
Drug Discovery & Development Discovery Phase

Minkui Luo, Ph.D.
Chemical Biology Program
Memorial Sloan Kettering Cancer Center

Contact: luom@mskcc.org, 646-888-3066, ZRC 1901

Drug Discovery & Development: Timeline

Lecture Outline

Target Identification & Verification
 Basic Principles
 Case I: off-target, cGMP PDE
 Case II: HIV targets

Lead Generation

Rational Design: HIV-protease Inhibitor Concepts of Library Screen Expansion of Small Molecule Inventory High-Throughput Screen (HTS)

- From Lead to Drug:

 Lead Optimization
 Lipinski's Rule of Five & DEMET
- Macromolecule Drugs: Proteins & Nucleic Acids

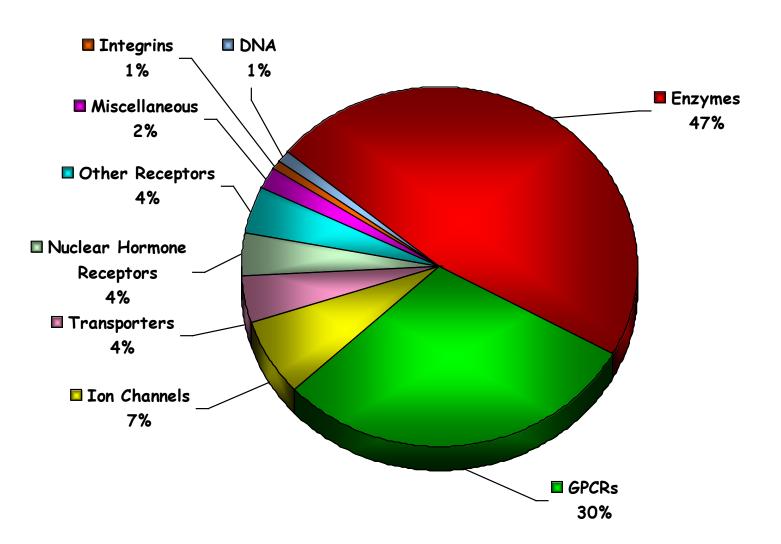
Initial Stages: Drug Discovery

Discovery: 3-5 years

Target
Identification

Lead Generation Lead Optimization

- ·Target selection
- ·Target verification


- ·High-throughput synthesis
- ·High-throughput screening
- ·Crystallography
- ·Computational chemistry

- ·Medicinal chemistry
- ·Process chemistry
- ·Pharmacokinetics
- ·Early toxicology

"A target is a molecular structure (chemically definable by at least molecular mass) that will undergo a specific interaction with chemicals (chemical or biological reagents) that we call drugs because they are administrated to treat or diagnose a disease. This interaction has a connection with the clinic effects" (Nat. Rev. Drug Discov. 2007, 6, 821-834).

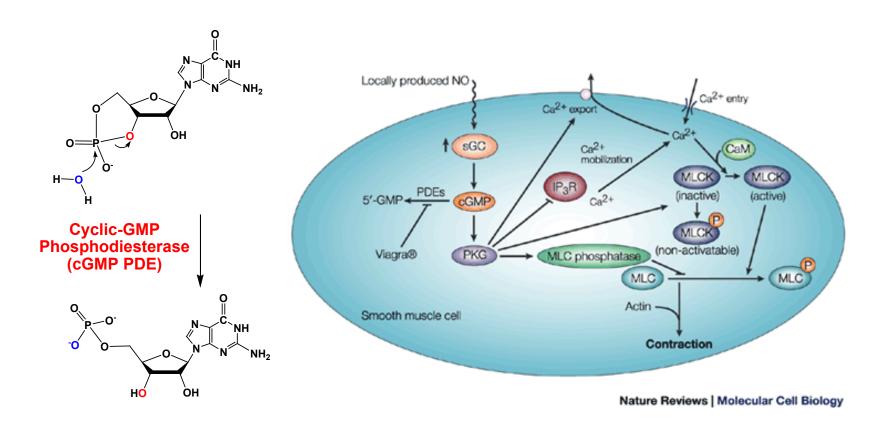
Target Identification & Validation

Marketed Small-Molecule Drug Targets

Nat. Rev. Drug Discov. 2002, 1, 727-730.

