
Biostatistics
Mithat Gonen

Brendon Bready



Intercept and Slope

• Pred(Y) = a + b*X
• When X = 0 → Pred(Y) = a + b*0 = a

• Intercept (a) is the point where the line crosses the vertical axis (Y value for X 
= 0)

• Slope
• For X: Pred(Y) = a + b*X

• For X+1: Pred(Y) = a + b*(X+1)

• The difference in Pred(Y) when X goes up by one unit is: a + b*(X+1) – (a + 
b*X) = a + b*X + b – a – b*x = b

• Slope is the change in Y when X changes one unit





Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 1330.35 966.20 1694.51 <0.0001

Hb -49.41 -77.10 -21.72 0.0005

R2 0.012  



Multivariable (multivariate) regression

• We have more than one X

• And some of these X’s can be continuous, some can be categorical

• I will first add a categorical variable to the mix

• It is very very very important to write the regression equation every 
time

• X1 is continuous, X2 is binary

• Pred(Y) = a + b1*X1 + b2*X2



Continuous and binary variables in regression

• Pred(Y) = a + b1*X1 + b2*X2

• Remember X2 is binary, so either 0 or 1

• When X2 = 0
• Pred(Y) = a + b1*X1

• When X2 = 1
• Pred(Y) = a + b1*X1 + b2 

• Pred(Y) = (a + b2) + b1*X1



Continuous and binary variables in regression

• Pred(Y) = a + b1*X1 + b2*X2

• Remember X2 is binary, so either 0 or 1

• When X2 = 0
• Pred(Y) = a + b1*X1

• When X2 = 1
• Pred(Y) = a + b1*X1 + b2 

• Pred(Y) = (a + b2) + b1*X1



Continuous and binary variables in regression

• Pred(Y) = a + b1*X1 + b2*X2

• X2 = 0 → Pred(Y) = a + b1*X1

• When X2 = 1 → Pred(Y) = (a + b2) + b1*X1

• Same slope, different intercept 

• Parallel lines





Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 1103.69 734.50 1472.89 <0.0001

Hb -37.93 -65.56 -10.29 0.0071

Binary Variable 206.26 127.55 284.98 <0.0001

R2 0.041

Pred(Y) for X2 = 0 → 1103.69  – 37.93*Hb

Pred(Y) for X2 = 1 → 1309.95  – 37.93*Hb



What if we want different slopes

• We need to use an interaction

• Pred(Y) = a + b1*X1 + b2*X2 + b12*X1*X2

• When X2 = 0
• Pred(Y) = a + b1*X1

• When X2 = 1
• Pred(Y) = (a + b2) + (b1 + b12)*X1

• Different intercepts and slopes



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 864.78 501.49 1428.06 <0.0001

Hb -27.44 -62.23 7.35 0..122

Binary Variable 574.90 -171.88 1321.68 0.131

Hb*Binary Variable -28.44 -85.73 28.86 0.330

Pred(Y) for X2 = 0 → 864.78  – 27.44*Hb

Pred(Y) for X2 = 1 → 1449.68  – 55.88*Hb



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 864.78 501.49 1428.06 <0.0001

Hb -27.44 -62.23 7.35 0..122

Binary Variable 574.90 -171.88 1321.68 0.131

Hb*Binary Variable -28.44 -85.73 28.86 0.330

Are the slopes statistically different?
Pred(Y) = a + b1*X1 + b2*X2 + b12*X1*X2
When does this model reduce to equal-slopes model
Pred(Y) = a + b1*X1 + b2*X2 



Parameter Estimate 95% CI (Lower Bound) 95% CI (Upper Bound) p

Intercept 864.78 501.49 1428.06 <0.0001

Hb -27.44 -62.23 7.35 0..122

Binary Variable 574.90 -171.88 1321.68 0.131

Hb*Binary Variable -28.44 -85.73 28.86 0.330

Are the slopes statistically different?
Pred(Y) = a + b1*X1 + b2*X2 + b12*X1*X2
When does this model reduce to equal-slopes model
Pred(Y) = a + b1*X1 + b2*X2 
When b12 = 0!
So test for b12 = 0



Adding more variables

• Once you have two continuous predictors (X’s) in the model it 
becomes difficult to visualize, more than 2 impossible

• So we need to “imagine” points in higher dimensional spaces that 
only exist in our minds (and in mathematical representations)

