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C
ompressed sensing (CS) aims to reconstruct signals and images from signifi-
cantly fewer measurements than were traditionally thought necessary.
Magnetic resonance imaging (MRI) is an essential medical imaging tool with
an inherently slow data acquisition process. Applying CS to MRI offers
potentially significant scan time reductions, with benefits for patients and

health care economics.
MRI obeys two key requirements for successful application of CS: 1) medical imagery

is naturally compressible by sparse coding in an appropriate transform domain (e.g., by
wavelet transform), and 2) MRI scanners naturally acquire encoded samples, rather than
direct pixel samples (e.g., in spatial-frequency encoding).

In this article we review the requirements for successful CS, describe their natural fit to
MRI, and then give examples of four interesting applications of CS in MRI. We emphasize
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an intuitive understanding of CS by describing the CS recon-
struction as a process of interferenc cancellation. We also empha-
size an understanding of the driving factors in applications,
including limitations imposed by MRI hardware, by the charac-
teristics of different types of images, and by clinical concerns.

PRINCIPLES OF MAGNETIC RESONANCE IMAGING
We first briefly sketch properties of MRI related to CS. More com-
plete descriptions of MRI can be found in the excellent survey
paper by Wright [1] from this magazine and in MRI textbooks.

NUCLEAR MAGNETIC RESONANCE PHYSICS
The MRI signal is generated by protons in the body, mostly
those in water molecules. A strong static field B0 polarizes the
protons, yielding a net magnetic moment oriented parallel to
the static field. Applying a radio frequency (RF) excitation field
B1 produces a magnetization component m transverse to the
static field. This magnetization precesses at a frequency propor-
tional to the static field strength. The transverse component of
the precessing magnetization emits a radio frequency signal
detectable by a receiver coil. The transverse magnetization m(�r)
at position �r and its corresponding emitted RF signal can be
made proportional to many different physical properties of tis-
sue. One property is the proton density, but other properties [1]
can be emphasized as well. MR image reconstruction attempts
to visualize m(�r), depicting the spatial distribution of the trans-
verse magnetization. 

SPATIAL ENCODING
MR systems encode spatial information in the MR signal by
superimposing additional magnetic fields on top of the strong
static field. These so-called gradient fields vary linearly in space
and are denoted as Gx, Gy, and Gz corresponding to the three
Cartesian axes. When Gx is applied, the magnetic field will vary
with position as B(x) = B0 + Gxx, causing the precession fre-
quency to vary linearly in space. As a result, magnetization at
positive x positions will precess at a higher frequency than mag-
netization at negative x positions.

Spatial encoding using gradients can be understood by anal-
ogy with the piano. The pitch of a piano note varies linearly with
the position of the key being struck; the sound one hears is the
net sum of all notes emitted. A skilled musician listening to the
emitted polyharmonic sound can hear which notes are playing
and say which keys were pressed, and how forcefully. The MR
signal generated in the presence of a gradient field is likewise a
polyphonic mixture. The spatial positions within the patient’s
body are like piano keys. The emitted RF signal from each posi-
tion is like a “note,” with a frequency linearly varying with posi-
tion. The polyharmonic MR signal superimposes the different
“notes”; they encode the spatial position and the magnetization
strength at those positions. A signal processing engineer will
recognize the Fourier relation between the received MR signal
and the magnetization distribution and that the magnetization
distribution can be decoded by a spectral decomposition. 

Multidimensional spatial encoding can be further under-
stood by introducing the notion of k-space. Gradient-induced
variation in precession frequency causes a location-depend-
ent linear phase dispersion to develop. Therefore the receiver
coil detects a signal encoded by the linear phase. It can be
shown [1] that the signal equation in MRI has the form of a
Fourier integral,

s(t) =
∫

R
m(�r)e−i 2π �k (t)·�r dr,

where k(t) ∝ ∫ t
0 G(s)ds. In words, the received signal at time t is

the Fourier transform of the object m(�r) sampled at the spatial
frequency �k(t). Such Fourier encoding is fundamentally encod-
ed and very different than traditional optical imaging where
pixel samples are measured directly. 