Target Identification & Validation

A Target May Be Identified From:


- · Knowing the mechanism of <u>existing drugs</u>.
- · An understanding of <u>disease mechanism</u>.
- Mutations in specific disease-related genes.
 Sequence or structural homology to known targets.
- Serendipity

Target validation requires a demonstration that a molecular target is critically involved in a disease process, and that modulation of the target is likely to have a therapeutic effect.

- Genetic manipulation
 - ·Knockout/in, transgenic models
 - · Antisense RNA
- Chemical manipulation :
 - ·Chemical knockouts and chemical genetics
 - ·Small molecule modulars

Mechanism of Pfizer's Drug --- Viagra

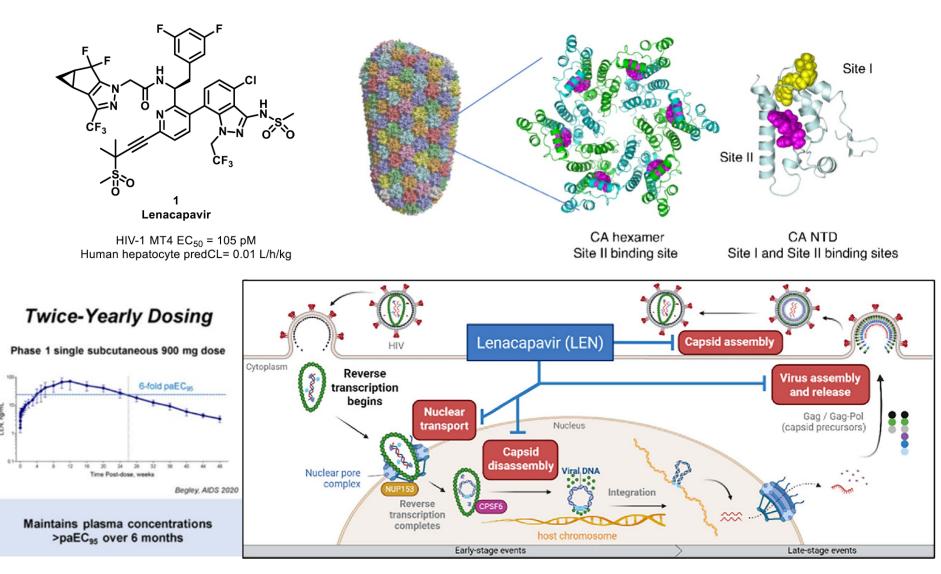
A drug was originally tested for cardiovascular disease

Penile erection occurs when blood swells the corpus cavernosum, an effect facilitated by relaxation of regional smooth muscle. The nitric oxide (NO) pathway leads to relaxation of smooth muscle by stimulating the soluble guanylyl cyclase (sGC), which results in the production of cyclic GMP (cGMP) and the activation of cGMP-dependent protein kinase (PKG). PKG causes smooth-muscle relaxation by mechanisms that are still being defined. Viagra® specifically inhibits the breakdown of cellular cGMP by PDE5 (an isoform of phosphodiesterase that is localized to erectile tissue), and thereby prolongs and enhances the effects of NO/cGMP (*Nat. Rev. Mol. Cell Biol.* **2002**, *3*, 710-718)

Target Identification & Validation

Consider HIV:

- 1. Binding and Fusion
- 2. Reverse Transcription
- 3. Integration
- 4. Transcription-Translation
- 5. Assembly
- 6. Budding and Release


Criteria:

- Function critical for replication
- Druggable target (subjective)
 Known small molecule inhibitors?
- Conservation across virus variants
- Selectivity versus human proteins
- Difficult to incorporate all criteria in a single target!

