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Proteomics at Memorial Sloan Kettering Cancer Center

• What is the proteome?

• The proteome is the complete set of proteins in cells, tissues, biofluids.

• Reflects the functional state of a biological system. 

• What is proteomics?

• Large-scale study of proteins. 

• Used to compare biological conditions or disease states.

• Why study proteins?

• Proteins are the ‘working bees’ of the cell, essential for:

• Biochemical reactions

• Signaling

• Transport

• Structural support
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Why mass spectrometry?

• Mass Spectrometry in proteomics: 

• Identifies and quantifies proteins in complex samples, 

• Hight-throughput and sensitive

• Detects post-translational modifications

• Applications: 

• biomarker discovery 

• drug development

• system biology

• among others
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How do mass spectrometers work?

• Measures mass-to-charge (m/z) ratio of ions

• m=mass of the ion (peptide or peptide fragments)

• z=charge of the ion 

• Ions with different m/z ratios are separated by the mass analyzer inside the 

mass spectrometer

• The instrument records the signal intensity (ions abundance) vs m/z to 

create a mass spectrum
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How do mass spectrometers measure m/z?

• Different MS instruments use different mass analyzer and principles to measure 

m/z ratio

• Quadrupole: uses oscillating electric fields to filter ions based on m/z 
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How does the mass spectrometer measure m/z?

• Different MS instruments use different mass analyzer and principles to measure 

m/z ratio

• TOF (time-of-flight): measure the time ions take to travel a fixed distance, 

after acceleration. Lighter ions (lower m/z) reach the detector faster
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How does the mass spectrometer measure m/z?

• The electric field cause ions:

• to orbit around the central electrode

• to oscillate back and forth along the z-axis

• The frequency of the axial oscillation 

depends on the ion m/z

• This frequency is used to determine m/z via 

Fourier Transform

• Orbitrap: traps ions in an electrostatic field and measure their oscillation frequency
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Proteins or peptides?

• Different solubilities

• Poor chromatographic separation

• Complex charge states

• Poor ionization

• PTM stoichiometry

• No inference (uniqueness) 

Top down Proteomics

• Better ions

• Better chromatographic separation

• Site-resolved amino acid modification

• Increased complexity

• Protein inference (need unique peptides)

Bottom up Proteomics
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Shotgun proteomics by HPLC coupled to high resolution 
mass spectrometry
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How we identify peptides (and proteins) by MS?

2020 © The Authors.2020Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)

• Chromatogram and Total Ion Current: sum of all ion signals detected at a given time point in an MS run
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How do we assign z and m of ions (and peptides)?

Chromatogram
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How do we assign z and m of ions (and peptides)?

Chromatogram

MS spectrum
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z =

•Calculate the charge state (z): 

   z=m/ m/z
• z =                   the peptide ion has a charge of 

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z =

•Calculate the charge state (z): 

   z=m/ m/z
• z =           the peptide ion has a charge of 

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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How do we assign z and m of ions (and peptides)?

MS spectrum

MS spectrum

Isotopic pattern

Isotopic envelope
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How do we assign z and m of ions (and peptides)?

MS spectrum

MS spectrum Monoisotopic peak (all C12)

One C13

Two C13
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z =

•Calculate the charge state (z): 

   z=m/ m/z
• z =          the peptide ion has a charge of 

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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How do we assign z and m of ions (and peptides)?

Monoisotopic peak

Peak spacing
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z = 684.83 - 684.33 = 0.5

•Calculate the charge state (z): 

   z=m/ m/z
• z = 1 / 0.5 = 2 the peptide ion has a charge of +2

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z = 684.83 - 684.33 = 0.5

•Calculate the charge state (z): 

   z=m/ m/z
• z = 1 / 0.5 = 2 the peptide ion has a charge of +2

•Calculate the ion mass (m)

  m=(m/z)×z
m = 684.33 x 2 = 1368.66 Da

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z = 684.83 - 684.33 = 0.5

•Calculate the charge state (z): 

   z=m/ m/z
• z = 1 / 0.5 = 2 the peptide ion has a charge of +2

•Calculate the ion mass (m)

  m=(m/z)×z
m = 684.33 x 2 = 1368.66 Da

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) = 1368.66 - 2.0146 = 1366.6454 Da
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Find the mass and the charge of ion m/z 392.89

