSK
- 50-person research/admin team in Nigeria

African Research Group for Oncology: Academic collaborative model



CRC patients present late in Nigeria

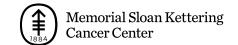
Stage	% Nigeria (n=380)	% USA (SEER)
I	.3%	39%
11	13%	36%
III	34%	-
IV	54%	20%



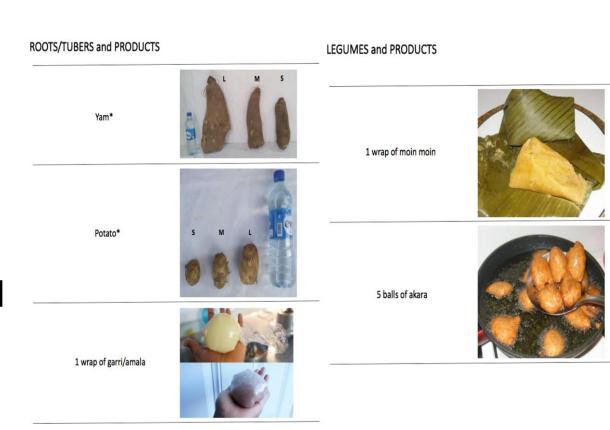
Survival in patients with CRC in Nigeria is poor

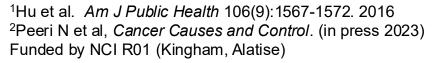
6-month survival:
62.6% (95% CI:
53.6-72.1)

12 month survival:
48.4% (95% CI:
38.9-60.1)


OS from diagnosis

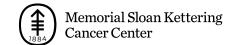
What are risk factors for cancer in Nigeria?



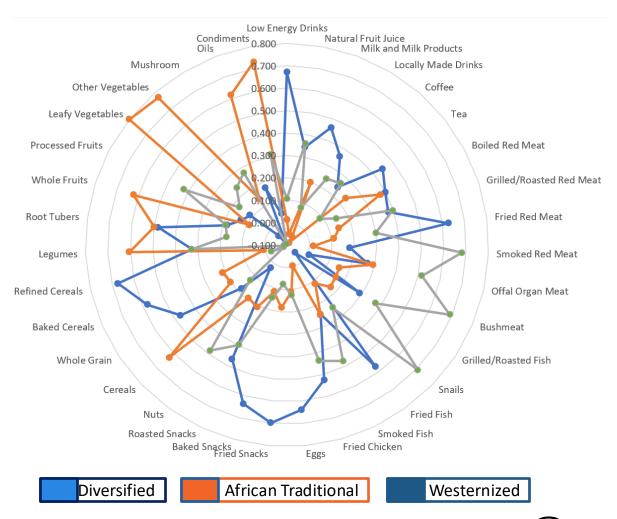


What are risk factors for cancer in Nigeria?

- Diet and exercise assessment based on Nurses Health Study¹
- Validation with food diaries and photo documentation of meals²



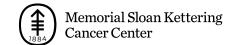
Dietary Patterns (DP) and CRC

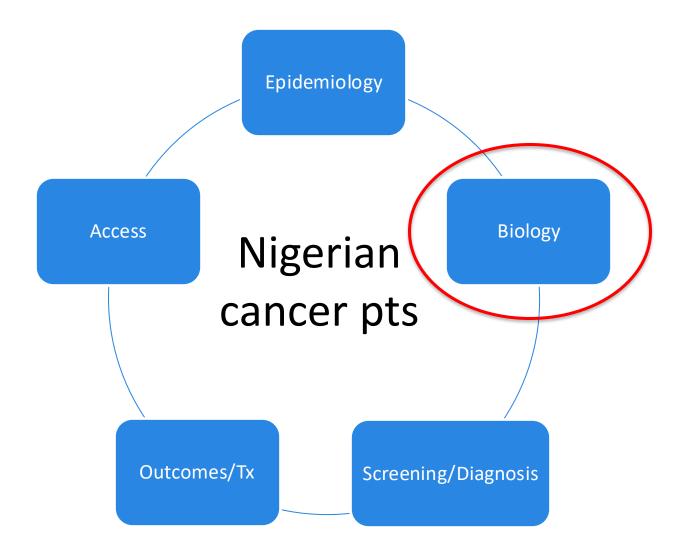

- Studies on diet and CRC have mostly been carried out in HIC
- Sub-Saharan African studies focused on isolated nutrients/food types, but people tend to eat in patterns