Discovery of Lenacapavir (2025)

First-in-Class Twice-Yearly Capsid Inhibitor for HIV-1 Treatment

Lecture Outline

Target Identification & Verification
 Basic Principles
 Case I: off-target, cGMP PDE
 Case II: HIV targets

Lead Generation

Rational Design: HIV-protease Inhibitor Concepts of Library Screen Expansion of Small Molecule Inventory High-Throughput Screen (HTS)

- From Lead to Drug:

 Lead Optimization
 Lipinski's Rule of Five & DEMET
- Macromolecule Drugs: Proteins & Nucleic Acids

"Rational (Mechanism-Based)" Design of Target Inhibitors

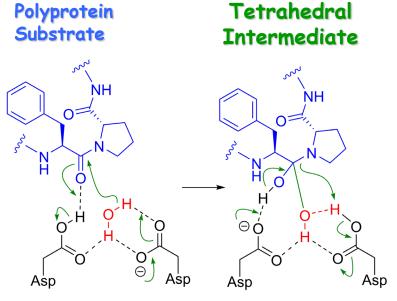
<u>Consider HIV Protease:</u>

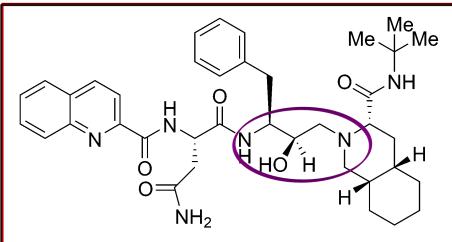
The replication of HIV requires proteolytic cleavage of a polyprotein that contains several key viral proteins. Proteolysis (<u>amide hydrolysis</u>) is performed by a virus-encoded protein, HIV-protease, that is itself contained within the polyprotein.

HIV Protease is an Aspartic Protease

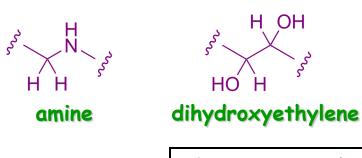
"Rational" Design of Target Inhibitors

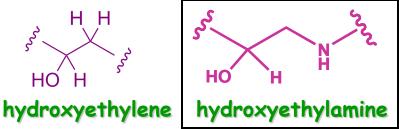
Consider HIV-Protease


HIV-protease inhibitor design began with the study of the natural cleavage sites on the polyprotein.


I	Ser-Gln-Ash- Tyr-Pro -Ile-Val-Gln
II	Ala-Arg-Val- <mark>Leu-Ala</mark> -Glu-Ala-Met
III	Ala-Thr-Ile- <mark>Met-Met</mark> -Gln-Arg-Gly
IV	Pro-Gly-Asn- <mark>Phe-Leu</mark> -Gln-Ser-Arg
V	Ser-Phe-Ask- <mark>Phe-Pro</mark> -Gln-Ile-Thr
VI	Thr-Leu-Asn- Tyr-Pro -Ile-Ser-Pro
VII	Ala-Glu-Thr- <mark>Phe-Tyr</mark> -Val-Asp-Gly
VIII	Arg-Lys-Ile- <mark>Leu-Phe</mark> -Leu-Asp-Gly

Three peptide sequences cleaved by HIV-protease occur at Phe-Pro and Tyr-Pro linkages. Since <u>no known human aspartic protease</u> cleaves at this linkage, these substructures were chosen as scaffolds from which to derive peptide-like inhibitors.


"Rational" Design of Target Inhibitors


Consider HIV-Protease

Structural Mimics of the Tetrahedral Intermediate

Saquinavir
The first HIV-protease drug.
(Hoffman-La Roche)

Lecture Outline

• Target Identification & Verification

Basic Principles

Case I: off-target, cGMP PDE

Case II: HIV targets

Lead Generation

Rational Design: HIV-protease Inhibitor Concepts of Library Screen Expansion of Small Molecule Inventory High-Throughput Screen (HTS)

- From Lead to Drug:

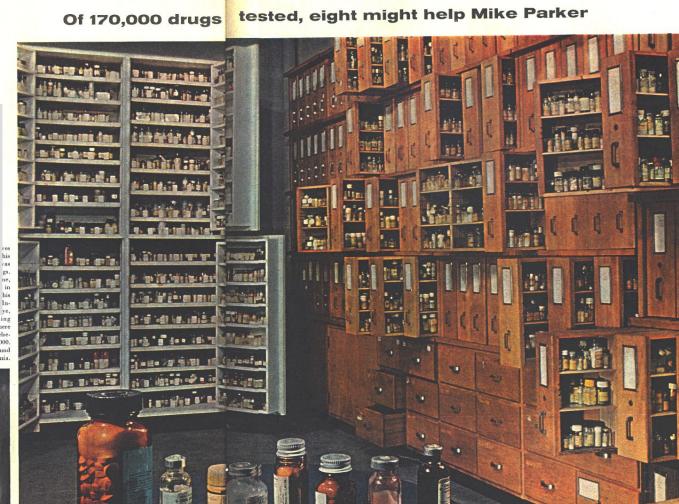
 Lead Optimization
 Lipinski's Rule of Five & DEMET
- Macromolecule Drugs: Proteins & Nucleic Acids