Monoisotopic peak

Peak spacing



25MSK Confidential — do not distribute

Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z =

•Calculate the charge state (z): 

   z=m/ m/z
• z =  the peptide ion has a charge of 

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  



26MSK Confidential — do not distribute

Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z =

•Calculate the charge state (z): 

   z=m/ m/z
• z = the peptide ion has a charge of 

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z = 393.22 – 392.89 = 0.33

•Calculate the charge state (z): 

   z=m/ m/z
• z =

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z = 393.22 – 392.89 = 0.33

•Calculate the charge state (z): 

   z=m/ m/z
• z = 1 / 0.33 = 3 the peptide ion has a charge of +3

•Calculate the ion mass (m)

  m=(m/z)×z
m =

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z = 393.22 – 392.89 = 0.33

•Calculate the charge state (z): 

   z=m/ m/z
• z = 1 / 0.33 = 3 the peptide ion has a charge of +3

•Calculate the ion mass (m)

  m=(m/z)×z
m = 393.22 x 3 = 1191.57 Da

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) =  
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m= C13 - C12 = 1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z = 393.22 – 392.89 = 0.33

•Calculate the charge state (z): 

   z=m/ m/z
• z = 1 / 0.33 = 2 the peptide ion has a charge of +3

•Calculate the ion mass (m)

  m=(m/z)×z
m = 393.22 x 3 = 1191.57 Da

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass = m − (z × 1.0073) = 1191.57 – 3.0219 = 1188.5 Da
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Find the mass and the charge of ion m/z 513.30
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Find the mass and the charge of ion m/z 513.30

Monoisotopic peak

Peak spacing
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Assigning an ion z and m from a MS spectrum
•Calculate the charge (z) of the ion:

•Look for a cluster of peaks (isotopic pattern)
•These peaks are closely spaced and represent the same peptide but with isotopes of carbon (C12 and C13)

•Identify the monoisotopic peak 
•usually the leftmost peak, the peptide with all C12

•Calculate the mass difference (m) between 2 adjacent peaks
• m=C13-C12=1 Dalton

•Calculate the peak spacing  m/z
• Measure the difference in the m/z values between 2 adjacent isotopic peaks in the cluster

•  m/z=513.30-513.80=0.5

•Calculate the charge state (z): 

   z=m/ m/z
• Z=1/0.5=2

• The peptide ion has a charge of +2

•Calculate the ion mass (m)

  m=(m/z)×z
m=513.30 X 2 =1036.6 Da

• Calculate the neutral mass (m-(z x 1.0073))
• Proton mass=1.0073

• Neutral mass=m−(z×1.0073) = 1368.66-2.0146=1024.58 Da
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How do we calculate the charge and mass of a protein?

2020 © The Authors.2020Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)

• In an ESI spectrum, each observed peak corresponds to the same 

protein with a different charge

• f you have two neighboring peaks at m/z values m1 and m2​ (where 

m2>m1), the lower m/z peak corresponds to charge z1, and the 

higher m/z peak corresponds to z1−1.

• Calculate the charge of the lower m/z peak

• z1 = (m2 -1) / (m2 – m1)

• Calculate the protein neutral mass M

• M=(m1 x z1) – (z1 x 1.0073)
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How do we identify a peptide sequence?

2020 © The Authors.2020Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)
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How do we identify a peptide sequence?

MS spectrum

Chromatogram
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How do we identify a peptide sequence?

MS spectrum

MS spectrum
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How do we identify a peptide sequence?

MS spectrum

MS/MS spectrum
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How do we identify a peptide sequence? 

2020 © The Authors.2020Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)

• This fragmentation generates MS/MS spectra, with incomplete ladders of peaks
 
• The spacing among peaks correspond to amino acid masses 

MS/MS Spectrum
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How we identify peptides from MS spectra?
• Database identification 

• uses software to simulate enzymatic digestion of all proteins in the database to create a peptide list

• Each peptide is theoretically fragmented to create predicted MS/MS spectra

• Each experimental spectrum is compared to all candidate theoretical spectra 

• The software score how well each theoretical spectrum matches the experimental one

• Each spectrum is assigned the best matching peptide

• Peptides matches across all spectra are grouped to identify proteins



41MSK Confidential — do not distribute 41MSK Confidential — do not distribute

How we identify peptides from MS spectra?
• To ensure matches are not due to random chances:

• Search is also run against a decoy database (reversed or scrambled sequence)

• FDR=false matches/total matches 

• Typically set at 1% (high confidence identification)



42MSK Confidential — do not distribute

How to identify peptides and proteins from spectra?