The design of an MRI acquisition method centers on devel-
oping the gradient waveforms �G(t) = [Gx(t), Gy(t), Gz(t)]T

that drive the MR system. These waveforms, along with the
associated RF pulses used to produce the magnetization, are
called a pulse sequence. The integral of the �G(t) waveforms
traces out a trajectory �k(t) in spatial frequency space, or k-
space. For illustration, consider the simple example in Figure 1

[FIG1] The temporal MRI signal directly samples the spatial frequency domain of the image. Gradient fields cause a linear frequency
distribution across the image, which produces a linear phase accrual with time. The received signals are spatial frequency samples of
the image. The corresponding spatial frequencies are proportional to the gradient waveform area. The gradient is limited in amplitude,
Gmax, and slew rate, Smax, which are both system specific.
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where, immediately after the RF excitation, a Gx gradient field
is applied followed by a Gy gradient. The phases of the magneti-
zation are shown at different time points, along with the k-
space trajectory and the MR signal. This encoded sampling and
the freedom in choosing the sampling trajectory play a major
role in making CS ideas naturally applicable to MRI.

IMAGE ACQUISITION
Constructing a single MR image commonly involves collecting a
series of frames of data, called acquisitions. In each acquisition,
an RF excitation produces new transverse magnetization, which
is then sampled along a particular trajectory in k-space. Due to
various physical and physiological constraints [1], most MRI
imaging methods use a sequence of acquisitions and each one
samples part of k-space. The data from this sequence of acquisi-
tions are then used to reconstruct an image. Traditionally the k-
space sampling pattern is designed to meet the Nyquist
criterion, which depends on the resolution and field of view
(FOV) as shown in Figure 2. Violation of the Nyquist criterion
causes image artifacts in linear reconstructions. The appearance
of such artifacts depends on the details in the sampling pattern,
as discussed below. 

In MRI, it is possible to selectively excite a thin slice through
the 3-D volume. This reduces the data collection to two dimen-
sions in k-space for each slice. The volumetric object is imaged
by exciting more slices, known as a multislice acquisition. When
a volume or a thick slab is excited, a 3-D k-space volume must
be sampled. Each of these approaches is very common and has
advantages in specific applications.

We have considerable freedom in designing the k-space
trajectory for each acquisition. Some trajectories are illustrat-
ed in Figure 2. By far the most popular trajectory uses

straight lines from a Cartesian grid. Most pulse sequences
used in clinical imaging today are Cartesian. Reconstruction
from such acquisitions is wonderfully simple: apply the
inverse fast Fourier transform (FFT). More importantly,
reconstructions from Cartesian sampling are robust to many
sources of system imperfections. 

While Cartesian trajectories are by far the most popular,
some other trajectories are in use, including sampling along
radial lines and sampling along spiral trajectories. Radial
acquisitions are less susceptible to motion artifacts than
Cartesian trajectories and can be significantly undersampled
[2], especially for high contrast objects [3]. Spirals make effi-
cient use of the gradient system hardware and are used in
real-time and rapid imaging applications [4]. Efficient recon-
struction from such non-Cartesian trajectories requires
using filtered back-projection or interpolation schemes (e.g.,
gridding [5]).

RAPID IMAGING
MR acquisition is inherently a process of traversing curves in
multidimensional k-space. The speed of k-space traversal is lim-
ited by physical constraints. In current systems, gradients are
limited by maximum amplitude and maximum slew-rate (see
Figure 1). In addition, high gradient amplitudes and rapid
switching can produce peripheral nerve stimulation [1]. Since
this must be avoided, physiology provides a fundamental limit to
gradient system performance.

This fundamental limit has caused many researchers to
search for methods to reduce the amount of acquired data with-
out degrading image quality. Many such efforts are inspired by
the idea that MRI data are redundant. Such redundancy can be
created by design. For example, using multiple receiver coils [6],
[7] provides more useful data per MR acquisition, requiring
fewer acquisitions per scan. Redundancy can be a known or
modeled signal property such as spatial-temporal correlation
[8]–[11] or a redundancy learned and extracted from the data
itself [12]–[14]. 

