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Today’s Lecture

e Review:

* Confounding
* Matching

* New Material:
e Stratification
* Regression



Retrospective Study Design

* Sounds like an oxymoron
* But hugely important

e Act as if this is a clinical trial
* Primary objective/endpoint
* Secondary objectives/endpoints

* Inclusion/Exclusion Criteria
* Define treatment arms



What is a confounder?

* Something that is associated with both the treatment (exposure) and
the outcome

Confounder




HAI example
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Why is this a problem?

e Even if there is no direct link between treatment and outcome, there
is a still a link through confounding. Any analysis that do not account
for the confounder will attribute that link to the treatment

Confounder




How do we deal with confounding

* We need to find ways to remove the link between Treatment and
Confounder through data analytic methods

« Remember: That’s what an RCT does (removes the link) by design. In
an observational study we cannot use random assignment, hence we
will need to achieve a similar effect by data analysis.

HA| > Survival

Low Risk
Disease



Matching

* If we compare all treated with all control, confounder raises its head

* What is we find a twin (a match) for each treated patient from the
untreated (control) group.
* Twin = Has the same value for the confounder

* Suppose low risk is defined as number of liver tumors, time between primary
and mets dx and CEA

* For each patient who received HAI, | find someone who had exactly the same
number of tumors, disease free interval and CEA but did not receive HAI

* Now | have a data set where there is no link between Low Risk Disease and
Treatment (I made it so, by “design”).

e If there is still an association between treatment and outcome then it must be
that the treatment causes the outcome



A hidden assumption

* “If there is still an association between treatment and outcome, then
it must be that the treatment causes the outcome”

* | am making a very critical assumption here that | have not stated
* No other confounders !!!
* Hugely important.

* We are not making this assumption in a randomized study. Random
assignment balances all confounders, observed and unobserved.

* Data analysis can at best balance observed and recognized
confounders.



More on Matching

* Find a twin (a match) for each treated patient from the untreated
(control) group.

e Easier said than done

 CEA: do | need an exact match? If a treated patient has a CEA of 87
and there is no control patient with a CEA of 87, but there is one with
86 is it OK to match them? Are they still twins?

* The difference we allow in matching is called a caliper. If we have a
caliper of 10 for CEA, then 77 to 97 match a CE of 87.

* How to choose a caliper? Usually not obvious but can be
consequential



Categorized Risk Factors Are a Problem in
Matching

e CEA >= 200 is used in this disease as a risk factor. Can we match on
that?

e Sure, but it is actually worse than a caliper
* 1 matches 199
* But 199 does not match 200



Isn’t it possible to fix this?

* Use as many confounders as you can think of to match

e Use a very small caliper (such as CEA) or insist on exact matching
(number of tumors)

* Most of the time you cannot find a match for every treated patients if
you insist on strict matching standards

e Exclude unmatched?



What happens if there are unmatched
patients?

e Suppose we had 100 HAI patients to begin with

* We insisted on strict matching and we were able to match 60 of them
* And go ahead analyze this 60-60 matched cohort

* To what population does this generalize to?

* Only the population where the 60 matched HAI patients came from

* Can you define that population? The original 100 is (presumably)
well-defined because you had inclusion/exclusion in your design (see
the importance of design)



Leave no patients unmatched

* This means relax the matching criteria
* Fewer confounders
e Wider calipers

* But this means less twins more siblings = weaker control of
confounding

* The entire field of dealing with confounders can be summarized with
this struggle:

 Bias/Validity tradeoff



Bias/Validity Tradeoff

e Bias is the outcome difference between treated and untreated
patients that is due to confounders

* We match to make the treatment and control groups comparable
* If we there are unmatched patients we lose on validity

* If we relax matching rules to improve validity then the groups are less
comparable and bias creeps in

* No good solution to this, kind of a Heisenberg principle for empirical
research



A note on “Group” Matching

 Some people would call what | described as 1:1 matching

* And they would call also matching if treated and untreated groups are
matched on average (i.e. mean CEA is the same in both). “Groups are
well-matched, groups are matched on means etc”

* This really is not matching. It is something clinical literature made up.
Do not use it.



A note on 1:k matching

 Sometimes useful to capture the variability of the outcome in the
control group

* Requires a large control group and most of the time impractical
e 1:2 match on 100 treated patients = 300 patient study

* Less powerful than 1:1 matched on 150 patients

* The rate limiting step is the number of treated patients.

* Do not 1:k match because it you think will increase your power, do it
only to capture the variability in outcome



Statistical analysis of matched studies

* You cannot use typical two-sample (two group) tests
* No two-sample t-test
* No chi-square test
* No log-rank test

* Instead
* Paired t-test
* McNemar test
e Paired log-rank test



Summary of Matching

* Most matches are not twins. They are at best siblings with many
differences between them

* Unmatched patients are a threat to the validity of conclusions

* Most of the time matching is not a great way to deal with
confounding for these reasons

* But it has great face value: a lot of clinicians think “a matched cohort”
is great even if they do not understand where we traded off between
bias and validity



Stratification

* Can we match on a single categorical variables?