Raw MS/MS spectra

Protein database (FASTA)

In silico digestion (trypsin)

Generates theoretical peptides and fragment ions

Match experimental spectra to theoretical one

Score matches-assigned peptides

Group peptides-identify proteins

Control FDR using decoy database
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Outline

• Quantification methods

• Instruments

• Introduction to mass spectrometry-based proteomics

• Interpretation of mass spectra

• Applications

• Paper discussion
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High resolution Mass Spectrometers at MSKCC

TimsTOF Astral

Lumos/Eclipse

ChrisTOF

Stella
Lucifer/Hope
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Inside of a Mass Spectrometer
TOF

Orbitrap
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Liquid chromatography coupled to mass spectrometry

2020 © The Authors.2020Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)
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Ion source
• Ionizes the liquid or solid samples using different techniques

• The sample is turned into a gas and charged with electric and magnetic fields

2020 © The Authors.2020Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)



48MSK Confidential — do not distribute 48MSK Confidential — do not distribute

Electrospray Ionization (ESI)
•The liquid containing the peptides flow through a micrometer-sized needle held at a high voltage (2–4 
kV). 
•Upon reaching the needle, the liquid disintegrates into extremely small, highly charged and rapidly 
evaporating charged droplets, leaving peptide ions in the gas phase. 
•John Fenn received the Nobel Prize for this discovery, the exact mechanisms are not completely 
understood.
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Matrix Assisted Laser Desorption Ionization
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What are the tasks of a mass spectrometer in proteomics?
• Create ions from analyte molecules

• Separate the ions based on charge and mass

• Detect ions and determine their mass-to-charge (m/z) (precursor ion)

• Select and fragment ions of interest to provide structural information (MS/MS) (fragment ion)

2020 © The Authors.2020Published by Portland Press Limited under the Creative Commons Attribution License 4.0 (CC BY-NC-ND)
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Mass analyzers
• Separate ions based on their mass-to-charge ratios (m/z)

• Light and charged fragments will be accelerated by the fields and go through the analyzer faster

• Differ in the principle they use for separating ions

• Quadrupole

• Time of flight (TOF)

• Orbitrap 
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Mass Spectrometer performance factors

Mass accuracy: how accurate is the mass measurement

Resolution: how well separated are the peaks from each other

Sensitivity: how small an amount can be analyzed
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Resolution and mass accuracy
• Resolution is the ability to separate spectra in MS

• The term resolving power is often used to describe the ability of a mass spectrometer to resolve adjacent peaks in 

a mass spectrum
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Outline

• Quantification methods

• Instruments

• Introduction to mass spectrometry-based proteomics

• Interpretation of mass spectra

• Applications

• Paper discussion



Methods to quantify proteins by mass spectrometry

Relative quantification:

• TMT (Tandem Mass Tag) labeling

• SILAC and superSILAC mix

• Label-free quantification (DDA, DIA)

Absolute quantification:

• Protein quantification relative to a peptide 

standard



Methods to quantify proteins by mass spectrometry

Relative quantification:

• TMT (Tandem Mass Tag) labeling

• SILAC and superSILAC mix

• Label-free quantification (DDA, DIA)

Absolute quantification:

• Protein quantification relative to a peptide 

standard



Stable Isotope Labeling of Amino acids in Culture



Stable Isotope Labeling of Amino acids in Culture



Methods to quantify proteins by mass spectrometry

Relative quantification:

• TMT (Tandem Mass Tag) labeling

• SILAC and superSILAC mix

• Label-free quantification (DDA, DIA)

Absolute quantification:

• Protein quantification relative to a peptide 

standard
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Chemical labeling-Tandem Mass Tag



Methods to quantify proteins by mass spectrometry

Relative quantification:

• TMT (Tandem Mass Tag) labeling

• SILAC and superSILAC mix

• Label-free quantification (DDA, DIA)

Absolute quantification:

• Protein quantification relative to a peptide 

standard



Data Dependent and Data Independent Acquisition



Methods to quantify proteins by mass spectrometry

Relative quantification:

• TMT (Tandem Mass Tag) labeling

• SILAC and superSILAC mix

• Label-free quantification (DDA, DIA)

Absolute quantification:

• Protein quantification relative to a peptide 

standard
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Outline

• Quantification methods

• Instruments

• Introduction to mass spectrometry-based proteomics

• Interpretation of mass spectra

• Applications

• Paper discussion
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Questions to address with proteomics

• What is the protein composition of a sample?

• How are proteins modified?

• What are the interaction partners of a protein? What is 

the structure of proteins and their complexes?