All efforts at reduced data acquisition might well be labeled
“compressive sampling,” however, the underlying phenomena
being exploited are often quite different. In this article, we focus
on approaches rooted in the theory described in [15]–[17]; such
approaches are called here CS approaches. Much ongoing work
is based on such approaches [18]–[23].

THE SPARSITY/COMPRESSIBILITY OF MR IMAGES
Natural images can often be compressed with little or no percep-
tible loss of information [24]. The world-wide-Web demonstrates
this billions of times weekly. Transform-based compression is a
widely used strategy adopted in the JPEG, JPEG-2000, and MPEG
standards. This strategy first applies a sparsifying transform,
mapping image content into a vector of sparse coefficients, and
then encodes the sparse vector by approximating the most signif-
icant coefficients and ignoring the smaller ones. The discrete
wavelet transform (DWT) is a common sparsifying transform and
is at the heart of JPEG-2000 [24].

[FIG2] The Nyquist criterion sets the required k-space coverage,
which can be achieved using various sampling trajectories. Image
resolution is determined by the extent of the k-space coverage.
The supported field of view is determined by the sampling
density. Violation of the Nyquist criterion causes artifacts in
linear reconstructions, which depend on the sampling pattern.
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Most MR images are sparse in an
appropriate transform domain. To
begin with, consider Figure 3.
Angiograms, which are images of
blood vessels, contain primarily con-
trast-enhanced blood vessels in a sea
of void and already look sparse in the
pixel representation. They can be
made even sparser by spatial finite-
differencing. More complex imagery,
such as brain images, can be sparsi-
fied in more sophisticated domains,
such as the wavelet domain. Sparse
representation is not limited to still
imagery. Often videos can safely be
compressed much more heavily. This
is demonstrated by the success of
MPEG. Dynamic MR images are
highly compressible as well. For
example, the quasi-periodicity of
heart images has a sparse temporal
Fourier transform. 

THE NATURAL FIT
BETWEEN CS AND MRI
The transform sparsity of MR images
and the coded nature of MR acquisi-
tion are two key properties enabling
CS in MRI. Figure 4 illustrates these
elements, making MRI a natural CS
system. We now give a more formal
discussion of the requirements.

COMPRESSED SENSING THEORY
CS emerged in the literature of information theory and approxi-
mation theory as an abstract mathematical idea [15]–[17]. One
measures a relatively small number of “random” linear combi-
nations of the signal values—much smaller than the number of
signal samples nominally defining it. However, because the
underlying signal is compressible, the nominal number of signal
samples is a gross overestimate of the “effective” number of
“degrees of freedom” of the signal. As a result, the signal can be
reconstructed with good accuracy from relatively few measure-
ments by a nonlinear procedure.

In MRI, we look at a special case of CS where the sampled
linear combinations are simply individual Fourier coefficients
(k-space samples). In that setting, CS is claimed to be able to
make accurate reconstructions from a small subset of k-space,
rather than an entire k-space grid. The original paper by Candès,
Romberg, and Tao [15] was motivated in large part by MRI since
it looked at random undersampling of Fourier coefficients.

Theoretical and technical aspects of CS are discussed else-
where in this special issue. However, the key points can be
reduced to nontechnical language. A successful application of
CS has three requirements: 

[FIG3] Transform sparsity of MR images. (a) Fully sampled images are mapped by a
sparsifying transform to a (b) transform domain; the several largest coefficients are preserved
while all others are set to zero; the transform is inverted forming a (c) reconstructed image.
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■ Transform sparsity: The desired image should have a
sparse representation in a known transform domain (i.e., it
must be compressible by transform coding).
■ Incoherence of undersampling artifacts: The artifacts
in linear reconstruction caused by k-space undersam-
pling should be incoherent (noise like) in the sparsifying
transform domain.
■ Nonlinear reconstruction: The image should be recon-
structed by a nonlinear method that enforces both sparsity of
the image representation and consistency of the reconstruc-
tion with the acquired samples.
The first condition is clearly met for MR images, as explained

above. The fact that incoherence is important, that MR acquisi-
tion can be designed to achieve incoherent undersampling, and
the fact that there are efficient and practical algorithms for
reconstruction will not, at this point in the article, be at all obvi-
ous. So we turn to a very simple example.

