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SUMMARY

Over one million candidate regulatory elements have
been identified across the human genome, but nearly
all are unvalidated and their target genes uncertain.
Approaches based on human genetics are limited
in scope to common variants and in resolution by
linkage disequilibrium. We present a multiplex,
expression quantitative trait locus (eQTL)-inspired
framework for mapping enhancer-gene pairs by
introducing random combinations of CRISPR/Cas9-
mediated perturbations to each of many cells, fol-
lowed by single-cell RNA sequencing (RNA-seq).
Across two experiments, we used dCas9-KRAB to
perturb 5,920 candidate enhancers with no strong
a priori hypothesis as to their target gene(s),
measuring effects by profiing 254,974 single-
cell transcriptomes. We identified 664 (470 high-
confidence) cis enhancer-gene pairs, which were
enriched for specific transcription factors, non-
housekeeping status, and genomic and 3D confor-
mational proximity to their target genes. This
framework will facilitate the large-scale mapping of
enhancer-gene regulatory interactions, a critical yet
largely uncharted component of the cis-regulatory
landscape of the human genome.

INTRODUCTION

Consequent to an era of biochemical surveys of the human
genome (e.g., Encyclopedia of DNA Elements [ENCODE]) and
“common variant” human genetics (i.e., genome-wide associa-
tion study [GWAS] and expression quantitative trait locus [eQTL]
studies), we are awash in candidate regulatory elements and
phenotype-linked haplotypes, respectively (ENCODE Project
Consortium, 2012; MacArthur et al., 2017). Determining whether
and how each candidate regulatory element is truly functional, as

uuuuu

well as pinpointing which variant(s) are causal for each genetic
association, will require functional characterization of vast
numbers of sequences.

We and others have recently adapted cell-based CRISPR/
Cas9 genetic screens to evaluate candidate regulatory se-
quences in their native genomic context (Canver et al., 2015;
Diao et al., 2016, 2017; Fulco et al., 2016; Gasperini et al.,
2017; Klann et al., 2017; Korkmaz et al., 2016; Rajagopal et al.,
2016; Sanjana et al., 2016). However, two aspects of these
studies limit their scalability. First, they focus on the regulation
of a single gene per experiment, typically entailing the develop-
ment of a gene-specific assay. Second, each cell is a vehicle
for one CRISPR-mediated perturbation, with the specificity-
conferring guide-RNAs (QRNAs) usually introduced via lentivirus
at a low multiplicity of infection (MOI). With millions of candidate
regulatory elements and ~20,000 regulated genes in the human
genome, these limitations preclude the comprehensive dissec-
tion of the cis-regulatory architecture of even a single cell line.

Here, we introduce a framework (Figure 1A) designed to over-
come both limitations. First, by using single-cell RNA sequencing
(scRNA-seq) instead of gene-specific assays, one experiment
can globally capture perturbations to gene expression (Adamson
et al., 2016; Datlinger et al., 2017; Dixit et al., 2016; Hill et al.,
2018; Jaitin et al., 2016; Xie et al., 2017), with no strong a priori
hypothesis as to the target gene of each regulatory element
tested. Second, by introducing gRNAs at a high MOI, each indi-
vidual cell acquires a unique combination of perturbations
against the isogenic background of a cell line. Introducing multi-
ple perturbations per cell markedly increases power (Figure 1B).
An association framework inspired by eQTL studies (Morley
etal., 2004; Stranger et al., 2012) is used to map cis and trans ef-
fects by comparing gene expression in the subset of cells that
contain a given gRNA to those that lack that guide. This strategy
is analogous to conventional eQTL studies, but with individuals
replaced by cells, variants replaced by unique combinations of
gRNAs per cell to induce multiplex CRISPR-interference
(CRISPRI), and tissue-level RNA-seq replaced by scRNA-seq.
However, unlike eQTL studies, the resolution of our screen is
not constrained by linkage disequilibrium, nor is it limited to
studying sites in which common genetic variants happen to
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exist. Although we recognize the imperfection of the analogy
given that a reverse genetic screen using CRISPRI is far from
equivalent to mapping the natural genetic variation that underlies
QTLs, the fact that we were directly inspired by the eQTL frame-
work led us to originally term this method “crisprQTL mapping.”

RESULTS

A Proof-of-Concept Multiplex Enhancer-Gene Pair
Screen Targeting 1,119 Candidate Enhancers

To establish the feasibility of the assay formerly known as
crisprQTL mapping, we targeted 1,119 candidate enhancers in
the chronic myelogenous leukemia cell line K562, with CRISPRI
as our mode of perturbation. For CRISPRI, we used a nuclease-
inactive Cas9 tethered to the KRAB repressor domain to induce
heterochromatin across an ~1-2 kb window around a gRNA’s
target site (Thakore et al., 2015). The 1,119 candidate enhancers
were all intergenic DNase | hypersensitive sites (DHSs) repre-
senting various combinations of H3K27 acetylation, p300,
GATA1, and RNA Pol Il binding (Figure 2A). Candidate enhancers
were required to fall within the same toplogically associated
domain (TAD) as at least one gene from the top decile of K562
expression and were collectively distributed across 510 TADs
on every chromosome (Rao et al., 2014). 5,611 of the 12,984
genes expressed in K562 cells fell within 1 Mb of at least one
candidate enhancer (K562-expressed genes defined as those
observed in at least 0.525% of cells profiled in this pilot
experiment).

Two gRNAs were designed to target each candidate
enhancer. Additional pairs of gRNAs served as positive controls
(targeting the transcription start sites [TSSs] of genes sampled
from the top decile of K562 expression, or alternatively hyper-
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control region [LCR]) and negative con-
trols (50 non-targeting controls or
“NTC” that target nowhere or in a gene
desert) (Table S1A).

This gRNA library was cloned into the lentiviral CROP-seq
vector modified to include a CRISPRIi-optimized backbone
(Chen et al., 2013; Datlinger et al., 2017; Hill et al., 2018), and
K562 cells were transduced at a high MOI (Figure 2B). After
10 days to allow for effective CRISPRI, the transcriptomes of
47,650 single cells were profiled. With a targeted amplification
protocol (Adamson et al., 2016; Dixit et al., 2016; Hill et al.,
2018), we identified a median of 15 + 11.3 gRNAs per cell (Fig-
ure 2C). Each candidate enhancer or control was targeted in a
median of 516 + 177 cells (Figure 2D). For each targeted
element, we partitioned the 47,650 cells based on whether
they did or did not contain gRNA(s) targeting it. We then tested
for a reduction in the expression of each K562-expressed gene
within 1 Mb of that element (Figure 2B) (Stranger et al., 2012).
We also tested the 50 NTCs against all K562-expressed genes
within 1 Mb of any targeted candidate enhancer. For perspec-
tive, with a “one gRNA per cell” framework, achieving equiva-
lent power would require profiling the transcriptomes of
~715,000 single cells.

A quantile-quantile plot showed an excess of significant asso-
ciations involving the targeting of candidate enhancers relative to
NTC controls (Figure 2E). We defined a 3.5% empirical false
discovery rate (FDR) threshold based on the NTC tests as they
are subject to the same sources of error as the element-targeting
gRNAs. At this threshold, 94% (357 of 381) of TSS-targeting pos-
itive controls repressed their associated genes, as did all
B-globin LCR controls (examples shown in Figure 2F). Addition-
ally, we re-identified a known enhancer 3.6 kb upstream of
GATAT1 (Fulco et al., 2016).

At this same threshold, targeting of 11% of candidate
enhancers (128 of the 1,119) repressed 1" gene(s) within 1 Mb.
As there were 13 candidate enhancers whose targeting
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Figure 2. Pilot Multiplex Enhancer-Gene Pair Screen Testing 1,119 Candidate Enhancers in K562 Cells

(A) 1,119 candidate enhancers were chosen based on intersection of enhancer-associated features and each targeted by two gRNAs.

(B) Schematic of this multiplex enhancer-gene pair screening method. () gRNAs were cloned into a lentiviral vector, and delivered to K562 cells at a high MOI. (ii)
scRNA-seq was performed on these cells, with concurrent capture of the multiple gRNAs present in each cell. (i) For each candidate enhancer, cells were
partitioned based on whether or not they contained a gRNA targeting it. (iv) For each such partition, we tested for differential expression between the two
populations for any gene within 1 Mb of the candidate enhancer.

(C) gRNAs were delivered to K562 cells at a high MOI, with median of 15 + 11.3 gRNAs identified per cell.

(D) A total of 47,650 single cell transcriptional profiles were generated. Each perturbation was identified in a median of 516 + 177 cells.

(E) Quantile-quantile plot of the differential expression tests. Distributions of observed versus expected p values for candidate enhancer-targeting gRNAs
(orange) and NTC gRNAs (gray; downsampled) are shown.

(F) Expression of selected TSS (top row) and B-globin LCR positive controls (bottom row). Nearly all targeted TSSs, and all positive controls, showed significant
differential expression of the expected target genes between cells with (+) versus without (—) targeting gRNAs, in contrast with NTCs. Percent changes and

p values show the effect size and significance of differential expression of the denoted target gene between these cell groups.

See also Figure S1 and Table S1.

impacted more than one gene (Figure S1A), this analysis yielded
a total of 145 enhancer-gene pairs (Table S1B). Of the 105
downregulated target genes (Figure S1B), 26 were impacted
by targeting of more than one of the 128 candidate enhancers
(Figure S1A).

We examined the characteristics of paired enhancers whose
targeting significantly impacted expression of 1* genes in cis.
We found paired candidate enhancers to be enriched for
high chromatin immunoprecipitation sequencing (ChIP-seq)
peak strength (based on average enrichment in ChIP-seq
peak region) for enhancer-associated histone modifications
(H3K27ac, logistic regression p value = 4e—5, candidate en-
hancers in the top quintile were 1.4-fold more likely to be
paired than those in the bottom quintile), certain co-activators
(P800, p value = 4e—16, 1.1-fold) and lineage-specific tran-
scription factors (TFs) (GATA1 p value = 2e-7, 1.4-fold;
GATA2 p value = 3e—10, 1.5-fold; SMAD1 p value = 1e—6,
1.4-fold; TAL1 p value = 6e—6, 1.1-fold; CCNT2 p value

3e-7, 1.4-fold), whereas RNA Pol Il and H3K4me1 were not
associated (Figure S1C). Using these features, as well as
average enrichment within the DHS and whether each had
been previously validated in vivo (Visel et al., 2007), we trained
a multivariate logistic regression classifier to distinguish the 128
paired candidate enhancers from the 991 candidate enhancers
for which we did not identify a target gene, achieving an AUPR
of 0.31 (area under precision-recall curve; median from 5-fold
cross validation; Figure S1D).

A Scaled Multiplex Enhancer-Gene Pair Screen
Targeting 5,779 Candidate Enhancers

To demonstrate this approach at a substantially greater scale,
we performed a second experiment targeting five times as
many candidate enhancers (n = 5,779). First, two-thirds of these
(n = 3,853) were new DHSs chosen by the classifier trained on
the first experiment (Figures 3A and S1D). Second, as this set
may be biased toward annotations used to select the initially
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Figure 3. Multiplex Enhancer-Gene Pair Screening at Scale in K562 Cells
(A) For a scaled experiment, gRNAs were designed to target a total of 5,779 candidate enhancers. Characteristics are shown for 3,853 sites chosen by a model

informed by the hits identified in the pilot experiment.

(B) 948 exploratory candidate enhancers were sampled from K562 DHSs. 978 candidate enhancers from the pilot were re-targeted with the same gRNA pair, and

377 of these were also targeted with a second, alternative gRNA pair.

(C) gRNAs were again delivered to K562 cells, but at a higher MOI than the pilot experiment (median 28 + 15.3 gRNAs identified per cell).

(D) A total of 207,324 single cell transcriptional profiles were generated. Each perturbation was identified in a median of 915 + 280 single cells.

(E) Q-Q plot of the differential expression tests. Distributions of observed versus expected p values for candidate enhancer-targeting gRNAs that were correlated
with decrease in target gene expression (orange) and NTC gRNAs (gray; downsampled) are shown.

(F) Histogram of the number of target genes impacted by each candidate enhancer identified as part of a pair (10% empirical FDR).

(G) Histogram of the number of paired candidate enhancers detected as regulating each target gene (10% empirical FDR).

(H) Effect sizes for the 664 enhancer-gene pairs that pass a <0.1 empirical FDR, the 470 high-confidence enhancer-gene pairs, and the 97% of TSS controls that

are detected as repressing their target genes.
See also Figure S2E and Table S2.

targeted candidate enhancers (Figure 2A), we also targeted 948
exploratory DHSs chosen independent of the model (see STAR
Methods). Third, we re-targeted 978 of the 1,119 initially targeted
pilot candidate enhancers, including the aforementioned candi-
date enhancers paired with target genes in the pilot. Altogether,
candidate enhancers targeted in this scaled experiment were
within 1 Mb of 10,560 of 13,135 K562-expressed genes. As pre-
viously, we designed two gRNAs per candidate enhancer. How-
ever, to evaluate whether poorly efficacious gRNAs might
contribute to false negatives, we designed an additional two
gRNAs for 377 of the 978 re-targeted candidate enhancers (Fig-
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ure 3B). Finally, in addition to gRNA pairs targeting 5,779 candi-
date enhancers, we included the same positive and negative
control gRNA pairs targeting 381 TSSs, the globin LCR, and 50
NTC pairs (Table S2A).

K562 cells were transduced at an even higher MOI than in the
proof-of-concept experiment. We profiled the transcriptomes of
207,324 single cells and identified a median of 28 + 15.3 gRNAs
per cell (Figure 3C). Each candidate enhancer was targeted in a
median of 915 + 280 single cells (Figure 3D). Testing for associ-
ations as previously, a quantile-quantile plot again showed an
inflation of significant associations involving the targeting of



candidate enhancers (Figure 3E). Using the NTCs to set a more
inclusive empirical FDR of 10%, 97 % (369 of 381) of TSS-target-
ing positive controls repressed their associated genes, as did all
B-globin LCR controls. At this same threshold, of the 5,779
candidate enhancers, we identified 600 as repressing 1* gene(s)
within 1 Mb. These included 397/3,853 model-selected candi-
date enhancers (10%), 35/948 systematically sampled explor-
atory DHS (4%), and 168/978 previously targeted candidate
enhancers (17%). As targeting of 53/600 candidate enhancers
downregulated more than one gene (Figure 3F), we collectively
identified a total of 664 enhancer-gene pairs (Table S2B). As
113 genes were downregulated by targeting of more than one
candidate enhancer, these pairs involved 479 target genes (Fig-
ure 3G). These ranged in effect size from —1.4% to —97.5%
target gene repression (Figure 3H).