MaraLaura

Juliana
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Applications of proteomics

• Measure post-translational modifications (PTM) of proteins (phosphorylation, 

ubiquitination…)

• Identify

• Interaction partners of proteins 

• proteins in specific spatial locations

• HLA associated peptides

• Targets of compounds

• Identity proteins and measure their abundance in a sample

• Investigate protein structure by cross-linking mass 

spectrometry
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Capabilities of the Proteomics Core

• Measure post-translational modifications (PTM) of proteins (phosphorylation, 

ubiquitination…)

• Identify

• Interaction partners of proteins 

• proteins in specific spatial locations

• HLA associated peptides

• Targets of compounds

• Identity proteins and measure their abundance in a sample

• Investigate protein structure by cross-linking mass 

spectrometry
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Proteomics and lipidomic to study Frontotemporal Dementia-GRN 
pathology

FTD-GRN (n=9)Control (n=6)

Proteomics Lipidomics

Yohannes Ambaw, Bob Farese, Tobi Walther



Data processing and 

Visualizations  

Spectronaut

Perseus

 

Workflow to acquire brain proteomics data

LC-MS/MS 

Human 

brains

Sample 

Collection 

control

FTD-GRN

Orbitrap

Astral

Sample 

processing

Homogenization

Digestion

Clean up

Laura Tuffery, Zhuoning Li
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Distinct proteome of healthy versus FTD-GRN brains

Laura Tuffery, Zhuoning Li
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Proteomics to study the etiology of frontotemporal dementia 

MaraLaura

Juliana

Synaptic membrane and 

signaling

Neuron projection and 

neuronal cell body

Neurodegeneration

Inflammation

control

FTD-GRN

Lysosome, lytic vacuole

Lipid metabolism
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Capabilities of the Proteomics Core

• Measure post-translational modifications (PTM) of proteins (phosphorylation, 

ubiquitination…)

• Identify

• Interaction partners of proteins 

• proteins in specific spatial locations

• HLA associated peptides

• Targets of compounds

• Identity proteins and measure their abundance in a sample

• Investigate protein structure by cross-linking mass 

spectrometry
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Determining the time-resolved phosphoproteomic signature 
of RAS inhibition in pancreatic cancer

DMSO RMC-7977 24 h RMC-7977 8 h RMC-79771 h 

AsPC-1 (PDAC, KRAS G12D)

RMC-7977 4 h RMC-7977=RAS-GTP inhibitor

−
lo

g
1
0

(p
v
a
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e
)

RAS inhibition impairs PI3K signaling

Michelangelo Marasco, Neal Rosen Log2 (1hr) / (NT) Log2 (4hr) / (NT) Log2 (8hr) / (NT) Log2 (24hr) / (NT)

diffexpressed

a DOWN

a NO

a UP
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Capabilities of the Proteomics Core

• Measure post-translational modifications (PTM) of proteins (phosphorylation, 

ubiquitination…)

• Identify

• Interaction partners of proteins 

• proteins in specific spatial locations

• HLA associated peptides

• Targets of compounds

• Identity proteins and measure their abundance in a sample

• Investigate protein structure by cross-linking mass 

spectrometry
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Defining the Glut4 vesicle composition by proximity biotinylation

APEX2

Biotinylation zone
(~ 20 nM)

membrane

HA-Glut4-APEX2

B

B

B

B

B B

B Lyse cells

Streptavidin beads

Mass Spectrometry

Adapted from Han S and all, Cell Chemical Biology, 2017

APEX2

Biotinylation zone
(~ 20 nM)

membrane

HA-Glut4-APEX2

H2O2

Anuttoma Ray, Tim McGraw
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Proximity biotinylation identifies known mediators of Glut4 trafficking

Ray at all, J Cell Sci, 2023
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Capabilities of the Proteomics Core

• Measure post-translational modifications (PTM) of proteins (phosphorylation, 

ubiquitination…)

• Identify

• Interaction partners of proteins 

• proteins in specific spatial locations

• HLA associated peptides

• Targets of compounds

• Identity proteins and measure their abundance in a sample

• Investigate protein structure by cross-linking mass 

spectrometry
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Identification of HLA associated peptides by immunopeptidomics

J. Lee and D. Sheinberg
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Capabilities of the Proteomics Core

• Measure post-translational modifications (PTM) of proteins (phosphorylation, 

ubiquitination…)

• Identify

• Interaction partners of proteins 

• proteins in specific spatial locations

• HLA associated peptides

• Targets of compounds

• Identity proteins and measure their abundance in a sample

• Investigate protein structure by cross-linking mass 

spectrometry
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CQ31 is a potent prolidase (PEPD) inhibitor
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Approach to discover other CQ31 targets 

Dan Bachovchin 



CQ31 inhibits PEPD and XPNPEP1
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Capabilities of the Proteomics Core

• Measure post-translational modifications (PTM) of proteins (phosphorylation, 

ubiquitination…)

• Identify

• Interaction partners of proteins 

• proteins in specific spatial locations

• HLA associated peptides

• Targets of compounds

• Identity proteins and measure their abundance in a sample

• Investigate protein structure by cross-linking mass 

spectrometry
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