Lead Generation - Library Screening

Building on a Successful Tradition at MSKCC

The day after a happy Thanksgiving, Mike's nosebleeds began. The first came while Mrs. Parker was rushing to work. Desperately, she wet Mike's neck, tucked a bit of napkin under his lip and gave him gum to chew. Nothing worked, and finally she took him to her mother's while she rushed off to her job. It was an hour before the bleeding stopped. the bathroom door to keep from falling on the floor. His nose was bleeding again. She woke Reuben and he ran out to call their older daughter in Stamford, telling her they were rushing Mike to Stamford Hospital.

Mike was carried outdoors wrapped in a blanket, and he remembers the dark, cold night air and seeing grease in the back of the Ford pickup before falling

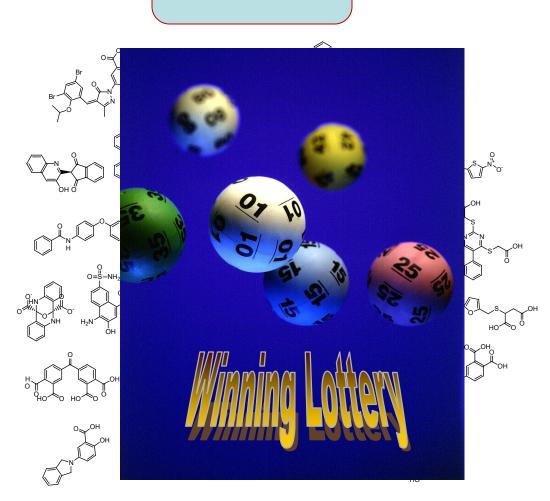

Picture taken at the SKI Cancer Research Center in Rye, NY.

28,000 Chemicals were screened for possible cure for cancer.

(Life Magazine, 1966)

right down." Mrs. Parker was sleeping badly for the first time in her life. Her husband, who had N.Y., shows cabinets containing some 28,000 chemicals screened there for possible use in cancer. Labs elsewhere have tested more than 170,000. Of these, the eight in foreground are being used to treat leukemia.

Lead Generation - Library Screening


High-Throughput Screening of Small Molecule Libraries

High
Throughput
Screening

Finding a Hit

- "Chemical Space"
 10¹⁸⁰ structures
- ·Likely Candidates ·10¹⁸
- •Known Chemicals
 •109
- Commercial Chemicals 106
- ·Commercial Drugs ·10³
- ·Block-Buster Drugs
 ·10²

Lead Generation

High-Throughput Screening of Small Molecule Libraries

How can one generate small molecule libraries?

Combinatorial Chemistry

The synthesis of large numbers of compounds through preparing many single compounds in parallel or many compounds <u>simultaneously in mixtures</u>.

Orthodox Synthesis

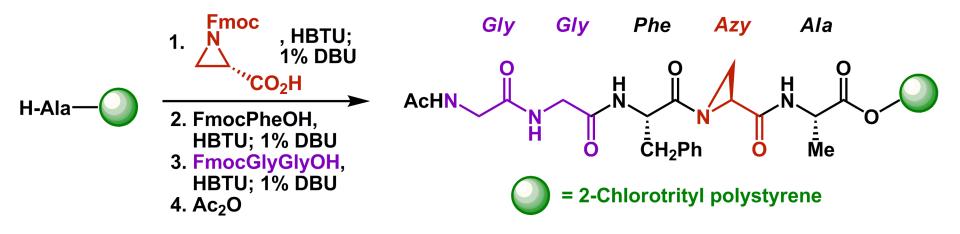
$$A + B \longrightarrow C$$

 Stepwise directed synthesis of one specific product using solution chemistry.