To evaluate reproducibility, we compared our results for the
978 candidate enhancers targeted in both experiments.
Applying the same empirical FDR threshold of 10% to each da-
taset, 187/978 were identified as paired candidate enhancers in
the pilot experiment, and 168/978 as paired candidate en-
hancers in the scaled experiment. Of these, 105 were identified
in both experiments (hypergeometric test of overrepresentation
p value 7e—45; 3.3-fold enriched over expectation). The pairs
identified in both experiments had stronger effect sizes (median
25% versus 13% repression), better correlated effect sizes
(Spearman’s rho for % repression: 0.82 versus 0.13; Fig-
ure S2A), and involved more highly expressed genes (median
0.90 versus 0.63 UMls per cell), than pairs identified in only
one experiment.

As noted above, an additional pair of gRNAs for 377/978 re-
targeted candidate enhancers were included in this experiment,
to facilitate evaluation of the extent to which poorly efficacious
gRNAs might contribute to false negatives. In the scaled exper-
iment at a 10% empirical FDR, 109/377 of the original gRNA pairs
and 119/377 of the new gRNA pairs mediated enhancer-gene
pairs. Of these, 84 were directed at the same candidate en-
hancers, a highly significant overlap (hypergeometric test of
overrepresentation p value 4e—33; 2.4-fold enriched over
expectation). Furthermore, the effect sizes on the most highly
repressed genes for gRNA pairs targeting the same candidate
enhancer were well-correlated (Spearman’s rho for % repres-
sion: 0.73; Figure S2B). Overall, this analysis suggests that tar-
geting candidate enhancers with more than two gRNAs could
modestly increase our sensitivity.

Due to the noise from variability in expression levels, effect
sizes, and gRNA quality, we defined a high-confidence subset
of reproducible enhancer-gene pairs as those identified in both
experiments at the 10% empirical FDR (112 pairs; 359/381
[94%)] of targeted TSSs also met this criteria), as well as those
internally reproducible between the 2 independently targeting
gRNAs for candidate enhancers only tested in the scaled
experiment (358 pairs; 337/381 [88%] of targeted TSSs also
met this criteria). Putting these sets together, we annotated
470 enhancer-gene pairs as high-confidence (Table S2B),
involving 441 candidate enhancers (Figure S2C) and impacting
expression of 353 target genes. These ranged in effect size
from —7.9% to —97.5% (Figure 3H). We use this high-confi-
dence subgroup for all summary analyses described below, un-

less otherwise noted. Of note, 24 candidate enhancers are
paired with multiple target genes (Figure S2D); it is possible
that some of these pairings represent indirect effects (e.g., if
a gene that is the primary target of the enhancer is involved
in the regulation of the other gene).

Replication or Validation of 22 Selected Enhancer-Gene
Pairs in Singleton Experiments

We next sought to individually replicate 15 enhancer-gene
pairs with a range of effect sizes (—10% to —81%) and 6
“null” candidate enhancers not paired with any target gene
(Table S3A). We transduced K562 cells separately with small
pools of gRNAs targeting individual candidate enhancers,
and investigated the impact on gene expression via bulk
RNA-seq (Table S3A). For 12/15 replication experiments tar-
geting candidate enhancers associated with downregulation
of a target gene, the effect sizes were similar in magnitude
and direction of effect (Figures 4A-4D and S5). For all 9 exper-
iments predicted to cause >30% repression, replication ef-
fects were also significant in a test of differential expression
(cis adjusted p value <0.1). Of the 6 lines targeting a “null”
candidate enhancer, none significantly decreased expression
of a gene located within 1 Mb of the target (cis adjusted
p values >0.1).

Although the field often refers to singleton independent re-
testing via CRISPRI as “validation,” it is a recapitulation of the
modality of perturbation of the screen and perhaps better classi-
fied as another form of replication. Therefore, we also performed
a more stringent validation by generating 3" monoclonal homo-
zygous deletion lines for each of 3 enhancers (effect size in
scRNA-seq screen: e-NMU = —-81%, e-CITED2 = —35%,
e-GLUL = —21%; Figure S4; Table S3B). All three selected en-
hancers are quite distal from the gene whose expression they
regulate (>50 kb). These homozygously deleted lines all had
the expected and magnitude of direction of effect (Figure 4E-
4G), indeed with stronger effect sizes than seen by CRISPRi
perturbation in the scRNA-seq screen (effect size with deletion:
e-NMU = —100%, e-CITED2 = —57%, e-GLUL = —67%; Ta-
ble S3B).

In our validations of the NMU candidate enhancer (“e-NMU”),
we also applied RNA flowFISH (Choi et al., 2018) and again
observed decreased NMU expression in singleton CRISPRi pop-
ulations targeting NMU’s TSS (—79% less NMU than untreated
cells) and e-NMU (—73% less NMU, Figure 4H, ii-iii). We also
used flowFISH to phenotype a heterogeneous pool of cells that
harbored a mix of full, partial, or no deletions of e-NMU, gener-
ated by transient transfection of flanking pairs of gRNAs. 12%
of the cells showed reduced NMU expression in comparison to
untreated cells (Figure 4H, iv), which is in-line with expected
full deletion efficiency (Gasperini et al., 2017). Cells were sorted
into bins of low, medium, or high NMU expression. PCR of the
e-NMU locus revealed enrichment of the full deletion in the low
and medium NMU bins, whereas full deletion was rarer in the
high NMU bin (Figure S4B). To further dissect e-NMU, we addi-
tionally transfected with 19 gRNAs interspersed every ~100 bp
across e-NMU to generate deletions of diverse lengths and loca-
tions, inducing reduction of NMU expression in 35% of cells
compared to untreated (Figure 4H, v). PCR of e-NMU again
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Figure 4. Replication and Validation of Selected Enhancer-Gene Pairs in Singleton Experiments

(A-D) For each singleton replication experiments of enhancer-gene pairs, bulk RNA-seq was performed on CRISPRi+ K562 cells transduced with gRNAs tar-
geting (purple) e-PRKCB (A), e-PTGERS (B), e-GYPC (C), e-NMU (D), or the TSSs (dark red) of their respective target genes. Target gene expression in the
singleton-target cell lines (red/purple) as compared to replication experiments in which the other 4 candidate enhancers or TSSs were targeted (gray). Eleven
other singleton CRISPRI experiments are summarized in Figure S5.

(E-G) To validate three enhancer-gene pairs by sequence deletion, monoclonal lines were generated with full deletion of the locus’s genomic sequence in three to
six independent clones (e-NMU, E; e-CITED2, F; and e-GLUL, G), followed by bulk RNA-seq. See also Figure S4A.

(D). (iv-v) A heterogeneous pool of cells engineered such that a portion (based on deletion efficiency) harbor full or scanning deletions of e-NMU (see also Figures
S4B and S4C).

See also Figure S3 and Table S3.

showed a similar enrichment of longer deletions in the cells with
lower NMU expression (Figure S4C).

In summary, of the high confidence pairs that we re-tested by
singleton CRISPRi and/or singleton CRISPR-mediated deletion,
13/16 matched with respect to both their direction and magni-
tude of effect size, whereas 3/16 failed to validate. This false-
positive rate is consistent with the 10% FDR that we used to
assign a threshold for calling pairs (p value on whether 3/16 dis-
agrees with 10% FDR = 0.21).
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Selected Examples of Enhancer-Gene Pairs

We highlight four of the enhancer-gene loci in Figure 5. An “e-"
prefix is used to denote candidate enhancers that we targeted
in singleton replication experiments. In the scaled experiment,
we targeted four candidate enhancers across the region
upstream of PRKCB. The furthest of these (Figure 5A, i;
50 kb upstream) did not have an effect, but candidate en-
hancers 32, 14, and 9 kb upstream of the TSS were associated
with repression of PRKCB (Figure 5A, ii-iv). The strongest of
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Figure 5. Highlighted Examples of Enhancer-Gene Pairs

(A) Three candidate enhancers (labeled ii-iv) that reside 32, 14, and 9 kb upstream of PRKCB were paired with PRKCB, but a fourth (i) that lies 50 kb upstream was
not (shown: hg19 chr16:23791225-23851797; iii is e-PRKCB in Figure 4A).

(B) A single candidate enhancer (e-PTGERS in Figure 4B) located 371 kb downstream of PTGER3 was paired with PTGER3 (shown: chr1:71104684-71582921).

(legend continued on next page)
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these, located 14 kb upstream, was also targeted and repli-
cated in both the pilot and singleton experiments (“e-PRKCB”,
Figure 4A and Figure 5A, iii).

In the pilot, scaled, and singleton replication experiments, we
targeted only one candidate enhancer within 1 Mb of PTGER3
(“e-PTGERS,” Figure 4B and Figure 5B), located 371 kb down-
stream of the PTGER3 TSS. In each of the three experiments,
targeting of e-PTGERS3 consistently repressed expression of
PTGERS.

We targeted three candidate enhancers in the region up-
stream of GYPC, a human erythrocyte membrane protein. Tar-
geting of candidate enhancers 4.5 kb upstream (Figure 5C, iii)
and 10 kb (“e-GYPC”, Figure 4C and Figure 5C, ii) upstream of
GYPC’s TSS resulted in its repression in the scaled experiment.
Interestingly, a candidate enhancer so close to e-GYPC as to
likely be unresolvable from it by CRISPRI (Figure 5C, i) did not
resultin repression of GYPC in the scaled experiment, potentially
attributable to poor gRNA quality or another source of false
negatives.

Targeting of multiple candidate enhancers decreased expres-
sion of the same gene, NMU, which encodes neuromedin U, a
neuropeptide that plays roles in inflammation as well as erythro-
poiesis (Gambone et al., 2011). One candidate enhancer was
associated with light repression of NMU (Figure 5D, i; located
30.5 kb upstream of the NMU TSS). An additional four candidate
enhancers were located in close proximity to one another, but
nearly 100 kb upstream of the NMU TSS (“e-NMU”, Figure 4D
and Figure 5D, ii-v; located 87, 93.4, 94.1, and 97.6 kb up-
stream). Because of their proximity, these closely located candi-
date enhancers internally replicate e-NMU within the scaled
experiment, in contrast to the neighboring candidate enhancers
of e-GYPC.

Insights into the Properties of Human Enhancers and
Their Target Genes

Distance between Paired Enhancers and Promoters

We find that of the class of enhancers surveyed here (non-
intronic, unbuffered by other enhancers), paired enhancers
are separated from the TSS of their target genes by a median
distance of 24.1 kb (Figure 6A, top row). Note that this analysis
is restricted only to high-confidence pairs that fall upstream of
their target genes (n = 354), to avoid bias from the length of the
gene body consequent to the fact that we avoided targeting in-
tronic candidate enhancers for which CRISPRi might directly
inhibit transcription. Upstream and downstream enhancers do
not exhibit large differences in their effect size distributions
(Figure S2E). Given that we tested for associations against all
genes within 1 Mb of each candidate enhancer (Figure 6A,
fourth row; median distance of 440.2 kb, similarly restricted
to upstream tests), this supports a very strong role for proximity

in governing enhancer-promoter choice. Nonetheless, 153/470
(833%) of enhancer-gene pairs involved skipping of at least one
closely located TSS of another K562-expressed gene (Fig-
ure 6B). Interestingly, low-confidence enhancer-gene pairs
(i.e., the subset of the 600 that were not high-confidence and
also fall upstream; n = 127) were also enriched for proximity
to their target genes, suggesting that a substantial proportion
of these are bona fide enhancers (Figure 6A, second row; me-
dian distance of 45.0 kb).

Of our 359 “positive control” TSSs whose targeting success-
fully repressed the expected gene in both experiments, 35
reduced expression of 1* additional genes (45 apparent pro-
moter-promoter relationships in total). 15 of these 45 involved
overlapping promoters (TSSs within 1 kb), such that the
observed effect of CRISPRI is likely direct. As for the remaining
30, one possibility is that these represent examples of promoters
acting as enhancers, as recently reported (Diao et al., 2017,
Fulco et al., 2016). Additionally, as repressive epigenetic effects
may spread a few kilobases from the target site, it is possible that
CRISPRI of promoters may be silencing proximal enhancers
as well. However, these 30 are largely not enriched for
proximity to affected genes (Figure S5A; median distance of
405.3 kb, similarly restricted to upstream tests), in contrast
with enhancer-gene pairs (median distance = 24.1 kb). We there-
fore hypothesize that these are more likely consequent to trans
effects of repressing the primary target of these TSS-targeting
gRNAs. In other words, rather than these gRNA-targeted pro-
moters acting as noncoding regulatory elements of other genes,
the reduction in protein levels of the targeted gene may second-
arily affects the expression of other genes.

Characteristics of Target Genes

The 353 genes included in 1* 470 high-confidence enhancer-
gene pairs had several notable characteristics. First, their
expression levels are distributed similarly to the full set of
10,560 genes against which we tested (Figure 6C), suggesting
we are reasonably well-powered to detect regulatory effects
on even modestly expressed genes. Second, housekeeping
genes were underrepresented, relative to all tested genes (hy-
pergeometric test p value = 3e—5 and 2.1-fold depleted using
the housekeeping gene list of Eisenberg and Levanon [2013]; hy-
pergeometric test p value = 2e—6 and 3.9-fold depleted using
the housekeeping gene list of Lin et al. [2017]). Similar depletions
of housekeeping genes are observed when we instead compare
paired target genes to the K562-expressed genes most proximal
to tested candidate enhancers. Although these analyses support
the view that a prevailing characteristic of housekeeping genes
may be a dearth of distal regulatory elements (Ganapathi et al.,
2005; Gasperini et al., 2017), we cannot fully rule out that the
possibility that this result is influenced by our choice of candidate
enhancers to target. Finally, paired target genes were enriched

(C) Two candidate enhancers paired with GYPC (ji-iii) lie in the 11 kb region upstream of GYPC. However, a third candidate enhancer (i) immediately adjacent to (ji)
was not paired with GYPC (shown: chr1:71104684-71582921; ii is e-GYPC in Figure 4C).
(D) Targeting five candidate enhancers (i-v) located 30.5, 87, 93.4, 94.1, and 97.6 kb upstream of NMU, significantly reduced expression of NMU (shown:

chr1:71104684-71582921; iii-iv is e-NMU in Figure 4D).
Target genes’ normalized expression presented on log scale.

