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Today’s Lecture

• Review: 
• Confounding

• Matching 

• New Material:
• Stratification

• Regression



Retrospective Study Design

• Sounds like an oxymoron

• But hugely important

• Act as if this is a clinical trial
• Primary objective/endpoint

• Secondary objectives/endpoints

• Inclusion/Exclusion Criteria

• Define treatment arms

• …



What is a confounder?

• Something that is associated with both the treatment (exposure) and 
the outcome

Treatment Outcome

Treatment Outcome

Confounder



HAI example
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Why is this a problem?

• Even if there is no direct link between treatment and outcome, there 
is a still a link through confounding. Any analysis that do not account 
for the confounder will attribute that link to the treatment

Treatment Outcome

Treatment Outcome

Confounder



How do we deal with confounding

• We need to find ways to remove the link between Treatment and 
Confounder through data analytic methods

• Remember: That’s what an RCT does (removes the link) by design. In 
an observational study we cannot use random assignment, hence we 
will need to achieve a similar effect by data analysis.

HAI Survival

Low Risk 
Disease



Matching

• If we compare all treated with all control, confounder raises its head

• What is we find a twin (a match) for each treated patient from the 
untreated (control) group. 
• Twin = Has the same value for the confounder
• Suppose low risk is defined as number of liver tumors, time between primary 

and mets dx and CEA
• For each patient who received HAI, I find someone who had exactly the same 

number of  tumors, disease free interval and CEA but did not receive HAI
• Now I have a data set where there is no link between Low Risk Disease and 

Treatment (I made it so, by “design”). 
• If there is still an association between treatment and outcome then it must be 

that the treatment causes the outcome



A hidden assumption

• “If there is still an association between treatment and outcome, then 
it must be that the treatment causes the outcome”

• I am making a very critical assumption here that I have not stated

• No other confounders !!!

• Hugely important.

• We are not making this assumption in a randomized study. Random 
assignment balances all confounders, observed and unobserved.

• Data analysis can at best balance observed and recognized 
confounders.



More on Matching

• Find a twin (a match) for each treated patient from the untreated 
(control) group. 

• Easier said than done

• CEA: do I need an exact match? If a treated patient has a CEA of 87 
and there is no control patient with a CEA of 87, but there is one with 
86 is it OK to match them? Are they still twins?

• The difference we allow in matching is called a caliper. If we have a 
caliper of 10 for CEA, then 77 to 97 match a CE of 87.

• How to choose a caliper? Usually not obvious but can be 
consequential



Categorized Risk Factors Are a Problem in 
Matching
• CEA >= 200 is used in this disease as a risk factor. Can we match on 

that?

• Sure, but it is actually worse than a caliper
• 1 matches 199

• But 199 does not match 200

 



Isn’t it possible to fix this?

• Use as many confounders as you can think of  to match

• Use a very small caliper (such as CEA) or insist on exact matching 
(number of tumors)

• Most of the time you cannot find a match for every treated patients if 
you insist on strict matching standards

• Exclude unmatched?



What happens if there are unmatched 
patients?
• Suppose we had 100 HAI patients to begin with

• We insisted on strict matching and we were able to match 60 of them

• And go ahead analyze this 60-60 matched cohort

• To what population does this generalize to?

• Only the population where the 60 matched HAI patients came from

• Can you define that population? The original 100 is (presumably) 
well-defined because you had inclusion/exclusion in your design (see 
the importance of design)



Leave no patients unmatched

• This means relax the matching criteria
• Fewer confounders

• Wider calipers

• But this means less twins more siblings → weaker control of 
confounding

• The entire field of dealing with confounders can be summarized with 
this struggle:
• Bias/Validity tradeoff



Bias/Validity Tradeoff

• Bias is the outcome difference between treated and untreated 
patients that is due to confounders

• We match to make the treatment and control groups comparable

• If we there are unmatched patients we lose on validity

• If we relax matching rules to improve validity then the groups are less 
comparable and bias creeps in

• No good solution to this, kind of a Heisenberg principle for empirical 
research 



A note on “Group” Matching

• Some people would call what I described as 1:1 matching

• And they would call also matching if treated and untreated groups are 
matched on average (i.e. mean CEA is the same in both). “Groups are 
well-matched, groups are matched on means etc”

• This really is not matching. It is something clinical literature made up. 
Do not use it.



A note on 1:k matching

• Sometimes useful to capture the variability of the outcome in the 
control group

• Requires a large control group and most of the time impractical

• 1:2 match on 100 treated patients → 300 patient study

• Less powerful than 1:1 matched on 150 patients

• The rate limiting step is the number of treated patients.

• Do not 1:k match because it you think will increase your power, do it 
only to capture the variability in outcome



Statistical analysis of matched studies

• You cannot use typical two-sample (two group) tests
• No two-sample t-test

• No chi-square test

• No log-rank test

• Instead
• Paired t-test

• McNemar test

• Paired log-rank test



Summary of Matching

• Most matches are not twins. They are at best siblings with many 
differences between them

• Unmatched patients are a threat to the validity of conclusions

• Most of the time matching is not a great way to deal with 
confounding for these reasons

• But it has great face value: a lot of clinicians think “a matched cohort” 
is great even if they do not understand where we traded off between 
bias and validity



Stratification

• Can we match on a single categorical variables?