* Consider a different example: adjuvant treatment in localized colon
cancer. All stage IlI's get it and so do some stage Il’s.

* If we are doing an observational treatment comparison can we simply
match on stage Il vs III?



Technically yes

* For each treated stage Il patient, randomly choose an untreated stage
Il patient

e Can we call this a match?
* In the eye of the beholder

* If the matching group definitions are very broad and if there are only
a few categories to match, then it may be better to use stratification
instead of matching



What is stratification?

* Form (a few) strata from the confounding variables

 Compare treatment and control within each strata (using everyone in
that strata)

* Average these comparisons across strata

* No patients excluded, so validity is intact
* What about bias?



Bias in stratification

* Stratification also compares like to like, except that it defines “like”
based on a very loosely defined criteria (like Stage Il vs I11)

* In that sense it is a little like matching on a few variables with large
caliper

e = Bijas is a concern

e Strengths
* Transparent: no excluded patients, no arbitrary calipers



Stratification

Group 1 (Trt)

Ave

age

Group 2 (Ctl)




Regression

e Start simple, outcome Y and one input variable (predictor, covariate)
X, both continuous.

| will write Y = f(X), where f(.) generically denotes a function. Our
general aim is to figure this f(.) thing out

* If you have one X you can try many types of f’s or even leave it
unspecified. But for multivariable regression (many X’s) we will limit
ourselves in this class to a linear form.

* E(Y) = a+ BX, where E(.) means “expected value” or “mean of”

* o and B are parameters (remember populations vs sample; parameter
vs estimate)



Linear Regression

* E(Y) = a + BX, where E(.) means “expected value” or “mean of”

* oo and B are parameters (remember populations vs sample; parameter
vs estimate)

* When have estimates instead of parameters the equation will look
like

* Pred(Y) =a + bX
* 3 and b are estimates
* Pred(Y) means predicted value of Y



Estimation vs Prediction

* Finding the best-fit value of a parameter - Estimation
* 3 and b are parameters

* Finding the best-fit value of an observation = Prediction
* Pred(Y) is a prediction

* In regression and almost all other models
* We first estimate the parameters (increasingly called training the model)
* We then generate predictions of the outcome



When Y is continuous

* No good examples in oncology

* Our interesting outcomes are either binary or censored

* But regression is best taught with a continuous outcome

* So we will spend this lecture on using a somewhat artificial example

* Pre-operative hemoglobin vs surgical blood loss

* | doctored the data a little to make my points so do not conclude anything
medical from this analysis
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How to find the best fitting line

* Never mind (for the purposes of this class) that the general trend in
this scatterplot does not look like a line or much of anything

* Imagine yourself (next set of slides) trying many different lines
 Which one fits best?
 What does “best fit” mean?
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Best fit

* In this context of continuous Y, the most commonly used best fit
criterion is “minimize the deviations from the fitted line”

e Deviations: the distance between a point and the fitted line

* Imagine going through this
* For every possible line going through this data set
* Calculate the deviation for each point
* Add them up
* Choose the line with the smallest sum of deviations

 Known as the least squares method
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Least Squares

* We do not really try all the lines, there is a formula that givesaand b
for a given set of points

* Least Squares is the oldest method for estimating regression
coefficients

* Widely used
 DOES NOT generalize to other outcomes (binary, censored)
* We will not spend any appreciable time on it



Residuals

* Y — pred(Y) are called residuals

* Can you see on the previous graph that residual is the same as
deviation?

* Residuals are very important in least squares regression
* Just like least squares does not generalize well to other outcomes

e But the idea of a deviation generalizes and we will continue to use
that concept



Goodness of fit

 Best fit does not mean good fit
* Can we quantify how well the best fit line fits the data?
* When Y is continuous we use R?

* R2does not generalize well either but commonly reported used when
someone uses least squares

* Between 0 and 1: higher values indicating better fit



Correlation

* An everyday word with a precise meaning in statistics
* Correlation is the (signed) square root of R2

 Sign comes from the sign of b (slope)

* Sleight of hand: parameter or estimate?



More on correlation

* Actually a parameter but its definition requires more math than we
want here

* As most parameters it can be estimated
e Square root of R2 is one way to estimate: Pearson correlation
 Many other ways: Spearman (rank), Kendall’s tau, ....

* Does not generalize well either, but comes in handy as a concept and
also in variable selection
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Back to the Example

* How to report a regression analysis?