INTUITIVE EXAMPLE: INTERFERENCE CANCELLATION
To develop intuition for the importance of incoherence and the
feasibility of CS, consider the one-dimensional (1-D) case illus-
trated in Figure 5. A sparse signal, Figure 5(a), is sub-Nyquist
(eight-fold) sampled in k-space [Figure 5(b)]. Simply zero-filling
the missing values and inverting the Fourier transform results
in artifacts that depend on the sampling pattern. With equi-
spaced undersampling [Figure 5(d)], this reconstruction gener-
ates a superposition of shifted signal copies. In this case,
recovery of the original signal is hopeless, as each replica is an
equally likely candidate.

With random undersampling, the situation is very different.
The zero-filled Fourier reconstruction exhibits incoherent arti-
facts that actually behave much like additive random noise
[Figure 5(c)]. Despite appearances, the artifacts are not noise;
rather, undersampling causes leakage of energy away from each
individual nonzero value of the original signal. This energy

appears in other reconstructed signal coefficients, including
those which had been zero in the original signal.

It is possible, starting from knowledge of the k-space
sampling scheme and the underlying original signal, to cal-
culate this leakage analytically. This observation immedi-
ately suggests a nonlinear iterative technique which
enables accurate recovery, even though the signal in Figure
5(a) was eight-fold undersampled.

A simple heuristic recovery procedure is illustrated in Figure
5(e)–(h). It applies iterative thresholding, picking the largest
components of the signal, calculating the interference that
would be caused by the presence of those components and sub-
tracting it. After subtracting the calculated interference, smaller
components, previously submerged in interference, rise above it
and can be recovered [25].

INCOHERENT SAMPLING IN MRI
Designing a CS scheme for MRI can now be viewed as select-
ing a subset of the frequency domain that can be efficiently
sampled and is incoherent with respect to the sparsifying
transform. Before we formally introduce the notion of inco-
herence, we note that narrow optimization of incoherence
must not be pushed too far. Some of the most powerful and
elegant results about CS assume one samples a completely
random subset of k-space, which indeed gives very low coher-
ence [15]. The motivation for random sampling can be easily
and intuitively understood using our 1-D example given earli-
er. Although random sampling is an inspiring and instructive
idea, sampling a truly random subset of k-space is generally
impractical. Any practical sampling trajectory must satisfy
hardware and physiological constraints. Therefore sampling
trajectories must follow relatively smooth lines and curves.
Sampling schemes must also be robust to nonideal, real-life
situations. Non-Cartesian sampling schemes can be highly
sensitive to system imperfections.

[FIG5] Heuristic procedure for reconstruction from undersampled data. A sparse signal (a) is 8-fold undersampled in its 1-D k-space
domain (b). Equispaced undersampling results in signal aliasing (d) preventing recovery. Pseudo-random undersampling results in
incoherent interference (c). Some strong signal components stick above the interference level, are detected and recovered by
thresholding (e) and (f). The interference of these components is computed (g) and subtracted (h), thus lowering the total interference
level and enabling recovery of weaker components.
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Furthermore, a uniform random distribution of samples in
spatial frequency does not take into account the energy distribu-
tion of MR images in k-space, which is far from uniform. Most
energy in MR imagery is concentrated close to the center of k-
space and rapidly decays towards the periphery of k-space. 

Therefore, realistic designs for
CS in MRI should have variable-
density sampling with denser sam-
pling near the center of k-space,
matching the energy distribution
in k-space. Such designs should
also create k-space trajectories that
are somewhat irregular and partial-
ly mimic the incoherence properties of pure random sampling,
yet allow rapid collection of data. To compare designs, we need a
quantitative notion of incoherence that will allow us to compare
data acquisition schemes and their performance.