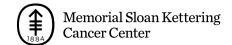
Methods

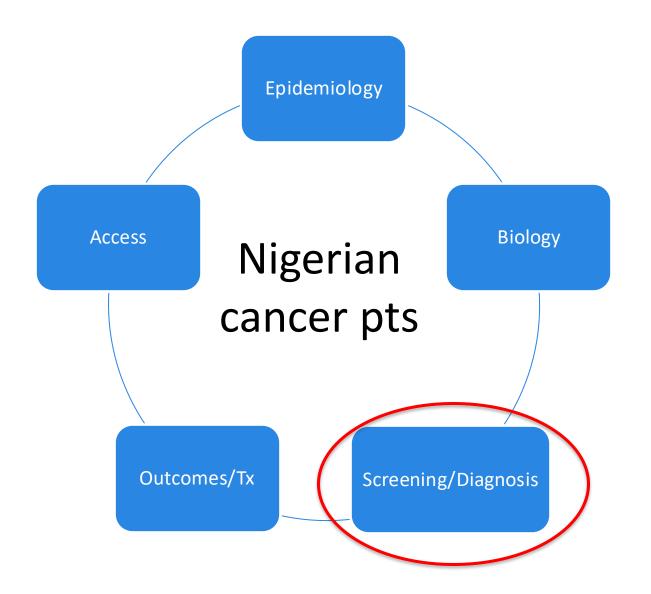
- Case-control study with 507 cases and 1114 controls in Nigeria, West Africa
- 3 empirical DPs (using principal component analysis):
 - Diversified: Wide range of food groups
 - African traditional: Fruits and vegetables dominated
 - Westernized: Processed/red meat dominated

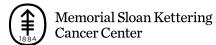
Westernized DP increased CRC risk in all models and stratifications of analysis

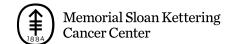



Exploratory analysis of association between chemical compounds exposure and CRC risk


Compound Class	N Cases	N Controls	OR	95% CI
Organosphates				
Low	9 (36%)	17 (65%)	Ref	Ref
High	16 (64%)	9 (35%)	4.74	1.34, 19.5
Polycyclic Aromatic				
Hydrocarbons		,		
Low	10 (40%)	17 (65%)	Ref	Ref
High	15 (60%)	9 (35%)	6.12	1.58, 29.1
Pesticides				
Low	11 (44%)	19 (73%)	Ref	Ref
High	14 (56%)	7 (27%)	3.24	0.85, 13.5
				,

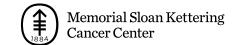

^{*}A sum score was created to reflect the number of chemicals within a compound class that a participant was exposed to. We split exposures using the median value for each chemical compound class.


Adjusted for age, sex, education.



Approaches for screening/early dx for CRC in Nigeria

No prospective trials of any CRC screening or early dx method in sub-Saharan Africa


Is it feasible? High-risk groups ideal

	Average risk	First degree relatives	Symptomatic
FIT	X	X	
Clinical screen			X
Urine metabolites		X	X
Blood methylation panel		X	X

Should tests that work in HIC work in LMICS?

- What can affect a cancer diagnostic test's performance in LMIC?
 - Environment for test and for cancer
 - Cost
 - Differences in biology
 - Health systems differences
 - Is implementation possible?????
 - Who should lead implementation?

Can we diagnose polyps/CRC with urine metabolites?

650 Nigerians with colonoscopy proving CRC, adenomatous polyp, or normal colon

Urine shipped to U Alberta, Edmonton, Canada

Mass spectrometry

Development of handheld device

Timeline of technology development

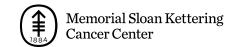
- 2016 NIH UG3/UH3
 - 2 years UG3
 - 4 years UH3
- Applied with 3 metabolites that ended up not working
- Applied with an impedance-based model
 - Competitive assay and change in impedence measured

GNP-metabolite

Protein MRE

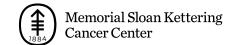
Timeline of technology development

- Nigerian patients did not match the known metabolites
- The impedence system didn't work
- Our co-PI leading the engineering team tragically died

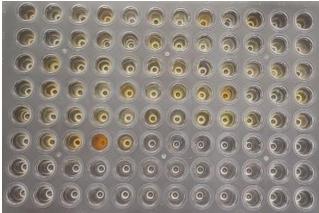

 6-year project became 8-year project and was only 60% completed

Metabolites are associated with CRC dx

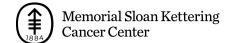
 Mass spectrometry used to quantify 142 metabolites in urine from 514 Nigerian CRC patients and healthy controls