Asterisks denote the candidate enhancers that were targeted as part of a singleton replication experiment (Figure 4). + and — denote the cells from the at-scale screen
with or without gRNAs targeting that locus. Percent changes and p values denote the size and significance of a differential expression between these cell groups.
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Figure 6. Characteristics of K562 Enhancer-Gene Pairs

(A) Paired candidate enhancers fall close to target genes. Distribution of distances between the paired candidate enhancers and their target gene’s TSS (top row,
high confidence pairs; second row, lower confidence pairs), the TSS of whatever K562-expressed gene is closest (third row), or the TSS of every K562-expressed
gene within 1 Mb (fourth row). Plotted with respect to gene orientation. Of the 470 high confidence pairs, this plot displays only the 354 that fall upstream of the
target genes (as the gRNA library does not include candidate enhancers within 1 kb of any gene body, downstream enhancers are biased to fall further from the
target TSS). A TSS-focused zoom of this plot is included as Figure S5E.

(B) 317 of 470 high-confidence pairs target the most proximal K562-expressed gene. Target genes are ranked by their absolute distance to the paired candidate
enhancer (1 = closest, 2 = second closest, etc.).

(C) This framework captures regulatory effects on genes from a broad range of expression levels (expression = mean transcript UMIs/cell in the entire 207,324 cell
dataset, for 13,135 K562-expressed genes, 10,560 of these within 1 Mb of a targeted candidate enhancer in the scaled experiment, and 470 high-confidence
enhancer-gene pairs). See also Figure S5D.

(D) Paired candidate enhancers tend to fall in enhancer-associated ChlP-seq peaks that show stronger signals. All ChIP-seq peaks that overlap the scaled
experiment’s 5,779 candidate enhancers were divided into quintiles defined as the average enrichment in ChlP-seq peak region (0 = no such peak overlaps the
candidate enhancer, 1 = lowest, 5 = highest). Histograms of the proportion of which candidate enhancers in each quintile that were paired with a target gene are
shown for the eight most-enriched ChlP-seq datasets.

(E) Enhancer-gene pairs interact more frequently in K562 Hi-C data (left, fractional ranking of enhancer-gene pairs’ Hi-C interaction-frequency against all other
possible interactions at similar distances within the same TAD, K-S test against a uniform distribution p value <2e—16), as compared to two control distributions:
paired target gene TSSs paired with a shuffled genomic locus (middle: K-S test versus actual enhancer-gene pairs distribution = p value 2e—7) or paired
candidate enhancers paired with a shuffled genomic locus (right, K-S test versus actual enhancer-gene pairs distribution = p value 1e—9). See also Figures S5B
and S5C.

See also Table S4.
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for genes with roles in leukocyte migration and differentiation,
consistent with distal enhancers shaping the expression of
K562-specific genes (Table S4A).

Characteristics of Paired Enhancers

We also examined the characteristics of the candidate enhancers
for which targeting significantly impacted expression of 1* genes
in cis. First, as compared with the full set of 5,779 candidate en-
hancers targeted in either or both experiments, we tested if the
441 high-confidence candidate enhancers were enriched for
strong peaks in 169 K562 ChlIP-seq datasets (ENCODE Project
Consortium, 2012). We identified 87 that were significantly en-
riched (threshold of an adjusted p value <0.005), but the eight
most significant were co-activators (p300 logistic regression
p value = 1e—46, candidate enhancers in the top quintile were
1.8-fold more likely to be paired than those in the bottom quintile;
BRD4 p value = 2e—33, 1.6-fold), an enhancer-associated
histone modification H3K27ac (p value = 8e—37, 1.6-fold), the
MYC activator TBL1XR1 (p value = 2e—34, 1.5-fold), and line-
age-specific TFs (TAL1 p value = 2e-33, 1.6-fold;
GATA2 p value = 1e—31, 1.5-fold; DPF2 p value = 5e—31, 1.5-
fold; RNF2 p value = 2e—33, 1.5-fold; Figure 6D). Other expected
enhancer-associated marks also exhibited significant enrich-
ment (CCNT2 p value = 4e—21, 1.3-fold; H3K4me1 p value =
1e—19, 1.8-fold; MYC p value = 2e—12, 1.3-fold; Table S4B).
However, many of these features are correlated, and BRD4,
H3K4me1, TRIM24, p300, H3K27ac, ETS1, and ZNF274 were
the only significant predictors in a multivariate logistic regression
(p value <0.01, Table S4B). Of note, high conservation as
measured by median phyloP scores (Pollard et al., 2010) was
not enriched in these candidate enhancers as compared to all
tested candidate enhancers (independent logistic regression
p values >0.5).

Second, we examined whether paired enhancers were more
likely to intersect with K562 super-enhancers. Overall, 474 of
the 5,779 candidate enhancers that we tested fell within 65
K562 super-enhancers (Cao et al., 2017); however, a much
higher proportion of high-confidence paired enhancers be-
longed to this set (102/441). Several super-enhancers contained
multiple targeted enhancers that were paired with the same
gene. More specifically, 20 genes were linked with two candidate
enhancers, and 6 genes were linked with three or four candidate
enhancers, that were located within the same super-enhancer
(Table S4C).

Third, we evaluated enrichment of TF motifs in either our asso-
ciated enhancers or the promoters of their target genes. Motifs
for the known blood TFs KLF-1, -5, -6, -15, leukemogenesis-
related SALL4, and the MYC-interacting ZN281 were enriched
in the promoters of the inclusive set of 479 paired-target genes,
as compared to the promoters of all genes within 1 Mb of a
tested candidate enhancer (Table S4D). Similarly, motifs for a
largely distinct set of known blood TFs (TAL1, KLF-1, -3, -4, -5,
-8, and GATA-1, -2, -3) and AP2C were enriched in the inclusive
set of 600 paired enhancers, as compared to the overall set of
5,779 candidate enhancers tested (Table S4D).

Pairs of Transcription Factors Act Together across
Enhancer-Gene Pairs

To investigate whether there was any discernible logic underly-
ing why particular enhancers were associated with particular
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promoters, we next sought to identify pairs of TFs that are “co-
enriched” in the inclusive set of 664 enhancer-promoter pairs
(i.e., they occur across pairs at a higher frequency than expected
by chance given their background frequency in each category).
We identified 6 TF pairs whose sequence motifs were co-en-
riched in this way, suggesting potential interactions (Table
S4E). For example, presence of the NR2C2 motif (implicated in
regulation of the globins [Tanabe et al., 2007]) in a paired pro-
moter was associated with presence of a KLF1 or RXRA motif
in the corresponding paired enhancer. On the other hand, pres-
ence of the GATA3 motif in a paired promoter was associated
with the absence of a KLF1 motif in the corresponding paired
enhancer.

We also explored such pairings via ChlP-seq data. Although
ChIP-seq peaks often reflect indirect binding, such secondary
partners might still play a role in the restriction of enhancer-pro-
moter interactions. We identified 24 TF pairs that are “co-en-
riched” in enhancer-promoter pairs (Table S4E). Unfortunately,
none of the TF pairs identified in either analysis had correspond-
ing ChIP-seq datasets or high quality consensus motifs for both
TFs involved in the pair, preventing cross-confirmation between
the two modalities of analysis.

Comparison of Enhancer-Gene Pairs to Hi-C-Based
Measurements of Physical Proximity

We sought to evaluate whether our enhancer-gene pairs are en-
riched for physical proximity as measured by the global chromo-
some conformation mapping technique Hi-C. To control for the
dominant effects of genomic distance and TADs in Hi-C data-
sets, we ranked the Hi-C contact frequencies in K562 cells
(Rao et al., 2014) for the 71% of the enhancer-gene pairs that
fell in the same TAD (333/470 high-confidence pairs) against all
other possible interactions at similar distances within the same
TAD (median 66 other genomic-loci pairs, range 6 to 260, Figures
S5B and S5C). Upon plotting the fractional ranks of high-confi-
dence pairs, we found their contact frequencies to be strongly
enriched at the highest ranks (Kolmogorov-Smirnov [K-S] test
against a uniform distribution p value <2e—16, Figure 6E). To
ensure that this enrichment was not an artifact of paired en-
hancers or genes interacting more frequently with all neighboring
loci (as in FIREs [Schmitt et al., 2016], we repeated this analysis
twice but shuffled the genomic loci paired to either the en-
hancers or genes (keeping these shuffled pair sets’ overall dis-
tance distributions the same as the original enhancer-gene pair
set’s distance distribution). This did not result in the same enrich-
ment as seen in the high confidence pair distribution (K-S test of
high confidence enhancer-gene pair versus enhancer-pair shuf-
fling p value 1e—9; high confidence enhancer-gene pair versus
TSS-pair shuffling p value 2e—7), consistent with more frequent
looping specifically between the high confidence enhancer-gene
pairs (Figure 6E). Although enriched for proximity, we note that
only a minority of our hits are called as proximate to their target
genes based on this analysis; as such, many enhancer-gene
pairs would not have been identified if we had limited tested
candidate enhancers to those physically proximate to a pro-
moter according to Hi-C or related data.

CRISPRiI Is Highly Multiplexable within Cells

To our knowledge, prior to this study, it was unknown whether
extensively multiplexing gRNAs within a single cell would dilute



Figure 7. CRISPRI Is Robust to Multiplexing
within a Cell

(A) A biological replicate of the pilot study, target-
ing the same 1,119 candidate enhancers and 381
TSSs, was performed at a low MOI (median 1 + 1.6
gRNAs identified per cell).

(B) A total of 41,284 single cell transcriptional
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versus 28 gRNAs per cell), and found
them to be well-correlated (Spearman’s
rho’s ranging from 0.73 to 0.87; Fig-
ure 7C). On average, the degree of
repression conferred by targeting a TSS
in both high MOI experiments was only
~6% less than by targeting it in the low
MOI experiment (Figure 7D). Similarly,
for candidate enhancers paired in the
scaled experiment (10% empirical FDR)
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the efficacy of CRISPRI. To evaluate this, we conducted a bio-
logical replicate of the pilot experiment, targeting the same
1,119 candidate enhancers but at a low MOI. From this
experiment, we profiled the transcriptomes of 41,284 cells and
identified a median of 1 + 1.6 gRNAs per cell (Figure 7A). Each
perturbation was only seen in a median of 43 + 16 cells, as
compared with 516 + 177 cells in the high MOI pilot experiment
(Figure 7B). At a 10% empirical FDR, only 316 TSSs and 69
enhancer-gene pairs were identified in the low MOI experiment,
as compared with 359 TSSs and 226 enhancer-gene pairs in the
high MOI pilot experiment, validating the substantial increase in
power resulting from multiplexed perturbation (Figure 1B). As the
same 381 TSS controls were targeted in the low MOI, pilot, and
scaled experiments, we compared the degree of repression
conferred by CRISPRI at increasing MOI (median 1 versus 15

that were also targeted in the low MOI
and pilot experiments, effect sizes were
well correlated (Spearman’s rho’s ranging
from 0.54 to 0.70; Figure 7C), and effect
sizes ratios clustered around 1 (Fig-
ure 7D). Overall, these results suggest
that multiplexing gRNAs within individual cells, even to MOls
of ~28, does not dilute the efficacy of CRISPRI.

DISCUSSION

Understanding the regulatory landscape of the human genome
requires the validation and identification of target genes for the
vast numbers of candidate enhancers that have been nominated
by biochemical marks or that reside within haplotypes implicated
by GWAS or eQTL studies. Our multiplexed enhancer-gene pair
screening method has the potential to help address this chal-
lenge. In the scaled experiment, we evaluated 78,776 potential
cis regulatory relationships involving 5,779 candidate enhancers
and 10,560 expressed genes. In contrast, nine recently pub-
lished CRISPR screens of noncoding sequences cumulatively
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studied regulatory effects on a total of 17 genes (Canver et al.,
2015; Diao et al., 2016, 2017; Fulco et al., 2016; Gasperini
et al., 2017; Klann et al., 2017; Korkmaz et al., 2016; Rajagopal
et al., 2016; Sanjana et al., 2016). By delivering a median of 28
perturbations to each of 207,324 cells, this experiment was pow-
ered equivalently to a “one gRNA per cell” experiment profiling
5.8 million single cell transcriptomes. Of note, one recent study
used scRNA-seq as a readout for the effects of CRISPR-based
perturbations of 71 candidate regulatory elements on ~100
genes in seven genomic regions (Xie et al., 2017). However, its
power and scope was limited by a low MOI (Figure 1B) and a
gRNA barcoding strategy that suffers from a ~50% rate of tem-
plate switching (Hill et al., 2018; Xie et al., 2018).

For future iterations of target prioritization for multiplexed
enhancer-gene pair screening, several characteristics of our
identified enhancer-gene pairs are important to keep in mind.
Foremost, although a wide range of effect sizes (7.9% to
97.5% for the 470 high-confidence pairs, Figure 3H) were
observed on genes with a broad range of expression levels
(0.0058 to 313 UMls/cell, Figure 6C), effect sizes were correlated
with expression levels (Spearman’s rho 0.53; Figure S5D). This is
likely consequent to power, as small effects are more chal-
lenging to detect on lowly expressed genes. Additionally, we
note that although we identified many genomic features that
were significantly correlated with the likelihood of belonging to
an identified pair, a pilot-trained classifier informed by biochem-
ical marks did not appreciably increase our hit rate in the at-scale
screen. Furthermore (1) 29% of enhancers did not fall within the
same TAD as their target gene, (2) although enriched for prox-
imity in 3D space as measured by Hi-C, the majority of
enhancer-gene pairs are not identified as contacts in such data-
sets, and (3) although enriched for sequence-level proximity,
one-third of enhancer-gene pairs involved skipping of at least
one closely located TSS of another K562-expressed gene.
These observations underscore the difficulty of the prediction
task, and we recommend that future screens do not overly
bias themselves toward looking under the lamppost until addi-
tional examples accrue and the rules of mammalian gene regu-
lation are better understood.