• Consider a different example: adjuvant treatment in localized colon 
cancer. All stage III’s get it and so do some stage II’s.

• If we are doing an observational treatment comparison can we simply 
match on stage II vs III?



Technically yes

• For each treated stage II patient, randomly choose an untreated stage 
II patient

• Can we call this a match?

• In the eye of the beholder

• If the matching group definitions are very broad and if there are only 
a few categories to match, then it may be better to use stratification 
instead of matching



What is stratification?

• Form (a few) strata from the confounding variables

• Compare treatment and control within each strata (using everyone in 
that strata)

• Average these comparisons across strata

• No patients excluded, so validity is intact

• What about bias?



Bias in stratification

• Stratification also compares like to like, except that it defines “like” 
based on a very loosely defined criteria (like Stage II vs III) 

• In that sense it is a little like matching on a few variables with large 
caliper

• → Bias is a concern

• Strengths
• Transparent: no excluded patients, no arbitrary calipers



Stratification



Regression

• Start simple, outcome Y and one input variable (predictor, covariate) 
X, both continuous.

• I will write Y = f(X), where f(.) generically denotes a function. Our 
general aim is to figure this f(.) thing out

• If you have one X you can try many types of f’s or even leave it 
unspecified. But for multivariable regression (many X’s) we will limit 
ourselves in this class to a linear form. 

• E(Y) = α + βX, where E(.) means “expected value” or “mean of”

• α and β are parameters (remember populations vs sample; parameter 
vs estimate)



Linear Regression

• E(Y) = α + βX, where E(.) means “expected value” or “mean of”

• α and β are parameters (remember populations vs sample; parameter 
vs estimate)

• When have estimates instead of parameters the equation will look 
like

• Pred(Y) = a + bX

• a and b are estimates

• Pred(Y) means predicted value of Y



Estimation vs Prediction

• Finding the best-fit value of a parameter → Estimation
• a and b are parameters

• Finding the best-fit value of an observation → Prediction
• Pred(Y) is a prediction

• In regression and almost all other models
• We first estimate the parameters (increasingly called training the model)

• We then generate predictions of the outcome



When Y is continuous

• No good examples in oncology

• Our interesting outcomes are either binary or censored

• But regression is best taught with a continuous outcome

• So we will spend this lecture on using a somewhat artificial example

• Pre-operative hemoglobin vs surgical blood loss
• I doctored the data a little to make my points so do not conclude anything 

medical from this analysis





How to find the best fitting line 

• Never mind (for the purposes of this class) that the general trend in 
this scatterplot does not look like a line or much of anything

• Imagine yourself (next set of slides) trying many different lines 

• Which one fits best?

• What does “best fit” mean?





Best fit

• In this context of continuous Y, the most commonly used best fit 
criterion is “minimize the deviations from the fitted line”

• Deviations: the distance between a point and the fitted line

• Imagine going through this
• For every possible line going through this data set 

• Calculate the deviation for each point

• Add them up

• Choose the line with the smallest sum of deviations

• Known as the least squares method





Least Squares

• We do not really try all the lines, there is a formula that gives a and b 
for a given set of points

• Least Squares is the oldest method for estimating regression 
coefficients

• Widely used

• DOES NOT generalize to other outcomes (binary, censored)

• We will not spend any appreciable time on it



Residuals

• Y – pred(Y) are called residuals

• Can you see on the previous graph that residual is the same as 
deviation?

• Residuals are very important in least squares regression

• Just like least squares does not generalize well to other outcomes

• But the idea of a deviation generalizes and we will continue to use 
that concept



Goodness of fit

• Best fit does not mean good fit

• Can we quantify how well the best fit line fits the data?

• When Y is continuous we use R2 

• R2 does not generalize well either but  commonly reported used when 
someone uses least squares

• Between 0 and 1: higher values indicating better fit



Correlation

• An everyday word with a precise meaning in statistics

• Correlation is the (signed) square root of R2

• Sign comes from the sign of b (slope)

• Sleight of hand: parameter or estimate?



More on correlation

• Actually a parameter but its definition requires more math than we 
want here

• As most parameters it can be estimated

• Square root of R2 is one way to estimate: Pearson correlation

• Many other ways: Spearman (rank), Kendall’s tau, ….

• Does not generalize well either, but comes in handy as a concept and 
also in variable selection





Back to the Example

• How to report a regression analysis?

• Report point estimates of a and b, along with confidence intervals 
and p-values for testing if the underlying coefficient is 0

• Report R2



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 1330.35 966.20 1694.51 <0.0001

Hb -49.41 -77.10 -21.72 0.0005

R2 ?