 Diacetylspermine, hydroxyhippurate, and glutamate best metabolites in Nigerian patients

Nigerian patients with clinical factors added to Diacetylspermine

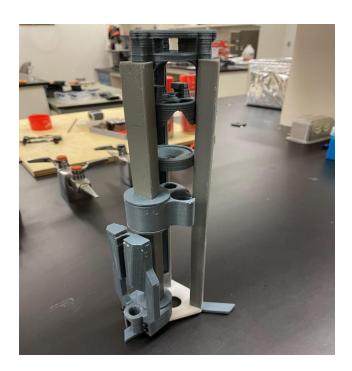

Inputs	Sensitivity	Specificity	AUC
Diacetylspermine	87%	50%	0.803
Diacetylspermine + Weight Loss	94%	50%	0.856
Diacetylspermine + Blood in Stool	90%	50%	0.822
Diacetylspermine + Weight Loss + Blood in Stool	94%	50%	0.858
Weight Loss (yes or no)	81%	67%*	0.739

^{*}Since we are using only yes and no for the clinical features, we don't have a point where the specificity is 50%.



Nigerian samples dilution:

Assay:



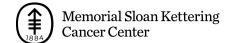
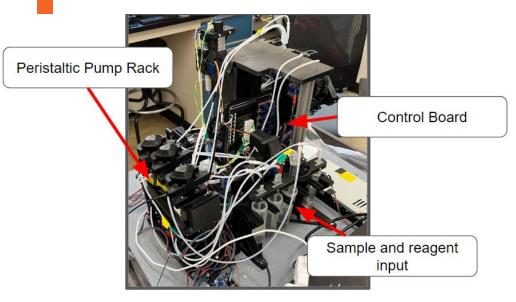
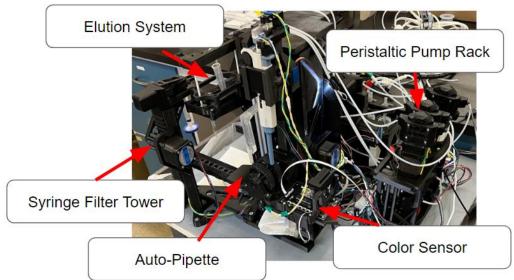
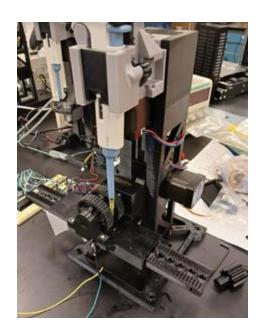
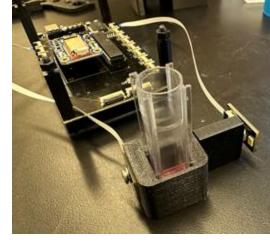




Figure 1: Manual filtration setup with 3D printed assistance structures


Development of Point of Care Test

Collect patient urine and clinical information


Automatically process urine for metabolite reactions

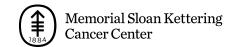
Automatically run the 3 color reactions and measure the resulting color using the color sensor

Use connected tablet app to calculate metabolite concentrations and combine with clinical data for a final result

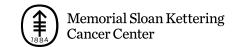
75-patient pilot successfully identified CRC patients

38 controls; 37 CRC patients

Sensitivity 95%; specificity 50%


Urine test was easy to use by patients

- 99% no concerns about giving urine sample
- 90% no barriers for participating in CRC screening with urine test
- 99% satisfied
- 77% willing to pay up to \$5 for the test


Lessons learned

- Technology gets funded
- Challenging to work on projects where you don't control large component of it
- Clinician role is to be a technology skeptic

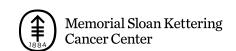
Approaches for screening for CRC in Nigeria

	Average risk	First degree relatives	Symptomatic
FIT	X	X	
Clinical screen			X
Urine metabolites		X	X
Blood methylation panel		X	X

Breast Cancer early diagnosis

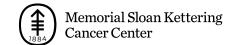
- Widespread population-based breast cancer screening of asymptomatic, average-risk women may not be feasible due to personnel and infrastructural challenges
 - Mean tumor size at presentation to OAU is 10.5 cm
- Nigeria: Limited radiology resources
 - ~300 radiologists in the country (MSK ~150)
 - one per ~500,000 people (US has 50x that)