Although it may be surprising that cis changes in gene expres-
sion were identified for only ~10% of the candidate enhancers
tested here, there are several potential caveats to bear in
mind. First, previous studies have identified shadow enhancers
acting to mask the effects of perturbing individual enhancers
(Hong et al., 2008), although a genome-wide survey of such
enhancer redundancy has yet to be conducted. To investigate
such interactions more thoroughly, future iterations of our
method could randomly distribute programmed pairs of multi-
plexed enhancer perturbations per locus. Second, other tech-
nical caveats include (1) not all enhancers may be susceptible
to dCas9-KRAB perturbation, (2) gRNAs may be variably effec-
tive in targeting enhancers (Figure S2B), (3) some enhancers
required for the initial establishment rather than maintenance
of gene expression could be missed in a screen in a stable
immortalized cell line, and (4) we did not comprehensively survey
the noncoding landscape surrounding each gene, and the marks
we used to define candidate enhancers may be excluding
some classes of distal regulatory elements. These caveats are
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respectively addressable in the future by using other epigenetic
modifiers or nuclease-active Cas9, by using more gRNAs per
candidate enhancer, by combinatorial perturbation of selected
loci (Xie et al., 2017), by using cell models of differentiation,
and by densely tiling selected loci with perturbations.

Nonetheless, the fact that our paired candidate enhancers are
predicted by the strength of enhancer-associated marks (e.g.,
H3K27ac, p300) supports the assertion that we are identifying
bona fide enhancers and simultaneously weakens the case for
elements that were negative. Our study provides new insights
into key properties of human enhancers, e.g., the distribution
of distances between at least some types of enhancers (i.e., un-
buffered, upstream) and their target genes. A full understanding
of the precise rules governing enhancer-promoter choice is a
topic of great interest and will be facilitated by the identification
of more enhancer-gene pairs.

A limitation of enhancer-gene pair screening as implemented
here relates to the resolution of CRISPRAI. In the future, this can
potentially be improved upon by adapting enhancer-gene pair
screening to use single or pairs of gRNAs with nuclease-active
Cas9 to disrupt or delete candidate enhancers at the sequence
level. A separate concern is whether high MOI transduction is
inducing a cellular inflammatory response, and therefore biasing
discovery. However, although some genes with roles in inflam-
mation are among our paired target genes (e.g., NMU, IL6),
we only observed pathway-level enrichment of one immune-
system related pathway (Table S4A). Moreover, the effect sizes
observed in our high MOI versus low MOI experiments were
well correlated.

To date, ENCODE has cataloged over 1.3 million human
candidate regulatory elements based on biochemical marks
(http://screen.umassmed.edu/), while GWAS have identified
over 75,000 unique haplotype-trait associations (https://www.
ebi.ac.uk/gwas/). Validating candidate elements, fine-mapping
of causal regulatory variants, and identifying the target genes
of both enhancers and regulatory variants, represent paramount
challenges for the field. Given the scale of the problem, we antic-
ipate that the multiplex, genome-wide framework presented
here for mapping gene regulation can help overcome these
challenges.
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STARXMETHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and Virus Strains
Stable Competent E. coli (High Efficiency) NEB C3040H
Pilot gRNA Library sgOPTI-CROP-seq Virus Fred Hutchinson Co-operative N/A

Center for Excellence in Hematology

Vector Production core
At-scale gRNA Library sgOPTI-CROP-seq Virus Fred Hutchinson Co-operative N/A

Center for Excellence in Hematology

Vector Production core
Critical Commercial Assays
Chromium Single Cell 3’ Library & Gel Bead Kit V2 10x Genomics PN-120237
Chromium Single Cell A Chip Kit V2 10x Genomics PN-120267
Chromium i7 Multiplex Kit 10x Genomics PN-120262
TruSeq Stranded mRNA Library Prep lllumina 20020595
TruSeq RNA UD Indexes (96 Indexes, 96 Samples) IDT for lllumina 20022371
TruSeq RNA Sample Prep Kit v2 lllumina RS-122-2002
NextSeq 500/550 Hi Output KT v2.5 (75 cycles) lllumina 20024906
NextSeq 500/550 Mid Output KT v2.5 (300 cycles) lllumina 20024905
NovaSeq 6000 S4 Reagent Kit (300 cycles) lllumina 20012866
NEBuilder® HiFi DNA Assembly Cloning Kit NEB E5520S
DNA Clean and Concentrator Zymo Research D4014
Agencourt AMPure XP Beads Beckman Coulter A63882
HiFi Hotstart ReadyMix Kapa Biosystems KK2602
Kapa2G Robust PCR kit Kapa Biosystems KK5702
Neon Transfection System Life Technologies MPK1025
Lipofectamine 3000 Transfection Reagent ThermoFisher L300015
RNEasy Mini Kit QIAGEN 74104
Deposited Data
Raw and analyzed data This paper GEO: GSE120861 (metadata file),

DNase-Hypersensitivity Peaks for K562s DHS peaks
Human reference genome NCBI build 37, GRCh37

ChlP-seq Datasets, see Table S4B
PhyloP

Hocomoco Human v11 (core)
K562 Hi-C dataset

ENCODE Project Consortium, 2012
Genome Reference Consortium

ENCODE Project Consortium, 2012

Pollard et al., 2010

Kulakovskiy et al., 2013
Rao et al., 2014

GSM3417251 to GSM3417303
(actual data)

ENCFFO0O1UWQ

https://www.ncbi.nlm.nih.gov/
projects/genome/assembly/
grc/human/

https://www.encodeproject.org/

http://compgen.cshl.edu/phast/
help-pages/phyloP.txt

http://hocomoco11.autosome.ru/
GEO: GSE63525

Experimental Models: Cell Lines

K562 expressing dCas9-BFP-KRAB (Addgene #46911), Gift of the Bassik lab N/A
passage 40, re-sorted for BFP

HEK293Ts, passage (for making housemade lentivirus) ATCC CRL-3216
Oligonucleotides

Array for Pilot Experiment, see Table S1 This paper N/A

Array for At-Scale Experiment, see Table S3 This paper N/A

(Continued on next page)

Cell 176, 377-390.e1-e12, January 10, 2019 el


https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://www.encodeproject.org/
http://compgen.cshl.edu/phast/help-pages/phyloP.txt
http://compgen.cshl.edu/phast/help-pages/phyloP.txt
http://hocomoco11.autosome.ru/

Continued

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Primers to make gRNA oligos double stranded for cloning
into sgOPTI-CROP-seq — primer 1: atcttGTGGAAAGGAC
GAAACA

Primers to make gRNA oligos double stranded for
cloning into sgOPTI-CROP-seq — primer 2 (no longer
recommended, please see Special note about
gRNA-library cloning in STAR methods):
acttgctaTGCTGTTTCCAGC

Primers for nested PCR to enrich sgOPTI-CROP-seq
from single-cell RNA-seq cDNA (round 1) — primer 1:
TTTCCCATGATTCCTTCATATTTGC

Primers for nested PCR to enrich sgOPTI-CROP-seq
from single-cell RNA-seq cDNA (round 1) — primer 2:
ACACTCTTTCCCTACACGACG

Primers for nested PCR to enrich sgOPTI-CROP-seq
from single-cell RNA-seq cDNA (round 2) — primer 1:

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGC
TTGTGGAAAGGACGAAACAC

Primers for nested PCR to enrich sgOPTI-CROP-seq
from single-cell RNA-seq cDNA (round 2) — primer 2:
AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACG

Primers for nested PCR to enrich sgOPTI-CROP-seq
from single-cell RNA-seq cDNA (round 3) — primer 1:
CAAGCAGAAGACGGCATACGAGATIINNIIGTCTCGT
GGGCTCGG

Primers for nested PCR to enrich sgOPTI-CROP-seq
from single-cell RNA-seq cDNA (round 3) — primer 2:
AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTACACGACG

Oligos and primers to engineer and genotype monoclonal
sequence deletion lines, see Table S3D

Oligos and primers for singleton CRISPRI validations,
see Table S3C

Probes for NMU RNA flowFISh, see Table S3E

This paper

This paper

This paper

This paper

This paper

This paper

This paper

This paper

This paper

This paper

This paper

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Recombinant DNA

Lenti-sgOPTI-CROP-seq
Px459-Cas9-2A-PuroR_gRNA

Hill et al., 2018
Cong et al., 2013

Addgene #106280
Addgene #62988

Software and Algorithms

Bedtools Suite
Cell Ranger

Monocle2

Sleuth
Kallisto
FlashFry

Analysis of Motif Enrichment (AME - MEME Suite)
Seurat
Bowtie2

Quinlan and Hall, 2010
10x Genomics

Qiu et al., 2017

Pimentel et al., 2017
Bray et al., 2016
McKenna and Shendure 2018

McLeay and Bailey, 2010
Butler et al., 2018
Langmead and Salzberg, 2012

https://github.com/arg5x/bedtools2

https://support.10xgenomics.com/
single-cell-gene-expression/
software/pipelines/latest/
what-is-cell-ranger
http://cole-trapnell-lab.github.io/
monocle-release/
https://pachterlab.github.io/sleuth/
https://pachterlab.github.io/kallisto/

https://github.com/aaronmck/
FlashFry

http://meme-suite.org/
https://satijalab.org/seurat/

http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jay Shen-
dure (shendure@uw.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture

K562s cells are a pseudotriploid ENCODE Tier | erythroleukemia cell line derived from a female (age 53) with chronic myelogenous

leukemia (Zhou et al., 2017). K562 cells expressing dCas9-BFP-KRAB (Addgene #46911, polyclonal) were a gift of the Bassik lab,

grown at 37°C, and cultured in RPMI 1640 + L-Glutamine (GIBCO) supplemented with 10% fetal bovine serum (Rocky Mountain Bi-

ologicals) and 1% penicillin-streptomycin (GIBCO). K562s were authenticated by bulk/single-cell RNA-seq and visual inspection.
HEK293Ts (a human embryonic kidney female cell line) used for housemade virus production were cultured at 37°C in DMEM also

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. HEK293Ts were authenticated by visual inspection.

METHOD DETAILS

gRNA-library design

Note about terminology used below:

A gRNA-group is defined as all the gRNAs that are targeting the same candidate enhancer or positive control site. To note, all novel
TSS and candidate enhancer targeting gRNA-groups are referred to as “perturbative gRNA-groups,” whereas all others are referred
to as “control gRNA-groups.”

Pilot Library - 1,119 candidate enhancers as detailed in Table S1A:

Picking candidate enhancer regions: K562 DNase-seq narrowPeaks (ENCSRO00EKS) < 1 Kb away from any gene (GENCODE March
2017 v26lift37) were bedtools-intersected (Quinlan and Hall, 2010) with K562 Hi-C domains (Rao et al., 2014) that contained at least
one of the top 10% most highest expressed genes in a previously generated 6,806 single-cell K562 dataset. The remaining regions
were largely taken from intersections with K562 GATA1 ChlIP-seq narrowPeaks (ENCSROO0OEFT, lifted to hg19), H3K27ac ChlIP-seq
narrowPeaks (ENCSRO00AKP, lifted to hg19), RNA Pol Il ChiP-seq narrowPeaks (ENCSRO00AKY), and EP300 ChIP-seq narrow-
Peaks (ENCSROOOEHI) (Figure 2A). Ten further sites were handpicked and do not overlap either of these four marks.

Candidate enhancer gRNAs: NGG-protospacers within these candidate enhancers were scored using default parameters of
FlashFry (McKenna and Shendure, 2018), and the two top-quality-scoring gRNA per region were chosen as spacers to be used in
the gRNA library (scores prioritized by Doench20140nTarget > Hsu2013 > Doench2016CDFScore > otCount).

TSS positive control gRNAs: 381 genes were randomly sampled from the highly-expressed genes within the same Hi-C domains
(as described above) and 2 gRNA were chosen per gene from spacers with the best empirical and predicted scores of the
hCRISPRIv2 library (Horlbeck et al., 2016). To note - these spacers are designed as 19 bp, rather than the full 20 of the spacers
used in the rest of our gRNAs.

NTC gRNAs: 50 scrambled-sequence spacers with no targets in the genome and 11 protospacers targeting 6 gene-devoid regions
of the genome (hg19 chr4:25697737-25700237, chr5:12539119-12541619, chr6:23837183-23839683, chr8:11072736-11075236,
chr8:23768553-23771053, chr9:41022164-41024664) were chosen as evaluated by Benchling’s CRISPR tool. These were randomly
paired to create a gRNA group. More were chosen from 6 random regions of the hg19 genome (chr4:25697737-25700237,
chr5:12539118-12541619, chr6:23837183-23839683, chr8:11072736-11075236, chr8:23768553-23771053, chr9:41022164-
41024664) using FlashFry (McKenna and Shendure, 2018) to total 50 targeting these gene-devoid regions of the genome. A further
39 NTCs were sampled from those recommended by Horlbeck et al. (2016). A gRNA to the CAG promoter was additionally included
as an internal control (labeled “cag_promoter” in Table S1A and Table S2A, but excluded from analysis for simplicity).

Distal enhancer positive control gRNAs: 15 gRNAs targeting the HBE1 TSS, and HS1-4 of the Globin LCR were chosen as validated
from Klann et al. (2017) and Xie et al. (2017). These were manually paired based on their target sites to create gRNA-groups.
Note about Pilot Library:

Our initial FlashFry quality annotations when designing the pilot experiment did not label a small number of protospacers with perfect
repeat off-targets, permitting their inclusion in our library (81 of 2,238 spacers ordered in the pilot library; only 9 gRNA-groups with
both spacers affected). gRNA-groups with an impacted spacer were rare in our 145 significant enhancer-gene pairs. We also note
that we still expect these guides to target their intended site, but with potentially more off-targets. This error was fixed for evaluating
gRNA quality in the scaled experiment.

At-Scale Library - 5,779 candidate enhancers as detailed in Table S2A:

Choice of new and repeated sites: A logistic regression classifier built using the 145 enhancer-gene pairs originally identified in
the pilot experiment (see Aggregate analysis of enhancer-gene pairs: ChlP-seq strength quintile analysis and logistic regression clas-
sifier) was used to select the top 5,000 intergenic open chromatin regions in K562s (as defined by DNase-seq narrowPeaks
(ENCSRO000EKS)). Of these, 3,853 were over 1 Kb away from boundaries (GENCODE March 2017 v26lift37) of any genes expressed
in the pilot 47,650 K562 single-cell dataset, were not previously included in the pilot library, and had minimum two gRNAs with high
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quality as again determined by FlashFry. Of the top 5,000, 120 corresponded to a candidate enhancer in one of the original 145 pilot
enhancer-gene pairs, and 851 of these corresponded to candidate enhancers targeted in the pilot library but not originally identified
as part of a enhancer-gene pair. We additionally included 7 more candidate enhancers not top-ranked by our model, but identified as
part of the original 145 enhancer-gene pairs. The only candidate enhancer that was identified in an original 145 pilot enhancer-gene
pair but not included in this library had no high quality gRNAs by this second library’s standards (see Note about Pilot Library). Only 15
sites did not overlap any of the marks shown in Figure 3A.