Intercept and Slope

• Pred(Y) = a + b*X
• When X = 0 → Pred(Y) = a + b*0 = a

• Intercept (a) is the point where the line crosses the vertical axis (Y value for X 
= 0)

• Slope
• For X: Pred(Y) = a + b*X

• For X+1: Pred(Y) = a + b*(X+1)

• The difference in Pred(Y) when X goes up by one unit is: a + b*(X+1) – (a + 
b*X) = a + b*X + b – a – b*x = b

• Slope is the change in Y when X changes one unit





Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 1330.35 966.20 1694.51 <0.0001

Hb -49.41 -77.10 -21.72 0.0005

R2 0.012  !!!!!!



Multivariable (multivariate) regression

• We have more than one X

• And some of these X’s can be continuous, some can be categorical

• I will first add a categorical variable to the mix

• It is very very very important to write the regression equation every 
time

• X1 is continuous, X2 is binary

• Pred(Y) = a + b1*X1 + b2*X2



Continuous and binary variables in regression

• Pred(Y) = a + b1*X1 + b2*X2

• Remember X2 is binary, so either 0 or 1

• When X2 = 0
• Pred(Y) = a + b1*X1

• When X2 = 1
• Pred(Y) = a + b1*X1 + b2 

• Pred(Y) = (a + b2) + b1*X1



Continuous and binary variables in regression

• Pred(Y) = a + b1*X1 + b2*X2

• Remember X2 is binary, so either 0 or 1

• When X2 = 0
• Pred(Y) = a + b1*X1

• When X2 = 1
• Pred(Y) = a + b1*X1 + b2 

• Pred(Y) = (a + b2) + b1*X1



Continuous and binary variables in regression

• Pred(Y) = a + b1*X1 + b2*X2

• X2 = 0 → Pred(Y) = a + b1*X1

• When X2 = 1 → Pred(Y) = (a + b2) + b1*X1

• Same slope, different intercept 

• Parallel lines





Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 1103.69 734.50 1472.89 <0.0001

Hb -37.93 -65.56 -10.29 0.0071

Binary Variable 206.26 127.55 284.98 <0.0001

R2 0.012  !!!!!!



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 1103.69 734.50 1472.89 <0.0001

Hb -37.93 -65.56 -10.29 0.0071

Binary Variable 206.26 127.55 284.98 <0.0001

R2 0.041

Pred(Y) for X2 = 0 → 1103.69  – 37.93*Hb

Pred(Y) for X2 = 1 → 1309.95  – 37.93*Hb



What if we want different slopes

• We need to use an interaction

• Pred(Y) = a + b1*X1 + b2*X2 + b12*X1*X2

• When X2 = 0
• Pred(Y) = a + b1*X1

• When X2 = 1
• Pred(Y) = (a + b2) + (b1 + b12)*X1

• Different intercepts and slopes



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 864.78 501.49 1428.06 <0.0001

Hb -27.44 -62.23 7.35 0..122

Binary Variable 574.90 -171.88 1321.68 0.131

Hb*Binary Variable -28.44 -85.73 28.86 0.330

Pred(Y) for X2 = 0 → 864.78  – 27.44*Hb

Pred(Y) for X2 = 1 → 1449.68  – 55.88*Hb



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 864.78 501.49 1428.06 <0.0001

Hb -27.44 -62.23 7.35 0..122

Binary Variable 574.90 -171.88 1321.68 0.131

Hb*Binary Variable -28.44 -85.73 28.86 0.330

Are the slopes statistically different?
Pred(Y) = a + b1*X1 + b2*X2 + b12*X1*X2
When does this model reduce to equal-slopes model
Pred(Y) = a + b1*X1 + b2*X2 



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 864.78 501.49 1428.06 <0.0001

Hb -27.44 -62.23 7.35 0..122

Binary Variable 574.90 -171.88 1321.68 0.131

Hb*Binary Variable -28.44 -85.73 28.86 0.330

Are the slopes statistically different?
Pred(Y) = a + b1*X1 + b2*X2 + b12*X1*X2
When does this model reduce to equal-slopes model
Pred(Y) = a + b1*X1 + b2*X2 
When b12 = 0!
So test for b12 = 0



Adding more variables

• Once you have two continuous predictors (X’s) in the model it 
becomes difficult to visualize, more than 2 impossible

• So we need to “imagine” points in higher dimensional spaces that 
only exist in our minds (and in mathematical representations)

• But the idea of a “slope”, “residual” etc applies



Parameter Estimate 95% Lower 95% Upper P

Intercept 1303.07 501.49 1428.06 <0.001

Hb -37.52 -62.23 7.35 0.008

Binary Variable 207.473 -171.88 1321.68 <0.001

Age -3.48 -85.73 28.85 0.018

R2 0.046



Interpretation of coefficients

• Change in Pred(Y) corresponding to one unit change in X keeping 
others constant

• Binary: one unit means going from 0 to 1

• Continuous: depends on units of measurement

• Age: Take two patients with same Hb and X2, Pred(Y) goes down by 
3.48 when age goes up by one year

• X2: Take two patients with same Hb and Age. The one with X2 = 1 has 
Pred(Y) higher by 207.47



Take a look at all the different models we fit

• Estimates jumped around quite a bit

• Model results are usually sensitive to which variables are included 
and excluded

• Variable selection is the Achilles heel of multivariate regression

• More on this in next lectures
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