The iBreastExam versus clinical breast examination for breast evaluation in high risk and symptomatic Nigerian women: a prospective study



Improving detection of early-stage breast cancer

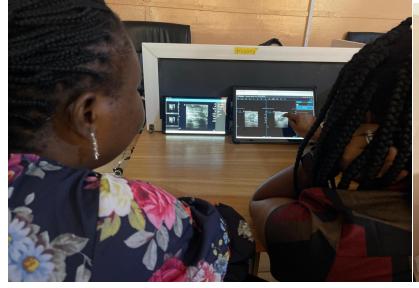
- Prospective study
- 424 Nigerian women 40 years or older
 - Breast symptoms or
 - Asymptomatic high risk (first-degree relative w/breast cancer)
- Breast cancer education & underwent 4 exams:
 - Clinical Breast Exam (CBE) experienced surgeon
 - iBE recent nursing school graduate
 - Mammography
 - Ultrasound



Inexperienced nurse iBE and experienced surgeon CBE similar sensitivity

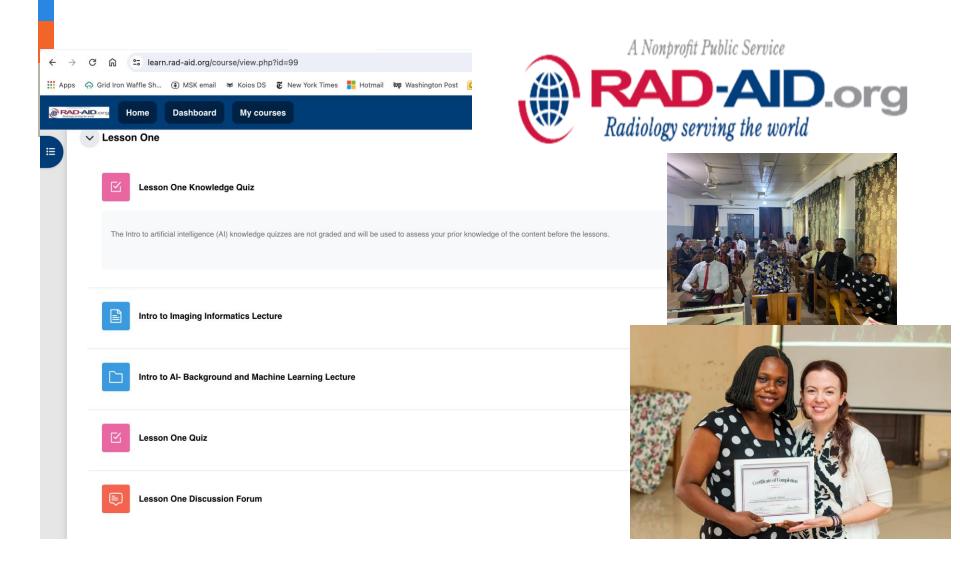
- Breast level analysis
- Any *SUSPICIOUS* finding

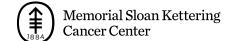
	Sensitivity	Specificity	PPV	NPV
CBE	83%	86%	37%	98%
iBE	86%	50%	14%	98%


- CBE demonstrates better specificity
- Similar NPV
- 13/15 cancers identified by both

Breast Ultrasound AI in Nigeria

- Al education
- Prospective study of women BI-RADS 4 or 5
- Qualitative assessment of radiologists Al experience

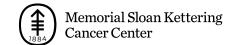




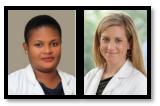
Artificial Intelligence Decision Support for Timely Breast Cancer Diagnosis in Nigeria

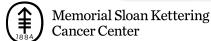
Goals/Aims:

- 1.Train 4 radiologists from two institutions in Nigeria to utilize a tablet-based AI decision support system and interpret AI outputs on breast ultrasound images acquired on tablet-based ultrasound
- 2. Test the accuracy of tablet-based breast ultrasound Al decision support (Koios DS Breast) in a multi-center LMIC setting
- 3. Assess the experiences and opinions of the 4 Nigerian radiologists in using breast ultrasound AI decision support