MEASURING INCOHERENCE
We first measure incoherence for cases where the image is
already sparse in the pixel domain, so no further sparsification is
needed. Suppose we sample a subset S of k-space. Let
FS denote the Fourier transform evaluated just at frequencies
in subset S. Let F∗

S denote the adjoint operation, which can be
represented as zero-filling followed by inverse Fourier trans-
form. Define the point spread function (PSF) as, simply
PSF (i, j) = (F∗

SFS)(i, j). Under complete Cartesian sampling,
the PSF is the identity and off-diagonal terms vanish.
Undersampling k-space induces nonzero off-diagonal terms in
PSF (i, j). A nonzero at (i, j) means that linear reconstruction
of pixel i suffers interference by a unit impulse in pixel j �= i. In
short, the PSF measures the tendency of zero-filled linear
reconstruction to leak energy from the true underlying source
pixel to other pixels. This energy shows up as blurring or alias-
ing artifacts in the image. The goal of irregular sampling is to
spread such leakage quasi-uniformly across the image, so that
the maximal leakage is small. Accordingly, we define coherence
as the maximum off-diagonal entry in a properly normalized
PSF. This is analogous to notions of sidelobe-to-peak ratio the
reader will have encountered in many branches of signal pro-
cessing. Figure 6 shows some PSFs of irregular trajectories. 

Most MR images are sparse in a transform domain other than
the pixel domain. In such settings, we use the notion of the trans-
form point spread function (TPSF). Let � denote the sparsifying
transform, and then define TPSF(i, j) = (�∗FS

∗FS�)(i, j) .
With this notation, coherence is formally measured by
maxi�= j |TPSF(i, j)|, the maximum size of any off-diagonal entry
in the TPSF. Small coherence, e.g., incoherence, is desirable. More
discussion about the TPSF can be found in [18].

INCOHERENT MRI ACQUISITION
We now consider several schemes and their associated coher-
ence properties. In two-dimensional (2-D) Cartesian MRI, com-
plete Cartesian sampling is often implemented as a series of npe

acquisitions (called phase encodes) along very simple trajecto-

ries: parallel equispaced lines. This scheme yields nf e k-space
samples per trajectory (called frequency encodes), producing a
Cartesian grid of npe × nf e samples overall. In 3-D, there is an
additional encoding dimension (called slice encode) requiring
npe × nse line acquisitions resulting in npe × nse × nf e grid

size. The sampling along a trajecto-
ry, e.g., the frequency encodes, are
rarely a limiting factor in terms of
sampling-rate and in terms of the
scan time. The number of acquisi-
tion lines, e.g., the phase and slice
encodes, is limiting.

This immediately suggests
speeding up a scan by simply dropping entire lines from an
existing complete grid. This is indeed practical: one has com-
plete freedom in choosing the lines to acquire, and the number
of lines is what determines the overall scan time, so scan time
reduction is exactly proportional to the degree of undersam-
pling. In fact, implementation of this scheme requires only
minor modifications to existing pulse sequences—simply skip
certain acquisitions. Since most pulse sequences in clinical use
are Cartesian, it is very convenient to implement a CS acquisi-
tion this way.

Undersampling parallel lines suffers a drawback: the achiev-
able coherence is significantly worse than with truly random k-
space sampling. In 2-D imaging, only one dimension is
undersampled, so we are only exploiting 1-D sparsity. This
reduced incoherence is visible in Figure 6(a). In 3-D Cartesian
imaging the situation greatly improves [see Figure 6(b)] since
two dimensions are undersampled, and 2-D cross sections are
significantly more compressible than their 1-D profiles, so the
effectiveness of CS is much higher.

Getting completely away from a Cartesian grid allows far
greater flexibility in designing sampling trajectories with low
coherence. Popular non-Cartesian schemes include sampling
along radial lines or spirals. Traditionally, undersampled radial
trajectories [2], [3] and variable density spirals [26] have been
used to accelerate acquisitions, because the artifacts from linear
reconstruction seem benign and incoherent, much like adding
noise to the image. From our perspective, we recognize that
such artifacts are benign because the corresponding PSFs are
incoherent. Figure 6(c)–(f) shows the PSF of several such trajec-
tories. These trajectories are excellent candidates for CS: with
appropriate nonlinear reconstruction, the seeming noise-like
artifacts can be suppressed without degrading image quality.