Combinatorial Synthesis

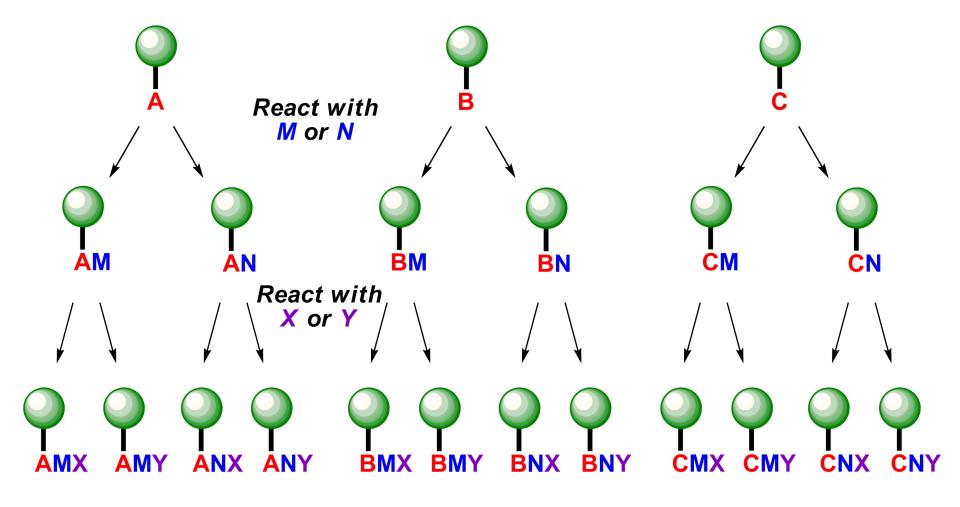
$$\begin{vmatrix}
A_1 \\
A_2 \\
A_3 \\
A_n
\end{vmatrix} + \begin{cases}
B_1 \\
B_2 \\
B_3
\end{vmatrix}$$

$$A_{1-n}B_{1-n}$$


Lead Generation: Combinatorial Chemistry

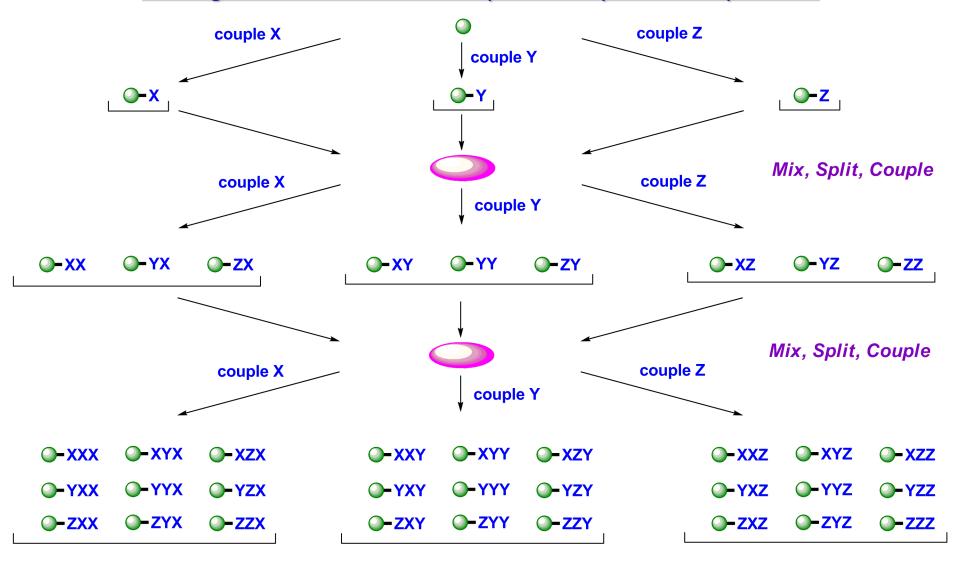
Synthesis on solid supports:

- · Reactions can be driven to completion by <u>use of excess substrate</u>
- · Products can be readily separated from reagents.
- Automation is simplified.


$$\bigcirc -A_n \xrightarrow{B_m} \bigcirc -A_n B_m \xrightarrow{resin} A_n B_m$$

Solid-phase peptide synthesis is the classic example:

Lead Generation: Combinatorial Chemistry


Dealing with Mixtures of Compounds: Spatially-Arrayed Libraries

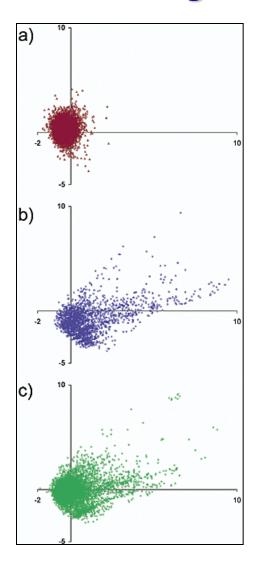
Since each reaction is run is a separate vessel/well, products of each reaction should be homogeneous, provided that the chemistry is efficient.