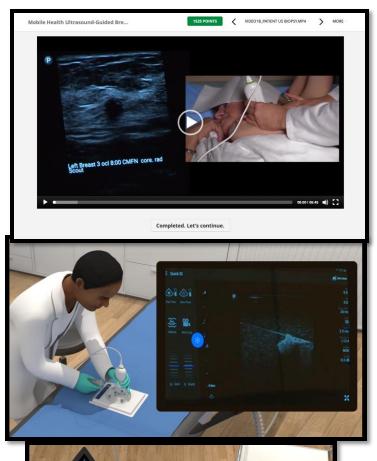
Breast US AI: Results


- 155 Nigerian women w/ 184 BI-RADS 4 or 5 masses (51 benign/133 cancers)
- Tablet US images successfully underwent AI analysis by Nigerian radiologists
- Al analysis:
- 166 masses positive (probably malignant or suspicious AI output)
- 18 masses negative (benign or probably benign AI output)
- Al correlated with pathology results:
- Sensitivity 95% (127/133)
- Specificity of 24% (12/51)
- PPV 77% (127/166)
- NPV 66% (12/18)



Mobile ultrasound overcomes many barriers to patient early diagnosis

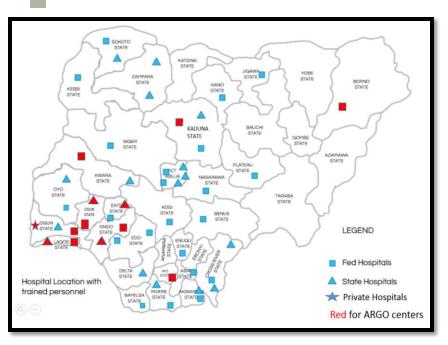
- AIM 1: Develop a competency-based mHealth USguided breast biopsy-training program for LMIC radiologists and validate the assessment metrics.
- AIM 2: Train ten ARGO Nigerian radiologists to perform US-guided breast biopsies using the competency-based mHealth training program.



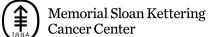
AIM 1: mHealth US-guided breast biopsy competency-based training program

Blended Learning

Simulation Biopsy



Patient Biopsy



AIM 2: Train thirteen Nigerian radiologists to <u>perform and clinically</u> implement US-guided breast biopsies

Median time from first medical presentation to surgical consultation was **41 days** (IQR 23, 89), which is below the WHO target of 60 days for breast cancer early diagnosis

30% increase in population-level access to breast cancer early diagnosis

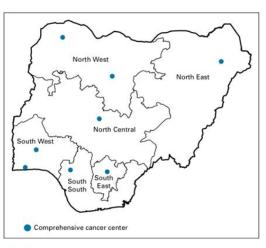
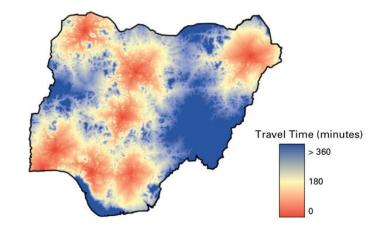
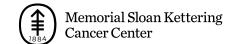
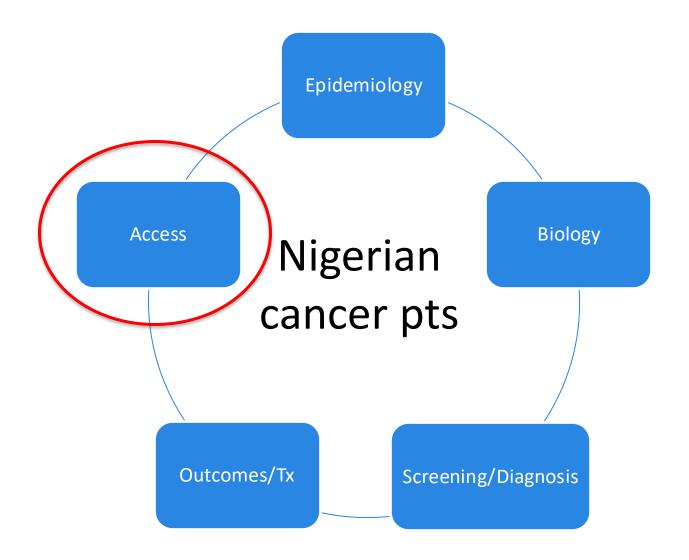
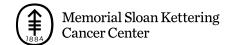
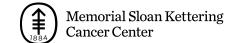
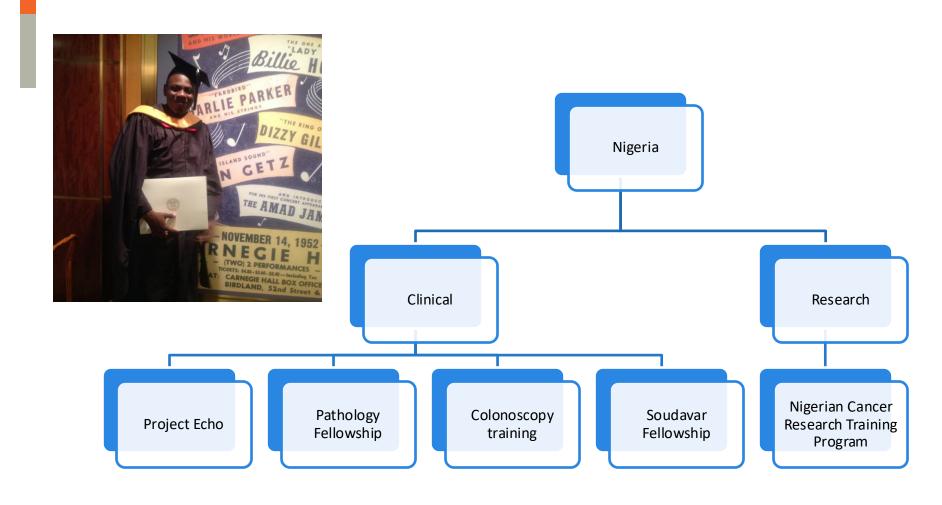
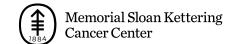