A dynamic sequence of images is a multidimensional signal
with two or three spatial coordinates and time as an additional
dimension (See Figure 7(a), top panel). Dynamic MRI data are
acquired in the spatial frequency versus time (k − t ) domain.
Instead of sampling the k − t domain on a regular set of congru-
ent lines (Figure 7(c) top), randomly ordering the lines (Figure
7(c) bottom) randomly samples the k − t space [10], [19] and is
incoherent with respect to the spatial versus temporal frequency
x − f domain. So random ordering of lines is an effective and
inexpensive way to incoherently sample dynamic data. Of
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course, the same ideas of random ordering apply to non-
Cartesian sampling such as radial lines and spirals, improving
incoherence and better exploiting the hardware.

IMAGE RECONSTRUCTION
We now briefly describe a useful formal approach for recon-
struction. Represent the reconstructed image by a complex vec-
tor m, let � denote the linear operator that transforms from
pixel representation into the chosen representation. Let FS

denote the undersampled Fourier transform, corresponding to
one of the k-space undersampling schemes discussed earlier.
Our reconstructions are obtained by solving the following con-
strained optimization problem:

minimize ||�m||1
s.t. ||FSm − y || 2 < ε,

where y is the measured k-space data from the MRI scanner and
ε controls the fidelity of the reconstruction to the measured
data. The threshold parameter ε is roughly the expected noise
level. Here the �1 norm ||x||1 = ∑

i |xi|.
Minimizing the �1 norm of ||�m||1 promotes sparsity

[15]–[17]. The constraint ||FSm − y||2 < ε enforces data
consistency. In words, among all solutions that are consis-
tent with the acquired data, we want to find a solution that
is compressible by the transform � . It is worth mentioning
that when finite-differencing is used as the sparsifying
transform, the objective becomes the well-known total vari-
ation (TV) penalty [27].

The reader may well ask how such formal optimization-based
reconstructions relate to the informal idea of successive inter-
ference cancellation. In fact, iterative algorithms for solving
such formal optimization problems in effect perform
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[FIG7] (a) Dynamic MRI is a multidimensional signal with two or three spatial coordinates and time as an additional dimension.
Dynamic images have a sparse representation in an appropriate transform domain. (b) Traditional k − t sequential sampling.
(c) Random ordering is an efficient way to incoherently sample the k − t space.
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thresholding and interference cancellation at each iteration, so
there is a close connection between our exposition and more
formal approaches [25], [27], [29].

APPLICATIONS OF COMPRESSED SENSING TO MRI
We now describe four potential applications of CS in MRI. The
three requirements for successful CS come together differently
in different applications. Of partic-
ular interest is the way in which
different applications face differ-
ent constraints, imposed by MRI
scanning hardware or by patient
considerations, and how the
inherent freedom of CS to choose
sampling trajectories and sparsify-
ing transforms plays a key role in
matching the constraints.

RAPID 3-D ANGIOGRAPHY
Angiography is important for diagnosis of vascular disease.
Often, a contrast agent is injected, significantly increasing
the blood signal compared to the background tissue. In
angiography, important diagnostic information is contained
in the dynamics of the contrast agent bolus. Capturing the
dynamics requires high spatial and temporal resolution of a
large FOV, obviously a very difficult task. Today MR angiogra-
phy scans are often undersampled [3], [11], obtaining
improved spatial resolution and temporal resolution at the
expense of undersampling artifacts.

CS is particularly suitable for angiography. As shown in
Figure 3, angiograms are are inherently sparse in the pixel repre-
sentation and by spatial finite differencing. The need for high
temporal and spatial resolution strongly encourages undersam-
pling. CS improves current strategies by significantly reducing
the artifacts that result from undersampling.

In this example, we apply CS to 3-D Cartesian contrast-
enhanced angiography, which is the most common scheme
in clinical practice. Figure 8 illustrates the collection
scheme, acquiring equispaced parallel lines in k-space.