Lead Generation: Combinatorial Chemistry

Dealing with Mixtures of Compounds: Split-Pool Synthesis

Split-pool synthesis arrives at higher diversity much more quickly.

Diversity in Chemical Space: Combinatorial Libraries, Natural Products, Drugs

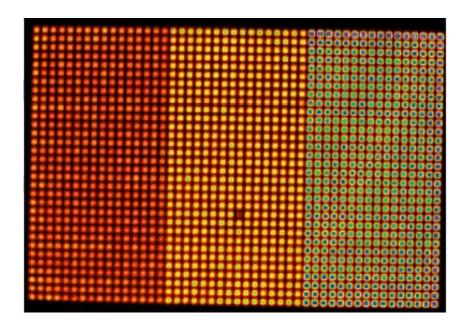

Principal Component
Statistical Analysis of
Molecular Structural Elements

Combinatorial Compounds

- · Number of chiral centers.
- Number of rotatable bonds.
- Content of aromatic moieties.
- Degree of ring fusion.
- # of solvated H-bond acceptors.
- · # of solvated H-bond donors.
- · # of C-N bonds.
- · # of C-O bonds.
- # of C-halogen bonds.
- · # of C-S bonds.
- · Etc....

Natural Products

Drug Molecules



J. Chem. Inf. Comput. Sci. 2003, 43, 218-227.

Lead Generation: High-Throughput Screening (HTS)

- Automated biological testing with the capacity to investigate large chemical libraries.
 - Thousands to millions of compounds
- Assess binding interactions to target.
 - Potency of enzyme inhibition
- Cellular assays
 - Measure biological effect of compounds in cells of interest

Lecture Outline

Target Identification & Verification
 Basic Principles
 Case I: off-target, cGMP PDE
 Case II: HIV targets

Lead Generation
 Rational Design: HIV-protease Inhibitor
 Concepts of Library Screen
 Expansion of Small Molecule Inventory
 High-Throughput Screen (HTS)

From Lead to Drug:

 Lead Optimization
 Lipinski's Rule of Five & DEMET

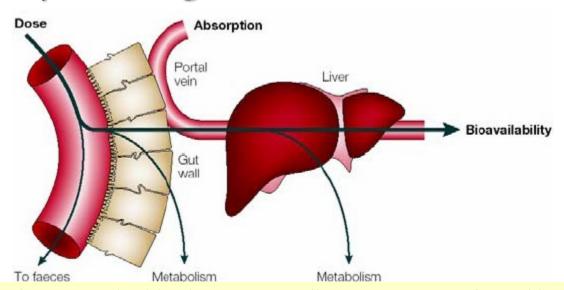
Macromolecule Drugs: Proteins & Nucleic Acids

Lead Optimization and Drug Candidates

Privileged Classes of Small Molecule Drugs?

<u>Lipinski's Rule of Five:</u> Features Commonly Found in Orally Active Drugs.

- Not more than 5 hydrogen bond donors (OH, NH)
- Not more than 10 hydrogen bond acceptors (N, O)
- Molecular weight under 500
- A LogP under 5 *


There are two common misconceptions with this rule of thumb:

- Molecules that satisfy this criteria are not automatically drug-like.
- · This rule was derived from surveying drugs, NOT LEAD STRUCTURES.
- * A partition coefficient is a measure of <u>differential solubility</u> of a compound in two solvents. The log ratio of the concentrations of the solute in the solvent is called LogP. The best known of these partition coefficients is the one based on the solvents octanol and water. The octanol-water partition coefficient is a measure of the <u>hydrophobicity and hydrophilicity</u> of a substance. In the context of drug-like substances, hydrophobicity is related to absorption, bioavailability, hydrophobic receptor interactions, metabolism and toxicity.