Two alternative gRNAs were designed for 377 of the sites repeated from the pilot library. NGG-protospacers within these candidate
enhancers were again scored using default parameters of FlashFry (McKenna and Shendure, 2018), and the third and fourth top
scoring spacers were chosen to be used as an alternative gRNAs.

Choice of 948 exploratory candidate enhancers:

Because the logistic regression classifier is biased toward the annotations that were used to select the initially targeted candidate
enhancers (Figure 2A), we additionally used submodular subset selection to include DHSs optimized for a diversity of epigenomic
features (Wei et al., 2015). We first removed from the full set of 29,833 DHSs (ENCSRO00EKS) those 1,119 DHSs that were a part
of the original screen. Note that we did not remove the 128 DHSs that had been selected again by the logistic regression model,
because doing so would bias our remaining DHSs away from the same annotations. Then we calculated the Pearson correlation
of overlapping epigenomic marks between the remaining DHSs. Lastly, we applied a facility location function (Mirchandani and Fran-
cis, 1990) to this similarity matrix and used a greedy submodular selection algorithm to identify 948 additional DHSs as exploratory
candidate enhancers. The top two highest quality gRNAs (as scored by FlashFry) were included to target each candidate enhancer.
Note on choice of gRNA design for future screens of CRISPRi candidate enhancers

We used our set of enhancer-gene pairs to assess if there was a specific gRNA-target location within the candidate enhancer that
increased CRISPRI efficacy. We correlated enhancer-gene pair effect size with each gRNA’s absolute distance to center of either
DHS-peak or overlapping p300 ChIP-seq peak. However, neither the absolute-distance-to-center-of-DHS-peak (Pearson’s r:
0.02) nor the absolute-distance-to-center-of-overlapping-p300-peak correlated with effect size (Pearson’s r: 0.07). Thus, we
currently only recommend prioritizing gRNAs that fall within an open chromatin site based on quality and on-target efficiency as as-
sessed by a gRNA quality algorithm like Flashfry (McKenna and Shendure, 2018).

gRNA-library cloning

The lentiviral CROP-seq gRNA-expression vector (Datlinger et al., 2017) was modified by Q5-Site Directed Mutagenesis (New En-
gland BiolLabs, F:5-acagcatagcaagtttAAATAAGGCTAGTCCGTTATC-3 R:5-ttccagcatagctcttAAACAGAGACGTACAAAAAAG-3) to
incorporate the previously described gRNA-(F+E)-combined backbone optimized for CRISPRI (Chen et al., 2013; Hill et al., 2018,
Addgene #106280). Prepared vector was digested with BsmBI and alkaline phosphatase (FastDigest Esp3l| and FastAP, Thermo
Fisher Scientific), “filler” sequence removed by gel extraction, and cleaned (Zymo Research DNA Clean & Concentrator-5) vector
without “filler” was used for all downstream cloning.

Spacer libraries were ordered as single stranded pools (CustomArray, 5-atcttgtggaaaggacgaaacaccGNNNNNNNNNNNN
NNNNNNNNgtttaagagctatgctggaaacagcatagcaagt-3). 1 ng of each pool was amplified (F = 5-atcttGTGGAAAGGACGAAACA-3,
R = 5-acttgctaTGCTGTTTCCAGC-3, 64C Tm, Kapa Biosystems HiFi Hotstart ReadyMix (KHF), see Special note about gRNA-library
cloning below, as we now recommended a different R primer = 5-CTGTTTCCAGCATAGCTCTTAAAC-3) and purified amplicons
(Zymo Research DNA Clean & Concentrator-5) were cloned into CRISPRIi-optimized CROP-seq vector prepared as described above
(NEBuilder® HiFi DNA Assembly Cloning Kit, NEB, 100 fmol purified vector: 200 fmol cleaned insert). 2 ul of each product was trans-
formed into Stable Competent E. coli (NEB C3040H) in enough replicates to produce > 20 transformant clones per gRNA in the library.
Plasmid DNA was purified using ZymoPURE Maxiprep kits, following by DNA Clean and Concentrator cleaning (Zymo Research).
Special note about gRNA-library cloning
In Sanger sequence of the final gRNA plasmid libraries and in the 8-15 bp immediately downstream of the spacer (7 bp of the gRNA
backbone transcript captured in all single-cell RNA-sequencing datasets), we identified that ~80% of gRNAs harbored a small inser-
tion or deletion (vast majority 1 bp deletions, Figure S7A) in between the spacer and the R primer 5-acttgctaTGCTGTTTCCAGC-3
used in the initial amplification of spacer-oligos. We inferred that this is due to slippage of the KHF polymerase as it copies the sec-
ondary structure of the first stem extension loop added as part of the more stable sgOPTI backbone. In the scRNA-seq data, ~70% of
gRNA carried a 1 bp deletion, ~8% carried a 2 bp deletion, and ~2% carried a 3 bp deletion (Figure S7A).

Fortunately, 1 bp deletions did not correlate with significant disruption of CRISPRi efficacy in the scRNA-seq data. (1 bp deletion %
reduction) / (full length gRNA reduction) ratio was 1.01 (high confidence enhancer-gene pair) or 0.958 (TSS control). For 2 bp dele-
tions, this ratio was also not extreme (0.959 (high confidence pair) or 0.806 (TSS control)). However, for 3 bp deletions (very rare), the
ratio was 0.908 (high confidence pair) or 0.644 (TSS control). Overall correlation of all these deletion lengths to full length efficacy was
very high (Figure S7B).

Thus, the vast majority (~90%) are either wild-type or harbor 1 bp deletions that create zero-to-little effect on CRISPRIi efficacy. 8%
of the remaining gRNA harbor 2 bp deletions that also largely do not affect CRISPRI efficacy. However, to avoid this problem in clon-
ing future gRNA libraries into the sgOPTI-CROP-seq plasmid, we now recommend amplifying with a reverse primer that is flush with
the spacer (5-CTGTTTCCAGCATAGCTCTTAAAC-3), potentially enabling a boost in repression efficacy.
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Virus production and transduction

The Fred Hutchinson Co-operative Center for Excellence in Hematology Vector Production core produced all virus for the multiplexed
enhancer-gene pair screening experiments. For the singleton CRISPRI recapitulation, virus was made in-house by co-transfecting
(Lipofectamine 3000, ThermoFisher, L300015) HEK293Ts with the small pools of CRISPRi-optimized CROP-seq with the ViraPower
Lentiviral Packaging Mix (ThermoFisher). After 3 days, supernatant was syringe filtered with a 0.45 uM filter (cellulose acetate, VWR)
to prepare virus for transduction.

Cells were transduced (8 ng/mL polybrene) with varying titers and amounts of virus to achieve differing MOI. 400,000 and
~2.5 million original cells were transduced for the pilot and at-scale experiments, respectively. At 24 hours post-transduction, cells
were spun and resuspended with virus- and polybrene- free media. At a total 48 hours post-transduction, 2 pg/mL puromycin was
added to the culture, and changed to 1 ng/mL puromycin at the next passage for maintenance. A total of 10 days post transduction,
cells were collected for scRNA-seq or bulkRNA-seq.

Single cell transcriptome capture

~4000-8000 cells were captured per lane of a 10X Chromium device using 10X V2 Single Cell 3’ Solution reagents (10X Genomics,
Inc). Six lanes were used for both the low and high MOI 1,119-pilot library experiments, and 32 lanes were used for the scaled exper-
iment. All protocols were performed as per the Single Cell 3’ Reagent Kits v2 User Guide (Rev B), except prior to the enzymatic
shearing step, 10% of full length cDNA was taken for PCR enrichment of gRNA-sequences off the CRISPRi-optimized CROP-seq
transcripts as described below. After RT, the 32 lanes of the scaled experiment were split into two batches (16 lanes each) for the
remainder of the prep to enable easier handling.

gRNA-transcript enrichment PCR

A three-step hemi-nested PCR reaction was performed to enrich gRNA sequences from the 3' UTR of puromycin resistance gene
transcripts produced by the CRISPRi-optimized CROP-seq integrant. PCR was monitored by gPCR to avoid overamplification,
and each reaction was stopped immediately before it reached saturation.

PCR 1:

10-13 ng of full-length 10x scRNA-seq cDNA were amplified in each 50 uL KHF reaction (annealing temp 65C), spiked with SYBR
Green (Invitrogen) for gPCR monitoring (10% of all unfragmented 10x cDNA).

F: U6_OUTER 5- TTTCCCATGATTCCTTCATATTTGC -3
R: R1_PCR1 5- ACACTCTTTCCCTACACGACG-3

PCR 2:
Sample replicates were pooled, cleaned with 1x Agencourt AMPure XP beads (Beckman Coulter), and 1/25th of the cleaned pooled
product was amplified in a 50 uL KHF reaction spiked with SYBR Green and monitored as above (annealing temp 65C).

F: U6_INNER_with_P7_adapter 5-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTGTGGAAAGGACGAAACAC -3
R: R1-P5 5-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG-3

PCR 3:

The PCR 2 replicate reactions were pooled and 1x AMPure cleaned. 1/25th of the cleaned pooled product was amplified in a 50 uL
KHF reaction (spiked with SYBR Green and monitored as above, annealing temp 72C) and products cleaned once again via 1x
Ampure.

F: 5-CAAGCAGAAGACGGCATACGAGATIIININIGTCTCGTGGGCTCGG-3 (standard NEXTERA P7 indexing primer)
R: R1-P5 again

Sequencing of scRNA-seq libraries

Pilot library experiments

The final libraries were sequenced on a NextSeq 500 using four 75-cycle high-output kits (R1:26 11:8, 12:0, R2:57) for each experiment

(low and high MOI).

Scaled library experiments

The final library was sequenced by the Northwest Genomics Center on a NovaSeq 6000 using an S4 flow cell (R1:26, 11:8, 12:0, R2:91).
All libraries were sequenced to ~20% sequencing saturation.

Digital gene expression quantification

Sequencing data from each sample was processed using the Cell Ranger software package as provided by 10x Genomics, Inc., to
generate sparse matrices of UMI counts for each gene across all cells in the experiment.
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Each lane of cells was processed independently using cellranger count, aggregating data from multiple sequencing runs. The pilot
library experiments were each processed with cellranger 2.0.2; the at-scale library experiment was processed with cellranger 2.1.1.
Definition of genes well-expressed or ‘detectably expressed’ in K562
Unless otherwise notes, genes were defined as well expressed or detectably expressed in K562 if they had at least one read in
0.525% of cells in their respective (pilot or at-scale screen) single cell RNA-seq datasets.

Assigning genotypes to cells

gRNAs were assigned to cells in the following method (Hill et al., 2018): Sequences corresponding to the gRNA-containing CRISPRi-
optimized CROP-seq transcripts are extracted from the cellranger position sorted BAM file after running our custom indexed libraries
through the cellranger pipeline to tag reads with corrected cell barcodes and UMIs. gRNA sequences are extracted and corrected to
the library whitelist within an edit distance of two, and gRNA-cell pairs are tracked when a valid cell barcode and UMI are both as-
signed to the read. Likely chimeric reads are detected and removed to reduce noise in the assignments as previously described. We
utilized thresholds to set minimum acceptable values for the total reads for a gRNA-cell pair and for the proportion of all CROP-seq
transcript reads accounted for by each gRNA observed in a cell to distinguish noise from real assignments (Hill et al., 2018). Here,
given the larger number of guides contained in each cell, we find that UMI counts provide a much cleaner distribution than read
counts and have used UMI counts in all calculations. For the 1,119 pilot library experiments we used 0.01 read counts and 5 UMI
in both our low and high MOI for each of these thresholds. For the scaled library experiment, we used 0.005 read counts and
5 UMI. Only cell barcodes that appear in the set of passing cells output by cellranger, which imposes an automated threshold on
the total UMIs observed in cells, are carried forward in downstream analysis.

Differential expression tests

In our cis analyses, we tested each perturbing gRNA-group against genes within 1 Mb of the gRNA. These gRNA-gene pairs were
identified by using bedtools to intersect the DHSs targeted by the gRNA library with 1 Mb windows in either direction of TSS anno-
tations from GENCODE March 2017 v26lift37 (total of 2 Mb, centered around the TSS). In our trans analysis, all gRNA-groups were
paired with all genes that were defined as expressed in K562. In both cis and trans analyses, NTCs were tested against any genes
used to test perturbing-gRNAs.

For each gRNA-group we assigned a label of “1” to cells that contained a gRNA belonging to that group and a label of “0” to all
other cells in the dataset. Monocle2 (Qiu et al., 2017) was used to perform a differential expression test, using the negbinomial.size
family, over this categorical label to find differentially expressed genes between these two groups. Due to its support of complex
model formulas, Monocle2 does not provide model coefficients as part of the differential expression results. We created a modified
version of the differentialGeneTest function and associated helper functions that return both the intercept term and the coefficient of
the group assignment to facilitate more robust prioritization and characterization of hits from our screen. The negative binomial family
uses log as the link-function, so we can calculate the initial expression level as exp(intercept), and the fold change in expression be-
tween the two groups as exp(group_coefficient + intercept) / exp(intercept). We verified data from our power simulations that the
appropriate effect sizes can be obtained with this method using the coefficients output by VGAM.

For the scaled experiment, as we collected a much larger number of lanes and observed the highest MOI, we regressed out the
number of guide RNAs observed in a cell (as a proxy for the number of integrants), the percentage of total transcripts observed that
are mitochondrial, and the prep batch (as following reverse transcription, the 32 lanes were prepared in two batches to make
handling easier). In practice, we observe a modest boost in sensitivity when regressing out each of these factors in DE testing.
This was done using the full model formula ~gRNA_group+guide_count+percent.mito+prep_batch and the reduced
model ~guide_count+percent.mito+prep_batch in Monocle2.