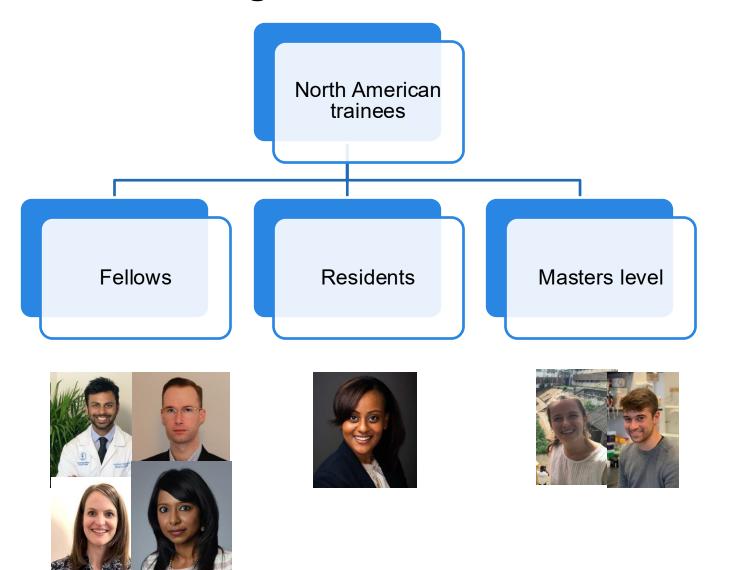
FIG 1. The geopolitical zones of Nigeria and the comprehensive cancer centers.




Access and barriers to care in Nigeria

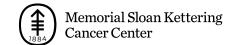

- Financial catastrophe
 - 10% or 25% of annual salary
 - 22 women after breast cancer dx
 - 75-95% of patients experienced financial catastrophe
 - 27% altered treatment due to finances

- Primary barrier to oncology care
 - Juliet Lumati, MD initiating intervention study 2024

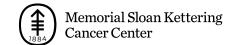


GCDI Training: Nigerian trainees

GCDI Training: North American trainees


Cancer care is a global priority

- We cannot understand cancer biology/treatments/culture without studying it globally
- Cost-effective cancer research
- Focus on workforce and research is needed to improve outcomes
- Global collaborations with leadership from LMICs required to generate regional data to guide care
 - Don't extrapolate high-income country data to LMICs!!


Global Cancer Disparity Initiative Support

- MSK Physician in Chiefs Office
- MSK International Center
- Thompson Family Foundation
- NCI:
 - R01 Modifiable risk factors for colorectal cancer in Nigeria
 - R01 Developing a blood-based point-of-care CRC diagnostic test
 - UG3/UH3 Point-of-Care Cancer Screening Test
 - R21 m-Health Cancer Screening in LMIC
 - NCI Center for Global Health Pilot
 - CRDF Research Capacity Building Grant
 - D43 Building the Nigerian Cancer Research Training Program
 - P20 An Immuno-oncology center in Nigeria
- Prevent Cancer Foundation
- Oak Foundation
- MSK Population Science Award

Thank you!