Suitability of Drug Candidates

ADMET

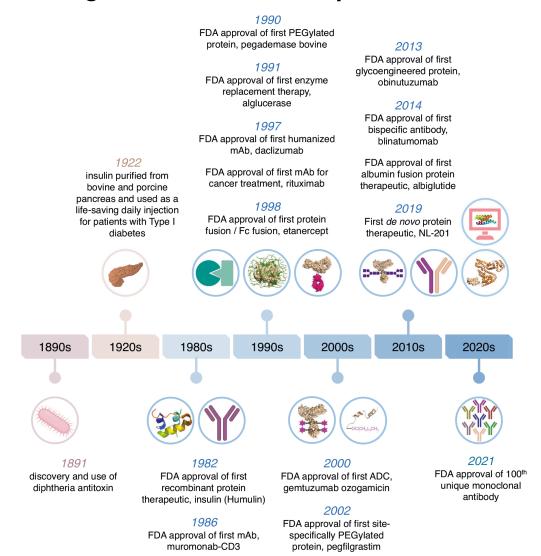
- Absorption
- Distribution
- · Metabolism
- Excretion
- Toxicity

<u>Absorption:</u> A compound has to be taken in to the bloodstream, usually via mucous surfaces like the digestive tract. <u>Uptake into the target organs or cells</u> needs to be ensured.
This can be a serious problem at some natural barriers like the blood-brain barrier.
<u>Distribution:</u> The compound needs to be carried to its effector site
most often via the bloodstream. From there, the compound may distribute into
tissues and organs, usually to differing extents.
<u>Metabolism:</u> Compounds begin to <u>break down as soon as they enter the body</u> . The majority of small-molecule drug metabolism is carried out in the liver by redox (cytochrome P450) enzymes.
Excretion: Compounds and their metabolites need to be removed from the body via excretion, usually through the kidneys (urine) or in the feces. Unless excretion is complete, accumulation of foreign substances can adversely affect normal metabolism
Toxicity: The adverse effects of a drug on the body, ranging from nausea to death

Lecture Outline

Target Identification & Verification
 Basic Principles
 Case I: off-target, cGMP PDE
 Case II: HIV targets

Lead Generation
 Rational Design: HIV-protease Inhibitor
 Concepts of Library Screen
 Expansion of Small Molecule Inventory
 High-Throughput Screen (HTS)

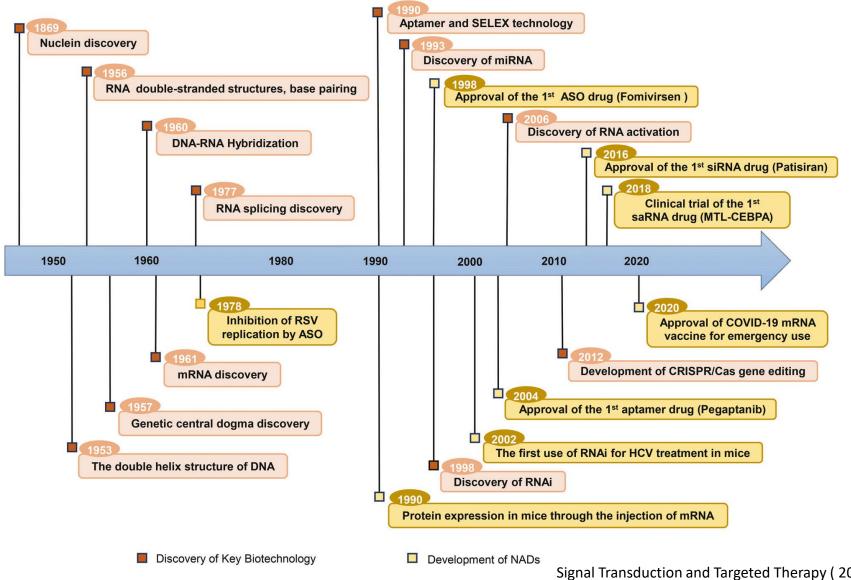

From Lead to Drug:

 Lead Optimization
 Lipinski's Rule of Five & DEMET

Macromolecule Drugs: Proteins & Nucleic Acids

Protein-based Therapeutics

A timeline of significant advances of protein-based therapeutics



2005

FDA approval of first lipidated protein therapeutic, insulin detemir

Nucleic Acid Drugs (NADs)

Essential discoveries in fundamental theory and critical NADs therapy