Calling hits from differential expression test results
All differential expression test results were performed for all K562 expressed genes within 1 Mb of the target site as defined by
GENCODE March 2017 v26lift37. NTCs were tested against all genes within 1 Mb of any target site.

Tests with two sources of potential false positives were excluded:

1) Inthe pilot experiment, we identified inflation of NTCs when testing them against genes highly impacted by perturbing-gRNA in
our library (for example, NTCs associated with targets of our TSS and globin LCR controls). This was due to subtle yet detect-
able nonrandom associations of gRNA-groups with other gRNA-groups across cells, potentially due to slight bottlenecking at
the transduction level (400,000 cells transduced for 1,119 pilot library versus 2.5 million transduced for 5,779 scaled library).
To exclude this source of inflation in the pilot dataset, we used Fisher’s exact test to identify when an NTC was nonrandomly
assorted with a perturbing-gRNA (adjusted P-value < 0.01 & odds ratio > 1). Then, any test of an NTC against a gene within
1 Mb of that gRNA’s gRNA-group was excluded from further analytical steps.

We noted Monocle was susceptible to inflating P-values when a gene was highly expressed but only in few cells. Three of our
381 TSS controls fell into this category. To avoid this problem, we excluded outlier genes that were expressed in < 20,000 cells
in either the high-MOI 47,650-cell dataset and/or the scaled 207,324-cell dataset, and with log10(total UMIs / cells with a
UMI) > 0.2 greater than predicted by a spline fit generated via smooth.spline() with spar = 0.85 to limit overfitting (35
genes total).

N
-
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Remaining tests were filtered to those that decreased expression of the target gene.

Then, an empirical P-value was defined for each gene-gRNA-group pair test as: [(the number of NTCs with a smaller P-value than
that test’s raw P-value) + 1] divided by [the total number of NTCs tests + 1].

These empirical P-values were Benjamini-Hochberg corrected, and those < 0.1 were kept for 10% empirical FDR sets.

Use of 3.5% empirical FDR to initially select enhancer-gene pairs from the pilot study

We originally used an alternative method to call the original 145 enhancer-gene pairs from the original pilot dataset (a universal cutoff
of the P-value at which the proportion of passing NTC-tests/total NTC-tests was 10% of the proportion of passing candidate
enhancer tests/total candidate enhancer tests). However, upon further discussion and review of the eQTL literature, we revised
our method to the one defined above. This original threshold corresponded to a 3.5% empirical FDR rate, as defined above.
Inclusive versus high confidence enhancer-gene pairs as described in Table S2B

The only requirement of enhancer-gene pairs in the inclusive set was that they passed a 10% empirical FDR in the scaled experiment.
To beincluded in the high confidence set, enhancer-gene pairs either had to be replicated at a 10% empirical FDR in the pilot dataset,
or (if a candidate enhancer was unique to the scaled experiment) both gRNAs had to be individually associated with > 10% repression
of the gene.

Analyses to evaluate reproducibility between gRNA

To evaluate reproducibility between gRNAs, we subset the 377 pairs (two sets of gRNA pairs targeting the same candidate enhancers
in the scaled experiment) to pairs where both pairs negatively repressed at least one target gene (no significance requirement). 20 of
the 377 did not meet this criteria. Then, we ranked all tested genes by average repression between the two gRNA pairs, and kept the
top ranked gene for each pair. The repression levels of each type of gRNA pair on this top-ranked gene are plotted in Figure S2B,
regardless of significance.

Intracellular abundance of gRNA and dCas9-KRAB transcript does not correlate with effect size

As both the dCas9-BFP-KRAB and the sgOPTI-CROP-seq construct transcripts are poly-A tagged, we are able to test if there is an
association between the CRISPR components’ UMI counts and transcript abundance of a targeted gene. For the 441 candidate en-
hancers in a high confidence pair, we subsetted to the cells that held a guide targeting each enhancer. Within this set of cells, we
tested for a significant association between the expression of the target gene and the UMI count of the dCas9-BFP-KRAB or the
guides (adjusting for total cell UMI count). Of the 470 enhancer-gene pairs, only 2 and 10 had any significant (adjusted P-value <
0.01; 7 and 27 for adjusted P-value < 0.05) association with dCas9-BFP-KRAB count or guide count respectively (0.4% and 2%
or 1.5% and 5.7% of tests for each adjusted P-value threshold respectively). Based on this, we conclude there is not evidence
for a substantial effect of dCas9-BFP-KRAB or guide counts on the observed effect size for a given enhancer-gene pair.
Quantifying gRNA abundance

In the process of assigning gRNAs to cells, we had already quantified the number of reads and UMIs associated with gRNA-cell pairs.
These counts were used as is for the above analysis.

Quantifying dCas9-BFP-KRAB in cells

We constructed a bowtie2 (Langmead and Salzberg, 2012) index for a reference including both the PuroR transcript from the sgOPTI-
CROP-seq vector (extending from PuroR to the 3’ LTR encoding the guide sequence as N’s) and dCas9-BFP-KRAB (including the 3’
LTR). Note that both gRNA and dCas9 transcripts were included in this analysis because several regions are identical within the 3’
UTR of the transcripts encoded by these two constructs. We then took all the unmapped reads from the unbiased (cell) libraries
and converted them back into fastq format adding the final cell ID and UMI from cellranger into the read name for use
downstream. We mapped these reads to the reference above using bowtie2 using the command “bowtie2 -p 8-n-ceil 20-np
0 -x <reference> -U <fastq input> -S <bam output>.” We then took only reads that map uniquely to the dCas9 contig with mapq
of 30 or greater and enumerated the number of UMIs and total reads seen for each cell / barcode pair dCas9.

In each case, we tested for associations between the gRNA/dCas9 counts and the abundance of each high confidence hit in
our screen, only within cells that had a guide to the target. This was done using our modified version of differentialGeneTest as
described above. Note that in this case we observed that size factors typically used to account for variation in total UMI counts across
cells did not appear to sufficiently correct for the strong correlation between the counts of two transcripts (the gRNA transcript /
dCas9 and the target) that results from variation in total UMI counts across cells. This initially resulted in residual associations
that indicated increased gRNA transcript / Cas9 resulted in higher target expression. To account for this, we added an additional
term to both the full and reduced model “~log10(total_umis)” and set all size factors to 1. This is the model from which we report
the above results.

Individual replications and validations

Individual replication by CRISPRiI singletons

To replicate a enhancer-gene pair’s phenotype outside of the pooled mapping format, we prepared small pools of gRNAs re-target-
ing 15 high-confidence candidate enhancers or the TSSs of their respective paired-target genes (Table S3A). These enhancer-gene
pairs were chosen from the following requirements: candidate enhancer tested in both the pilot and at-scale study (replicated be-
tween both); target gene in upper 50% of expression of all paired genes; target gene had no strong cancer associations or growth
phenotypes. Additionally, we chose 6 candidate enhancers that were not paired with any target gene using the following require-
ments: tested in both the pilot and at-scale screen; empirical P-values for any cis gene > 0.5 in both experiments; overlapping
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H3K27Ac ChIP-seq peak is in the top half of all the peaks that overlap the entire at-scale library (thus to be comparable with our paired
enhancers); and within 1 Mb of a K562 expressed gene.

The two original gRNAs and two new gRNAs (making up the top 4 ranked on-target activity per candidate enhancer, filtering out
those with high off-target scores using Flashfry (McKenna and Shendure, 2018); exception is candidate enhancer chr11.4680 where
only 3 gRNAs passed these quality filters) were used for each respective pool, for a total of 4 gRNAs in the pool (Table S3C). The two
original gRNAs were used for the TSS controls (plus two more alternative TSS gRNAs in the cases of NMU, GYPC, PTGERS3, and
PRKCB). These small gRNA pools were cloned into the CRISPRi-optimized-CROP-seq vector (as described above, except in the
case of e-NMU targeting pool, which was cloned by ordering two reverse complement single stranded oligos and annealing them
together into px459 (CRISPR-Reagent-Description_Rev20140509.pdf) (Cong et al., 2013). House-made lentiviral preps from these
gRNA pools were transduced at low MOI into the K562-dCas9-BFP-KRAB line, and cultured for 10 days under puromycin selection
before two technical replicates of total RNA were collected from each sample (RNeasy Mini Kit, QIAGEN).

Bulk RNA-seq libraries were prepared from each replicate via a TruSeq mRNA kit (400 ng input, lllumina, TruSeq RNA Sample Prep
Kit v2 RS-122-2002 or TruSeq Stranded mRNA Library Prep 20020595), and sequenced on a NextSeq 500 (total two 150-cycle kits
cycling 80/80/6 in mid output mode for e-NMU, e-PRKCB, e-GYPC, e-PTGERS; total two 75-cycle kits cycling 40/40/8 in high output
for all others; aiming for 10-20 million reads/sample). Gene-level quantifications and differential expression tests were performed via
kallisto (Bray et al., 2016) and sleuth (Pimentel et al., 2017). Repression percentages were calculated from the kallisto transcript per
million output table (normalized by size factors): (mean between the two replicates / mean between all-non targeting samples). To
note, targeting the TSS of CITED2 did not seem to successfully repress CITED2’s expression, though this is potentially due to inac-
curacy of 1 of 2 technical replicates for this sample. The 3 that matched direction and magnitude of effect but were not significantin a
test of differential expression potentially were not detectable due to lack of power, as we sequenced only two RNA replicates per
sample.

To note: we additionally generated singleton datasets for chr6:34191315-34191338 (paired with HMGAT1 in the pilot screen), but
did not include this in analysis as it did not reproduce between the pilot and at-scale screen, and thus was not part of our high con-
fidence enhancer-gene pair set.

Validation by sequence deletions

To generate monoclonal sequence lines of three candidate enhancers (Table S3B), we designed protospacers to flank the DHSs tar-
geted in e-NMU, e-GLUL, and e-CITED2. Spacers were order as single stranded oligos (IDT, Table S3D) and then amplified (KHF,
5-GTGGAAAGGACGAAACACCg-3, 5-gctaTTTCtagctctaaaac-3, 55°C tm, 15 s extension; followed by clean-up via Zymo Research
DNA Clean & Concentrator) to be made double stranded for Gibson Assembly cloning (50 ng prepared vector: 0.66 ng prepared
insert) into the Cas9- and gRNA- expression vector px459 (Ran et al., 2013), expressing both the gRNA and a cassette of Cas9-
2A-puromycin resistance; NEBuilder® HiFi DNA Assembly Cloning Kit). Some e-NMU targeting oligos were cloned by annealing
two complementary oligos together followed by ligation into px459, in the method of CRISPR-Reagent-Description_Rev20140509
(Cong et al., 2013).

We transiently transfected the small px459 pools into the K562+dCas9-KRAB cell line using the Neon nucleofection system
(500,000 cells per library, 10 uL tips, 500 ng of plasmid, pulse voltage 1450-pulse width 10-pulse number 3; ThermoFisher). Begin-
ning 24 hours after transfection, cells were selected with 1 ug/mL puromycin for 48-72 hours, then single-cell sorted into 96 well
plates using a FACSAria Il (Becton Dickinson). To finally achieve clones that harbored fully homozygous deletions of e-NMU, this pro-
cess was repeated on an initial set of heterozygous clones using a second round of flanking gRNAs.

After 3-4 weeks of growth, gDNA was extracted by concentrating cells into 20 uL of media, and adding 40 uL of house-made Quick
Extract buffer (EB + 4 mg/mL proK + 0.45% Tween20), followed by 65°C for 6 minutes and 98°C for 2 minutes. 1 uL of this gDNA
extract was used for genotyping PCRs (Kapa2G Robust PCR kit, 35 cycles 60°C-HS-3 minute extensions).

Two rounds of genotyping PCRs were performed. First, clones were screened with primers flanking the deletion to identify clones
that harbored a deletion on at least one allele. Second, to confirm homozygosity, primers internal to the deleted region were used to
identify candidates that still harbored wild-type alleles (Figure S4A; Table S3D). Clones that harbored full deletions with no remaining
wild-type alleles were submitted to bulkRNA-sequencing (Figures 4E-4G). Two technical replicates of RNA were extracted from each
monoclonal line (RNeasy Mini Kit, QIAGEN), bulkRNA-seq libraries prepared via a TruSeq mRNA kit (400 ng input, lllumina, TruSeq
Stranded mRNA Library Prep 20020595), and sequenced on a NextSeq 500 (one 75-cycle kits cycling 40/40/8 in high output for
monoclonal samples; aiming for 10-20 million reads/sample). Gene-level quantifications were performed as for the CRISPRIi single-
tons, and reduction percentages calculated from kallisto transcript per million output table (normalized by size factors): (mean of all
replicates per candidate enhancer) / (mean between all-non targeting samples).

Phenotyping e-NMU perturbations by flowFISH

Cells harboring e-NMU CRISPRI perturbations were generated as in Individual replication by CRISPRi singletons. A heterogeneous
population of cells harboring full e-NMU deletions was generated as in Validation by sequence deletions (though without single-cell
clone sorting; Table S3D). A heterogeneous population of cells harboring scanning deletions across e-NMU was generated by clon-
ing and transfecting 19 gRNAs (Table S3D) targeted every ~100 bp across the e-NMU locus as described above in Validation:
sequence deletions.

Fluorophore labeled complementary probes to NMU transcript were designed on and ordered from https://www.
molecularinstruments.com/ (Table S3E). The ‘non-targeting’ probes were scrambled versions of the original NMU-targeting probes
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(to preserve sequence features such as GC content). RNA flowFISH was performed according to Molecular Instruments’ in situ HCR
v3.0 protocol (Choi et al., 2018), which we have described again here: Cells were by resuspending in 4% formaldehyde to reach 106
cells/mL, and fixing for 1 hour. Formaldehyde was then removed, cells were washed four times in PBST (1x PBS + 0.1% Tween 20),
and then resuspended in 70% ethanol. For labeling, cells were first washed twice with PBST, and then pre-hybridized by incubating
at 37C for 30 minutes in 30% probe hybridization buffer (30% formamide, 4x sodium chloride sodium citrate (SSC), 9 mM citric acid,
0.1% Tween 20, 50 ug/mL heparin, 1x Denhardt’s solution, and 10% low MW dextran sulfate). Cells were then incubated overnight at
37°C in afinal 4 nM probe solution (prepared by adding 2 pmol each probe (a mix of 1 uL of 2 uM stock per each probe) + 100 uL of
30% probe hybridization buffer). Cells were then repeatedly resuspended in 30% probe wash buffer and incubated for 10 minutes at
37°C, for a total of four washes. Cells were then resuspended in 5x SSCT (5x SSC + 0.1% Tween 20) and incubated at room tem-
perature for 5 minutes before ampilification.