Choosing a pseudorandom subset with variable k-space den-
sity of 10% of those lines combines undersampling with low
coherence. Figure 8 shows a maximum intensity projection
(MIP) through the 3-D volume of several reconstructions. CS
is able to significantly accelerate MR angiography, enabling
better temporal resolution or alternatively improving the res-
olution of current imagery without compromising scan time.

The nonlinear reconstruction in
CS avoids most of the artifacts
that appear in linear reconstruc-
tion from undersampled data.

WHOLE-HEART
CORONARY IMAGING
X-ray coronary angiography is the
gold standard for evaluating coro-
nary artery disease, but it is inva-

sive. Multislice X-ray CT is a noninvasive alternative but
requires high doses of ionizing radiation. MRI is emerging as a
noninvasive, nonionizing alternative.

Coronary arteries are constantly in motion, making
high-resolution imaging a challenging task. The effects of
heart motion can be minimized by synchronizing acquisi-
tions to the cardiac cycle. The effect of breathing can be
minimized by tracking and compensating for respiratory
motion or by simply imaging during a short breath-held
interval. However, breath-held cardiac-triggered approaches
face strict timing constraints and very short imaging win-
dows. The number of acquisitions is limited to the number
of cardiac cycles in the breath-hold period. The number of
heart-beats per period is itself limited—sick patients cannot
be expected to hold their breath for long! Also, each acquisi-
tion must be very short to avoid motion blurring. In addi-
tion, many slices must be collected to cover the entire
heart. These constraints on breath-held cardiac triggered
acquisitions traditionally resulted in limited spatial resolu-
tion with partial coverage of the heart. Compressed sensing
can accelerate data acquisition, allowing the entire heart to
be imaged in a single held breath [30].

[FIG8] 3-D Contrast enhanced angiography. Right: Even with 10-fold undersampling CS can recover most blood vessel information
revealed by Nyquist sampling; there is significant artifact reduction compared to linear reconstruction; and a significant resolution
improvement compared to a low-resolution centric k-space acquisition. Left: The 3-D Cartesian random undersampling configuration.
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Figure 9 shows a diagram of the multislice acquisition. To
meet the strict timing requirements, an efficient spiral k-space
trajectory is used. For each cardiac trigger, a single spiral in
k-space is acquired for each slice. The timing limitations still
require two-fold k-space undersampling. Therefore we used
variable density spirals [26] which have an incoherent PSF
[Figure 6(e)], in which linear gridding reconstruction [5] pro-
duces artifacts that appear as added noise.

Coronary images are generally
piecewise smooth and are sparsi-
fied well by finite-differences. CS
reconstruction suppresses under-
sampling-induced interference
without degrading the image
quality. Figure 9 shows a compari-
son of the linear direct gridding
reconstruction and CS, on the
right coronary artery reformatted from a single breath-hold
whole-heart acquisition. The linear gridding reconstruction
suffers from apparent noise artifacts actually caused by under-
sampling. The CS reconstruction suppresses those artifacts,
without impairing the image quality.

BRAIN IMAGING
Brain scans are the most common clinical application of MRI.
Most brain scans use 2-D Cartesian multislice acquisitions. “The
Sparsity/Compressibilty of MR Images” showed that brain
images exhibit transform sparsity in the wavelet domain. The
ideas of CS promise to reduce collection time while improving
the resolution of current imagery.

We tested the application of CS to brain imaging by acquir-
ing a full Nyquist-sampled data set which we then retrospective-
ly undersampled. The 2-D Cartesian multislice sampling

trajectories are illustrated in Figure 10. For each slice we select-
ed a different random subset of 80 trajectories from 192 possible
trajectories, a speedup factor 2.4. Undersampling each slice dif-
ferently reduces coherence compared to sampling the same way
in all slices [18].

Figure 10 also shows the experimental results. An axial slice
of the multislice CS reconstruction is compared to full Nyquist
sampling, linear reconstruction from the undersampled data,

and linear reconstruction from a
low resolution (LR) acquisition tak-
ing the same amount of scan time.
CS exhibits both significant resolu-
tion improvement over LR at the
same scan time, and significant
suppression of the aliasing artifacts
compared to the linear reconstruc-
tion with the same undersampling.