* Report point estimates of a and b, along with confidence intervals
and p-values for testing if the underlying coefficient is O

* Report R2



Intercept
Hb

R2

1330.35
-49.41

966.20
-77.10

1694.51
-21.72

<0.0001
0.0005
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Intercept and Slope

* Pred(Y)=a + b*X
* WhenX=0 -2 Pred(Y)=a+b*0=a
* Intercept (a) is the point where the line crosses the vertical axis (Y value for X
= 0)
 Slope
e For X: Pred(Y) =a + b*X
* For X+1: Pred(Y) =a + b*(X+1)
* The difference in Pred(Y) when X goes up by one unitis:a + b*(X+1) — (a +
b*X)=a+b*X+b—-a—-b*x=b
* Slope is the change in Y when X changes one unit
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Intercept
Hb

R2

1330.35
-49.41

966.20
-77.10

1694.51
-21.72

<0.0001
0.0005



Multivariable (multivariate) regression

* We have more than one X
 And some of these X’s can be continuous, some can be categorical
| will first add a categorical variable to the mix

* It is very very very important to write the regression equation every
time

e X1 is continuous, X2 is binary
 Pred(Y)=a+ bl*X1+ b2*X2



Continuous and binary variables in regression

* Pred(Y)=a+ bl1*X1+ b2*X2
e Remember X2 is binary, so either 0O or 1

* When X2=0
* Pred(Y) =a + b1*X1

* When X2 =1
* Pred(Y)=a+ b1*X1+ b2
* Pred(Y) =(a+b2)+bl*X1



Continuous and binary variables in regression

* Pred(Y)=a+ bl1*X1+ b2*X2
e Remember X2 is binary, so either 0O or 1

* When X2=0
* Pred(Y) =a + b1*X1

* When X2 =1
* Pred(Y)=a+ b1*X1+ b2
* Pred(Y)=(a +b2) + bl*X1



Continuous and binary variables in regression

e Pred(Y)=a+ b1*X1 + b2*X2

* X2 =02 Pred(Y)=a+bl1*X1

* When X2 =1 -2 Pred(Y) = (a + b2) + b1*X1
e Same slope, different intercept

e Parallel lines
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Intercept

Hb

Binary Variable
R2

1103.69
-37.93
206.26

734.50
-65.56
127.55

1472.89
-10.29
284.98

<0.0001
0.0071
<0.0001



Intercept 1103.69 734.50
Hb -37.93 -65.56
Binary Variable 206.26 127.55
R2 0.041

Pred(Y) for X2 =0 - 1103.69 —37.93*Hb

Pred(Y) for X2 =1 = 1309.95 —37.93*Hb

1472.89
-10.29
284.98

<0.0001
0.0071
<0.0001



What if we want different slopes

* We need to use an interaction
* Pred(Y)=a+ bl1*X1+ b2*X2 + b12*X1*X2

* When X2=0
* Pred(Y) =a + b1*X1

* When X2 =1
* Pred(Y)=(a+b2)+ (bl +bl12)*X1

* Different intercepts and slopes



Intercept 864.78 501.49
Hb -27.44 -62.23
Binary Variable 574.90 -171.88
Hb*Binary Variable -28.44 -85.73

Pred(Y) for X2 =0 - 864.78 —27.44*Hb

Pred(Y) for X2 =1 > 1449.68 — 55.88*Hb

1428.06 <0.0001

1321.68



Intercept
Hb

Binary Variable
Hb*Binary Variable

864.78 501.49
-27.44 -62.23
574.90 -171.88
-28.44 -85.73

Are the slopes statistically different?

Pred(Y) =a+ b1*X1 + b2*X2 + b12*X1*X2

When does this model reduce to equal-slopes model
Pred(Y) =a + b1*X1 + b2*X2

1428.06 <0.0001

1321.68



Intercept 864.78 501.49
Hb -27.44 -62.23
Binary Variable 574.90 -171.88
Hb*Binary Variable -28.44 -85.73

Are the slopes statistically different?
Pred(Y) =a+ b1*X1 + b2*X2 + b12*X1*X2
When does this model reduce to equal-
Pred(Y) =a + b1*X1 + b2*X2
When b12 = 0!

So testforbl12=0

1428.06 <0.0001

1321.68




Adding more variables

* Once you have two continuous predictors (X’s) in the model it
becomes difficult to visualize, more than 2 impossible

* So we need to “imagine” points in higher dimensional spaces that
only exist in our minds (and in mathematical representations)

”

* But the idea of a “slope”, “residual” etc applies



Intercept 1303.07 501.49 1428.06 <0.001
Hb -37.52 -62.23 7.35 0.008
Binary Variable 207.473 -171.88 1321.68 <0.001
Age -3.48 -85.73 28.85 0.018

R2 0.046



Interpretation of coefficients

* Change in Pred(Y) corresponding to one unit change in X keeping
others constant

* Binary: one unit means going from 0 to 1
e Continuous: depends on units of measurement

» Age: Take two patients with same Hb and X2, Pred(Y) goes down by
3.48 when age goes up by one year

e X2: Take two patients with same Hb and Age. The one with X2 =1 has
Pred(Y) higher by 207.47



Take a look at all the different models we fit

e Estimates jumped around quite a bit

 Model results are usually sensitive to which variables are included
and excluded

* Variable selection is the Achilles heel of multivariate regression
* More on this in next lectures
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