For amplification, cells are resuspended in amplification buffer (5x SSC + 0.1% Tween 20 + 10% low MW dextran sulfate) and pre-
amplified by incubating for 30 minutes at room temperature. 15 pmol of each fluorescently labeled hairpin was snap-cooled by heat-
ing 5 uL of 3 uM stock in hairpin storage buffer (Molecular Instruments) to 95°C and then cooling for 30 minutes to room temperature in
a dark drawer. Snap-cooled hairpins were then mixed with amplification buffer, added to the sample for a final concentration of
60 nM, and then incubated overnight (> 12 hours) at room temperature in the dark. Cells were washed six times by resuspension
in 5x SSCT, resuspended in 500 ul 2x SSC, and incubated for 30 minutes at room temperature with 0.5 uL Vybrant Dye Cycle Orange
(DNA stain).

For sorting, the cells are first gated based on size and granularity using forward versus side scatter to discriminate between debris
and cells. Cells in GO/G1 stage are then selected using DNA dye (Vybrant Dye Cycle Orange).Cells are then sorted into low, medium,
or high bins of NMU expression using AF647 (Becton Dickinson; ~500,000 cells for the full deletion low NMU bin, ~1,000,000 cells for
all other bins).

To reverse cross-link the sorted samples, cell pellets were resuspended in 500 ul of elution buffer (4 mL H20 + 500 ul 10% SDS +
500 ul NaHCO3 —1M) + 30 ul of NaCl (5M) and incubated overnight at 65°C. 8 ul of RNase (10 mg/mL) was added to each sample,
mixed by inversion, and incubated at 37°C for 2 hours. 4 ul of Proteinase K (20 mg/mL) was added, mixed by inversion, and incubated
for 2 hours at 55°C. gDNA was extracted by phenol chloroform, ethanol precipitated, and resuspended in QIAGEN elution buffer.

PCR to identify e-NMU genotype enrichments in each of the NMU expression bins (Figures S4B and S4C) was performed using
Kapa2G Robust (e-NMU outer PCR: F primer 5TCCAACCCCTCAACTTGTT3’ Reverse primer 5TGCCTTCTCTGCCTTTCATT3';
anneal 60°C, extension time 1:50) on 10 ng of gDNA. PCRs were spiked with SybrGreen, and monitored on a gPCR to allow removal
before overamplification to prevent excessive PCR biases. 1 uL of each PCR reaction was run on a 6% TBE polyacrylamide gel
(Invitrogen) for 35 minutes at 180 V and stained with Sybr Gold for visualization. Replicate PCRs are represented by different lanes
in Figures S4B and S4C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Aggregate analysis of enhancer-gene pairs

The high confidence enhancer-gene pairs were used for these analyses unless otherwise noted. Details of empirical FDR and the
significance thresholds used to call enhancer-gene pairs can be found above in Calling hits from differential expression test results.
Singleton re-testing and validations of enhancer-gene pairs used to functionally test if the data met the assumptions of these statis-
tical methods can be found above in Replication of enhancer-gene pairs as singletons.

Distance between perturbation and target gene

Distance was calculated between the GENCODE March 2017 v26lift37 annotated TSS of the perturbed gene and the middle of the
originally targeted open chromatin region (if targeting a candidate enhancer, ENCFFO01UWQ) or the GENCODE-annotated TSS of
the originally targeted transcript (if targeting a TSS). To note, in Figure 6A and to calculate the median distance, we have only used
enhancers that are upstream of the target gene, as the length of the gene body would confound distance-to-TSS measurements for
downstream enhancer-gene pairs.

Expression distributions

Average expression of each transcript was defined as mean UMI counts per cell in the 47,650 or 207,324 cell scaled dataset. K562
expressed genes were defined as at least one read in 0.525% of cells in the same dataset.

ChIP-seq strength quintile analysis and logistic regression classifier

All candidate enhancers targeted in each library were bedtools-intersected with 170 ChIP-seq of histone-associated marks
(ENCODE Project Consortium, 2012)), broken into quintiles of the 7th “signalValue” column (peak strength, usually representing
overall average enrichment in the region), and the rates of enhancer-gene pairs identified in each quintile were used. In addition
to average phyloP conservation score per candidate enhancer, these were used to fit both independent and multivariate logistic
regression classifiers using the gim() function with binomial family. We calculated fold changes for how likely a candidate enhancers
was paired by: 1 + (((odds ratio - 1) * highest quintile ChlP-seq value) - ((odds ratio - 1) * lowest quintile ChIP-seq value)).

Motif enrichment in enhancers and promoters

Using the AME tool (Analysis of Motif Enrichment) from the MEME suite (McLeay and Bailey, 2010), enhancer analysis: we compared
motifs enriched in the 600 candidate enhancers in the inclusive set of 664 pairs as compared to all 5,779 in the at-scale library;
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promoter analysis: compared motifs enriched the 1 Kb upstream of the TSS (~promoter) of the 479 genes in the inclusive 664 pairs as
compared to the ~promoters of all K562 expressed genes within 1 Mb of a tested candidate enhancer. Parameters were set to
default, and Hocomoco Human v11 (core) (Kulakovskiy et al., 2013) was used as the motif library.

Motifs of TF couples across paired promoters and enhancer

To test if pairs of transcription factor (TF) motifs were enriched for co-presence across paired promoters and enhancers, we first iden-
tified 179 TFs that were expressed in K562s and had high quality motifs in Hocomoco. Using the FIMO tool (Find Individual Motif
Occurrences) from the MEME suite, we annotated all 600 candidate enhancers and the promoters of all 479 genes (1 Kb upstream
of the TSS) in the inclusive set of 664 pairs. Motifs in the bottom quartile of how often seen in a promoter were excluded for lack of
power. Then, we looped through all possible pairs of 179 TFs in the enhancer (TFe) x 179 TFs in the promoter (TFp), and for each TFe x
TFp pair, performed a Fisher’s Exact test on contingency tables designed as follows:

For the promoters of 479 paired genes: TFp in promoter or TFp not in promoter versus Promoter paired with an enhancer that
contains TFe or Promoter not paired with an enhancer that contains TFe

For the 600 paired enhancers: TFe in enhancer or TFe not in enhancer versus Enhancer paired with an enhancer that contains TFp
or Enhancer not paired with an enhancer that contains TFp

The six TFe x TFp co-enriched couples that had a Benjamini Hochberg corrected P-value < 0.1 for both the 479 paired promoter
analysis and the 600 paired enhancers analysis were described in the main text and Table S4E.
ChiP-seq of TF couples across paired promoters and enhancer
Bedtools was used to mark when a paired enhancer or promoter in the 664 inclusive dataset overlapped a ChIP-seq peak from
ENCODE generated K562 datasets were used. ChlP-seq datasets that that were in the bottom quartile of how-often-overlapping
with a paired enhancer or promoter were excluded for power (leaving 168 TFe and 166 TFp). Analysis was then performed the
same as in the TFe x TFp motif analysis (Fisher’'s Exact Test, adjusted P-value < 0.1, pair required to be enriched when looping
through both enhancers and then through promoters, TFe and TFp required to be different, Table S4E).
Functional annotation enrichment
We used the Piano package (Varemo et al., 2013) to perform functional annotation enrichment from the ‘all pathways’ Gene Ontology
(http://download.baderlab.org/EM_Genesets/June_20_2014/Human/June_20_2014_versions.txt). The 10,560 K562-expressed
genes within 1 Mb of a perturbing-gRNA were used as our background dataset, and randomly sampled from genes with expression
greater than one standard deviation below the mean of our 353 targeted genes was used as the comparison set of “expression
matched controls” (Figure 6C).
Hi-C analysis
We used the in situ Hi-C dataset for K562 cells from Rao et al. (2014), using the MAPQ 0 threshold and KR normalization, at 5 Kb
resolution. We first created shuffled control loci pairs by starting with the set of enhancer-gene TSS pairs, and randomly shuffling
the oriented distances between enhancer-TSS pairs, keeping either the enhancers or the TSSs intact. The rare cases where shuffling
resulted in an invalid chromosomal coordinate were excluded. For each set of loci pairs, we identified the TADs (as defined in Rao
et al. [2014] using Arrowhead) encompassing each loci pair. For overlapping domains, we used the farthest domain boundary on each
side of the loci pair. We omitted loci pairs that were not encompassed by any TADs from further analysis. We then extracted the
normalized Hi-C counts for each loci pair, along with those for all other bins representing interactions at the same genomic distance
within the same TAD, and calculated its fractional rank (scaled from 0 to 1, with 1 representing the highest interaction frequency).
Finally, the distributions of fractional ranks were plotted and compared. In addition to comparing interactions within TADs, we
also compared loci pairs to other bins within 200 Kb or 1 Mb of each loci pair.

Analyses for multiplexability of CRISPRi within cells - low versus high MOl comparisons

In order to confirm the efficacy of repression in our high MOI experiments (pilot library MOI = ~15 and at-scale library MOI = ~28), we
sought to compare the degree of repression observed in each of these experiments to that observed in our low MOI control exper-
iment (pilot library MOI = ~1). We took all gene-target site differential expression tests passing a 10% empirical FDR in any one of the
three experiments (as evaluated independently in each screen). We used this set rather than our final hit list to ensure that we were not
biasing our comparison by excluding tests that would be independently called by any one screen but not the others, although we note
that the results of the same set of analyses using our final set of hits are very similar.

For each of these tests, we calculated the observed fold changes of repression (where 1 is no change and 0 is complete loss of
expression) for each screen and then calculated the following ratios: (pilot high MOI fold change) / (pilot low MOI fold change)
and (at-scale fold change) / (pilot low MOI fold change), using a pseudocount of 0.01. As we found it potentially confusing that a higher
value of these ratios represents worse efficacy of repression in the high MOI experiments, we considered making these ratios of
percent repression (1 - fold change). However, as this value could be negative in some cases (where the fold change was greater
than one in one of the screens), this was not compatible with display on a log scale. Therefore, in all plots showing such ratios,
we are actually showing the inverse of the fold change ratios described above, which should approximately represent the ratios
of percent repression without producing any negative values. Thus, in our plots and reported summary statistics, values less than
one represent cases where more repression was observed in the low MOI control.
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Despite the distributions of the ratios described above being centered at one, which indicates largely equivalent repression in high
and low MOl experiments, there was a left tail, representing a smaller number of tests with reduced estimated efficacy in the high MOI
experiments. We reasoned that this could be an artifact of these genes being more lowly expressed and/or being represented by
fewer cells given the sparse sampling of the pilot library in the low MOI experiment. In either case we might tend to underestimate
the amount of transcript remaining after repression or at the very least the estimates would be substantially noisier, resulting in an
artifactual tail. To confirm the lower expression levels genes in the observed tail, we took all tests falling in the first quartile of
each distribution and compared the expression of these genes (average expression for the pilot low MOI experiments in the group
of cells without the relevant gRNA; calculated by exponentiating the intercept from the differential expression test, which in the pilot
high differential test is the estimated expression in UMI counts for the group of cells without the relevant gRNA). We further scaled
these values by the total number of cells observed for each gRNA group in the pilot low MOI experiment to examine the combined
effect of representation and expression level, which both contribute to what we expect is simply less robust estimation of fold change.
We note that this scaling does not appreciably impact the overall distributions in this case.

Power simulations

In order to predict the impact of multiplexing on the power of enhancer-gene pair screens, we developed a simulation framework.
First, using single-cell RNA-seq data collected from the pilot 47,650 K562 cells, we estimated a dispersion function that relates
the mean expression of a gene to its dispersion estimate (one of the two parameters required for the negative binomial distribution)
calling the Monocle2 functions estimateSizeFactors and estimateDispersions. This function is typically used in differential expression
testing to shrink dispersion estimates, but here we use it to estimate dispersion values for simulated transcripts. This dispersion func-
tion is then extracted from the CellDataset object output by Monocle2 and used as input to our simulations.

Next, we chose relevant ranges for each of the parameters varied in our simulation: the MOI, total cell count, effect size (fraction
repressed by CRISPRI), and mean expression level of the gene being tested. By examining the range of expression values observed
in our data, we chose to simulate expression data for genes having mean expression values (size parameter of the negative binomial
distribution) of 0.01, 0.1, 0.32, 1.0, 3.16, and 10.0 UMIs (0.10, 0.32 and 1.00 used respectively as low, medium, and high in Figure 1B)
to provide a range of representative values.

We simulated MOls at several values from 0.3 to 50, a range which includes the MOls estimated from our own enhancer-gene pair
screens. For each MOI, we calculate the expected number of cells containing a given guide by assuming a Poisson distribution of
lentiviral delivery, zero-truncating the distribution to account for drug selection for cells that contain a guide transcript, and rescaling
the probability distribution of guide counts accordingly. Perfect library uniformity was assumed to obtain the expected number of
cells containing a given guide and the number of cells that do not contain that guide. Effect sizes of CRISPRIi repression were chosen
using estimates from the literature and were simulated at several values between 10% to 90% percent repression of the average
expression level of the target transcript (size parameter input to the negative binomial distribution).

Finally, we simulated several values of total cells included in the experiment ranging from 35,000 to 300,000 cells (45,000 cells
shown in Figure 1B). Expression data from transcripts corresponding to 100 samplings per set of parameters were generated for
the populations of cells containing the gRNA and not containing the gRNA respectively. Our expression data simulation assumed
a negative binomial distribution with the appropriate size parameter for the cells with and without the gRNA, and a dispersion value
estimated using the dispersion function described above given the starting mean expression level being simulated. For each set of
parameters, the simulated transcripts were subjected to a differential expression test performed between cells with and without the
gRNA assigned using our modified version of the Monocle2 function differentialGeneTest as described above (see Differential
Expression Tests). P-values were obtained and corrected assuming an average number of 20 tests per group in the library to approx-
imate the number of genes contained within 1 Mb on either side of each gRNA-group and the impact of multiple testing. The rate of
tests falling below a adjusted P-value of 0.05 were tabulated at each set of parameters to make power curves.