K-T SPARSE: APPLICATION
TO DYNAMIC HEART IMAGING
Dynamic imaging of time-varying objects is challenging because
of the spatial and temporal sampling requirements of the
Nyquist criterion. Often temporal resolution is traded off against
spatial resolution. Artifacts appear in the traditional linear
reconstruction when the Nyquist criterion is violated. 

Now consider a special case: dynamic imaging of time-vary-
ing objects undergoing quasi-periodic changes. We focus here
on heart imaging. Since heart motion is quasi-periodic, the time
series of intensity in a single voxel is sparse in the temporal fre-
quency domain (see Figure 3). At the same time, a single frame
of the heart “movie” is sparse in the wavelet domain. A simple
transform can exploit both effects: apply a spatial wavelet trans-
form followed by a temporal Fourier transform [see Figure 7(a)].
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[FIG9] Single breath-hold whole-heart coronary artery imaging. (a) the imaging sequence timing diagram. (b) A slice through
the volume of the heart showing the right coronary artery (3). The incoherent artifacts of undersampled variable-density spirals
(white arrow) appear as noiselike interference in the linear gridding reconstruction (left). These artifacts are suppressed in the CS
reconstruction (right)  without compromising image quality. The slice shows: (1) aorta, (2) chest wall, (3) right coronary artery,
(4) right ventricle, (5) left ventricle, and (6) liver.
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Can we exploit the natural sparsity of dynamic sequences
to reconstruct a time-varying object sampled at significantly
sub-Nyquist rates? Consider the Cartesian sampling scheme
that acquires a single line in k-space for each time slice, fol-
lowing an orderly progression through the space of lines as
time progresses [see Figure 7(b)]. For our desired FOV and
resolution it is impossible to meet the spatial-temporal
Nyquist rate using this scheme. 

In fact, this approach is particularly inefficient for dynamic
imaging with traditional acquisition and reconstruction meth-
ods. Instead, we make one change: make the k-space line order-
ing random instead of orderly [10], [19]. The random ordering
comes much closer to randomly sampling k − t space [see
Figure 7(c)] and the sampling operator becomes much less
coherent with the sparsifying transform.

Figure 11 shows results from two experiments. The first
result used synthetic data: a motion phantom, periodically
changing in a cartoon of heart motion. The figure depicts
an image sequence reconstructed from a sampling rate four
times slower than the Nyquist rate, using randomly ordered
acquisition and nonlinear reconstruction. The second result
involved dynamic real-time acquisition of heart motion. The

given FOV (16 cm), resolution (2.5 mm), and repetition
time (4.4 ms) allows a Nyquist rate of 3.6 frames/s. This
leads to temporal blurring and artifacts in the traditionally
reconstructed image. By instead using random ordering and
CS reconstruction we were able to recover the dynamic
sequence at the much higher rate of 25 frames/s with sig-
nificantly reduced image artifact

CONCLUSIONS
We presented four applications where CS improves on current
imaging techniques. The concepts and approaches we discussed
may potentially allow entirely new applications of MRI—ones
currently thought to be intractable. 

CS-MRI is still in its infancy. Many crucial issues remain
unsettled. These include: optimizing sampling trajectories,
developing improved sparse transforms that are incoherent to
the sampling operator, studying reconstruction quality in terms
of clinical significance, and improving the speed of reconstruc-
tion algorithms. The signal processing community has a major
opportunity here. There are fascinating theoretical and practical
research problems, promising substantial payoffs in improved
medical care.

[FIG11] Dynamic imaging of quasi-periodic change. (a) Phantom  experiment showing a reconstruction from 4-fold undersampling.
(b) Dynamic acquisition of the heart motion showing a  reconstruction from 7-fold undersampling.
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[FIG10] CS exhibits better suppression of aliasing artifacts than linear reconstruction from incoherent sampling, improved resolution
over a low-resolution acquisition with the same scan time, and a comparable reconstruction quality to a full Nyquist-sampled set.
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