Quantify errors in gRNA backbone as described in Method Details: “Special note about gRNA-library cloning,”
Related to Figure S7

To quantify the rate of mismatches and indel lengths in the gRNA backbones for each library, we extracted the backbone portion of
the gRNA transcript for each read in our gRNA transcript enrichment libraries and aligned it to the expected reference, (gtttAagagc
taTGCTGGAAACAGCAtagcaagttTaaat), using semi-global version of the Needleman-Wunsch algorithm implemented by RecNW
(Yahi et al., 2018). Mismatch and indel counts were made within the hairpin portion of the backbone (we initially screened backbone
bases 8 to 31 downstream of the spacer), to restrict to bases that would be the most likely to have some if any functional impact.
However, it should be noted that the overwhelming majority of all indels were small deletions observed in bases 8 to 14 or so;
thus, rates provided in Figure S7A are limited to these 7 bp. For the pilot-gRNA libraries, where we had a shorter cDNA read length
that does not cover the entire hairpin, so we simply quantified mismatches and indels in the 8 to 14 bp window (which again contained
the overwhelming majority of all indels in our at-scale gRNA library). For each target-UMI pair in each cell, we averaged the observed
mismatch and indel counts/lengths to get a consensus over all reads with a given UMI. We then averaged the statistics derived from
UMis for each target-cell assignment to get a final set of statistics for each. Each average was rounded to the nearest integer for
plotting. This allowed us to quantify rates across screens and also examine how any changes in effect sizes correlated with ef-
fect sizes.
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tSNE clustering of each dataset to check for biological distortions

We tested for enrichment of gRNAs in specific tSNE-based clusters of the at-scale single cell transcriptome dataset, to identify any
perturbed targets that resulted in stronger changes to global expression, presumably mediated through trans effects of the target
gene. For the at-scale dataset, we subsetted to genes that were expressed in at least 0.5% of cells and 50,000 cells were randomly
sampled. We then processed the dataset using Seurat (Butler et al., 2018). We removed cells with greater than 10% mitochondrial
transcripts, ran NormalizeData, and found the top 5,000 variable genes using FindVariableGenes. Using these top 5,000 variable
genes as input we then ran ScaleData, regressing out the percent of each cell’s transcriptome accounted for by mitochondrial genes.
We then computed 100 PCs using RunPCA (weighting PCs by variance explained), which were used as input to both the FI-tSNE
method using RunTSNE and Louvain clustering at a resolution of 0.5 using FindClusters. Fisher’s Exact tests were performed to
test for a perturbed target’s enrichment in each cluster. 8 TSS controls and 6 candidate enhancers were enriched within specific clus-
ters (odds ratio > 5, adjusted P-value < 0.01). However, even in these cases, only 10% of cells in which the target is perturbed actually
fall into the cluster in which they are found to be enriched. Thus, this is not expected to compromise the screen, as in order to be a
chronic source of false positives, the gRNAs targeting these global-change genes would have to be non-randomly associated with
other gRNAs in the library.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data (single cell RNA-seq and bulkRNA-seq) and processed data files is GEO: GSE120861
(metadata file), and GSM3417251-GSM3417303 (actual datasets).
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Figure S1. Details of 145 Enhancer-Gene Pairs Originally Identified in the Pilot Screen, Related to Figure 2

(A) Histogram per enhancer of the number of genes paired with that enhancer (3.5% empirical FDR in pilot screen, left). Histogram per gene of the number of
enhancers paired with that gene (3.5% empirical FDR in pilot screen, right). (B) Expression of target genes paired with candidate enhancers in the pilot screen.
expression = mean transcript UMIs/cell in the entire 47,650 cell pilot dataset for: K562 expressed genes; those that fell within 1 Mb of a targeted candidate
enhancer in the pilot experiment; and for the 105 genes targeted in the pilot experiment’s pairs. In the pilot screen, tested candidate enhancers were required to
fall within TADs that contained genes highly expressed in K562s. As these were then only tested for pairing with genes within 1 Mb, the pilot screen’s target genes
are potentially biased toward being highly expressed. This enrichment for highly expressed genes is not seen in the at-scale experiment, where tested candidate
enhancers were not required to be in the same TAD a highly expressed gene (Figure 6C). (C) Relative to the 1,119 candidate enhancers tested, the 128 paired
candidate enhancers from the pilot experiment (3.5% empirical FDR) tend to fall in enhancer-associated ChIP-seq peaks that show stronger signals. All ChIP-seq
peaks that overlap the 1,119 candidate enhancers were divided into quintiles of strength, defined as the average enrichment in ChlP-seq peak region (0 = no such
peak overlaps the candidate enhancer, 1 = lowest, 5 = highest). Histograms of the proportion of each 1,119-quintile that were called as enhancer-gene pairs are
shown. Red coloring = P-value < 0.005 for independent logistic regression for predicting a candidate enhancer as paired based on this peak type. (D) Precision-
recall curve for a multivariate logistic regression classifier based on ENCODE enhancer-associated biochemical features that differentiates the 128 paired
candidate enhancers from the remaining of the 1,119 candidate enhancers. The median AUPR from five-fold cross-validation was 0.31.
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Figure S2. Replication of Effect across Experiments and Alternative gRNA Pairs, Related to Figure 3

(A) The percent target gene repression of an enhancer-gene pair in the pilot versus the scaled experiments (green: called as a pair in both experiments; purple:
called as pair in only one experiment).

(B) The effect sizes on the most highly repressed gene for each pair of gRNA pairs targeting the same candidate enhancer (see STAR Methods).

(C) Histogram per enhancer of the number of genes paired with that enhancer (high confidence pairs of the at-scale screen).

(D) Histogram per gene of the number of paired with that gene (high confidence pairs of the at-scale screen).

(E) Effect sizes from enhancer-gene pairs identified in the at-scale screen. % repression of target transcript for the 664 enhancer-gene pairs that pass a < 0.1
empirical FDR, the 470 high confidence enhancer-gene pairs, the high confidence pairs in which the enhancer is upstream of the target gene, high confidence
pairs in which the enhancer is downstream, and the 97% of 381 TSS controls that are detected as repressing their target genes in the at-scale screen.
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Figure S3. Eleven Further Singleton CRISPRi Experiments (in Addition to the Four Featured in Figures 4A-4D), Related to Figure 4

For each singleton replication experiments of enhancer-gene pairs, bulk RNA-seq was performed on CRISPRi-positive K562 cells transduced with CRISPRI-
optimized CROP-seq gRNAs targeting the labeled paired-enhancer (purple, denoted with an “e” prefix) or the TSSs (dark red) of their respective target genes.
Target gene transcript expression in the singleton-target cell lines (dark red/purple) as compared to ‘non-targeting’ lines (gray; singleton experiments in which the
other 10 candidate enhancers or TSSs were targeted plus a line transduced with non-targeting gRNAs). Repression in screen = differential expression from at-
scale screen. Screen e-qval = Benjamini-Hochberg corrected empirical P-value from at-scale screen. Normalized transcripts per million (tpm) from sleuth. %s
above boxplots = sample’s % repression in bulkRNA-seq calculated from (transcript’s mean tpm between the sample’s two technical replicates) / (transcript’s
mean tpm from all the ‘non-targeting’ lines). % repression labeled light red if in disagreement with the enhancer-gene pair in the at-scale screen (Table S3A).
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Figure S4. Details of Sequence Deletion Validation, Related to Figures 4E-4H

(A) Genotyping PCR design and gels for the homozygous sequence deletion monoclonal lines, as featured in Figures 4E-4G. Outer primers were designed to
amplify the entire candidate enhancer locus; shorter band in these ‘outer’ lanes (blue label, as compared to ‘WT’ lane) represents presence of a full deletion. Inner
primers were designed to amplify only if a wild-type allele remained (“red” labeled lanes); presence of a band indicates a remaining wild-type locus. Primers
design is schematized at the top. Clones with a deletion band (in the “outer” PCR lane) and no wild-type band (in the “inner” PCR lane) were submitted to
bulkRNA-seq. Green dashed outline represents the clones used in Figure 4. Nomenclature of “C1” and “C2” etc correspond to “clone 1” and “clone 2” et cetera
as labeled in Figure 4. ‘WT’ lanes = same parental K562 cell line that was transfected with gRNA targeting HPRT1. Ladder = NEB 100 bp (N3231L). “X” = cell line
did not harbor homozygous deletions.

(B and C) e-NMU sequence-disrupted cells were phenotyped by NMU RNA flowFISH, as featured in Figure 4H. First, K562 cells were transfected with nuclease-
active Cas9 and gRNAs either flanking (B) or scanning (C) the e-NMU locus to create a heterogeneous population of cells () in which a portion (based on editing
efficiency) harbor full or partial deletion of e-NMU. Then, intracellular NMU expression was labeled via flowFISH (i) and cells were sorted into bins of low (a),
medium (b), or high (c) NMU expression (as to sort genotypes based on the effect upon disruption of e-NMU function, iii). Last, gDNA was extracted from the cells
in each bin, and the e-NMU locus was amplified (primers diagrammed at the top of the figure). Unsorted pool (d) = unsorted-but-edited cells to demonstrate
original distribution of genotypes in the original heterogenous pool. Each lane is a replicate PCR of gDNA (10 ng per reaction) from that same sorted sample.
Ladder L = 100 bp (NEB), Ladder R = 1 Kb ext (Invitrogen). WT = untreated parental K562s. Remaining full-length alleles in the ‘low’ expression bins could
correspond to inaccuracy of flowFISH, alleles with very small edits, or (as K562s are pseudotriploid) heterozygous cells that still retained a largely uninterrupted
copy of e-NMU on one or two alleles.
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Figure S5. Details on Characteristics of K562 Enhancer-Gene Pairs, Related to Figure 6 and Discussion

(A) Distribution of distances between “positive control” TSSs and any secondarily repressed genes. Of our 359 ‘positive control’ TSSs whose targeting suc-
cessfully repressed the expected gene in both experiments, 35 reduced expression of 1+ additional genes (45 apparent promoter-promoter relationships in total).
15 of these 45 involved overlapping promoters (TSSs within 1 Kb) and are not shown here as the observed effect of CRISPRIi is likely direct. The distances that the
remaining 30 secondarily repressed genes fall upstream of the targeted TSS are shown. In contrast with enhancer-gene pairs (Figure 6A), these 30 are largely not
enriched for proximity to affected genes. Dashed line = target gene TSS.

(B and C) Hi-C interaction frequency analysis, (B) Example schematic of fractional ranking by interaction frequency analysis. The interaction frequency of each loci
pair (color of pixel) is ranked within the interaction frequencies of all distance-matched genomic-pairs in the same TAD (the stripe of pixels shown in schematic).
For the two null distributions in Figure 6E, each pair’s target gene’s TSS is given a shuffled enhancer (and then ranked again within this new distance distribution),
or the pair’s candidate enhancer is given a shuffled TSS (and then ranked again within this new distance distribution). Shuffled TSSs and enhancers are drawn
from the same distance distribution as the actual enhancer-gene pairs. (C) The same fractional rank by interaction frequency analysis within the same TAD as
shown in Figure 6E, but also comparing ranking to all pairs within 1 Mb or 200 Kb of the chosen enhancer-TSS pair. Red = enhancer-gene pairs, blue = hit-gene to
shuffled enhancer pair null distribution, green = hit enhancer to shuffled gene TSS pair null distribution.

(D) Correlation of effect size of enhancer-gene pair versus expression level of target gene. Effect size (% transcript repressed) was correlated with expression level
of targeted gene (Spearman’s rho for 664 inclusive pairs: 0.56; Spearman’s rho for 470 high confidence pairs: 0.53). This is likely consequent to power, as small
effects (less than —25%) are not detected on lowly expressed genes (less than 0.12 UMis/cell). log10 of the mean UMlIs/cell is denoted per target gene transcript.
(E) A “zoom-in” of Figure 6A to the 10 Kb upstream of the target gene’s TSS (rather than 1 Mb). 101 of 354 upstream, high confidence enhancer-gene pairs fall
within 10 Kb of the TSS. Same restrictions to enhancer-gene pairs plotted here as in Figure 6A. Gray line = TSS, red line = 1 Kb upstream of TSS (all protospacers
within 1 Kb of a TSS were excluded from any candidate enhancer gRNA library)
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Figure S6. Outliers with Greater Effect Size in Low MOI Replicate Are Likely Due to Low Expression and Low Cell Count in Low MOI Replicate,
Related to Figure 7
The mean expression of the target gene in the low MOI 41,284 cell dataset as a function of the number of cells bearing each perturbation in that experiment.
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Figure S7. Supplementary Details, Related to STAR Methods

(A and B) Quantification of errors in synthesis of the sgOPTI gRNA backbone across scRNA-seq datasets. (A) Deletion (red), insertion (blue), or mismatch (green)
rate in the 8-15 bp downstream of the spacer in the gRNA backbone as captured by gRNA-transcript enrichment from scRNA-sequencing data. Data is shown for
scRNA-seq datasets of a gRNA library that does not have sgOPTI added to the backbone (but was cloned, amplified and sequenced in a similar manner), the pilot
high MOI gRNA library, and the at-scale gRNA library. (B) The impact of indels on effect sizes for paired-candidate enhancers (high confidence set) and TSS
positive controls. The effect size of gRNAs with versus without perfect backbones, stratified by length of deletion. Gray points = a unique dot is plotted for the
subgroups of each paired enhancer/TSS gRNA, divided by if they harbor 0, 1, 2, or 3 bp deletions. Colored points = set of gRNAs bearing the specified deletion
length. Only points for which there are > = 50 cells in a given deletion-length group are plotted to ensure reasonable estimates of fold change.
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(Cell 176, 377-390.e1-e19; January 10, 2019)

We have identified two errors in the originally published version of this article. Table S2B presents details of the enhancer-gene pairs
identified by the at-scale screen. We inadvertently omitted columns for “chr.candidate_enhancer”, “start.candidate_enhancer”, and
“stop.candidate_enhancer”, which contain the hg19 genomic coordinates for the corresponding paired enhancer. Additionally,
Table S3A presents details of the enhancer-gene pairs re-tested as CRISPRI singletons outside of the scaled screen in this study.
For the ePRKCB enhancer-gene pair, the “CRISPRi Singleton Effect Size” was incorrectly listed at —55% repression rather than
the correct value of —67%. These errors have now been corrected in the article online. The authors apologize for any confusion these

errors may have caused.

1516 Cell 176, 1516, March 7, 2019 © 2019 Elsevier Inc.
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