• But the idea of a “slope”, “residual” etc applies



Parameter Estimate 95% Lower 95% Upper P

Intercept 1303.07 501.49 1428.06 <0.001

Hb -37.52 -62.23 7.35 0.008

Binary Variable 207.473 -171.88 1321.68 <0.001

Age -3.48 -85.73 28.85 0.018

R2 0.046



Interpretation of coefficients

• Change in Pred(Y) corresponding to one unit change in X keeping 
others constant

• Binary: one unit means going from 0 to 1

• Continuous: depends on units of measurement

• Age: Take two patients with same Hb and X2, Pred(Y) goes down by 
3.48 when age goes up by one year

• X2: Take two patients with same Hb and Age. The one with X2 = 1 has 
Pred(Y) higher by 207.47



Take a look at all the different models we fit

• Estimates jumped around quite a bit

• Model results are usually sensitive to which variables are included 
and excluded

• Variable selection is the Achilles heel of multivariate regression

• More on this in next lectures



Binary Outcome

• Useful to code it as 0-1

• Example: NAC in breast cancer for conversion to being eligible for 
breast conservation surgery

• Start with one predictor: tumor size (cm)

• We coded the outcome as 0-1, can we use linear regression?

• Conversion = a + b*TumorSize



• What does a 0.8 for conversion 
mean?

• If you extend the line it will cross 
to negative at a large value of 
tumor size, what does it mean to 
have a negative value for 
conversion?



We Need to Model Probabilities

• Prob (Conversion) = a + b*TumorSize ??

• Might imply probabilities > 1 or < 0

• What we need is a sigmoid
• Between 0 and 1 by definition



How to get a sigmoid?

• There are many many ways

• Let p = Prob(conversion)

• p/(1-p) = Odds Ratio
• Odds are 3:1 means p =0.75

• log(p/(1-p)) = a + b*TumorSize→ Logistic Regression

• p/(1-p) = exp(a + b*TumorSize)→ another way to represent logistic  
regression

• p = exp(a + b*TumorSize)/(1 + exp(a + b*TumorSize)) → another way 
to represent logistic regression



Three Forms of Logistic Regression

• log(p/(1-p)) = a + b*TumorSize→ Log Odds Ratio Version

• p/(1-p) = exp(a + b*TumorSize) → Odds Ratio version

• p = exp(a + b*TumorSize)/(1 + exp(a + b*TumorSize)) → Sigmoid 
version

• We use the log odds ratio version to estimate the parameters

• We use the odds ratio version to report (mostly, although sometimes 
the log odds ratio version is also used)

• We use the sigmoid version to plot



Three Forms of Logistic Regression

• We use the log odds ratio version to estimate the parameters

• We use the odds ratio version to report (mostly, although sometimes 
the log odds ratio version is also used)
• You should be able to look at a paper and tell which version they are 

reporting

• We use the sigmoid version to plot



Logistic Regression: Estimate

• log(p/(1-p)) = a + b*TumorSize

• Left hand side is the “log odds ratio”

• Right hand side is the “linear predictor”

• We do not have a linear regression but we have a linear predictor

• Or we have a regression linear in log odds ratio.



Logistic Regression: Plotting



Logistic Regression: Interpretation

• log(p/(1-p)) = 1.97 - 0.22 * Tumor Size

• How do we interpret the coefficients?

• 1.97 is the intercept of the log-odds 
• When Tumor Size is 0, log odds is 1.97

• -0.22 is the slope of the log-odds
• For each cm increase in tumor size log odds ratio decreases by 0.22

• It is not so practical with the log in there



Logistic Regression: Interpretation

• (p/(1-p)) = exp(1.97 - 0.22 * Tumor Size)

• Let’s interpret the “slope” first

• What happens when you increase tumor size by 1 cm
• exp(1.97 - 0.22 * (Tumor Size + 1))

• exp(1.97 - 0.22 * Tumor Size)

• The ratio of the right-hand sides is exp(-0.22) = 0.80

• One cm increase in Tumor size multiplies the odds by 0.80

• Or one cm increase in Tumor size decreases the odds by 20%



Logistic Regression: Intercept

• Not commonly needed to interpret but I will tell you anyway

• (p/(1-p)) = exp(1.97 - 0.22 * Tumor Size)

• When Tumor Size is 0 odds (of response) is exp(1.97) = 7.22

• p/(1-p) = 7.22 → p = 0.88



Variable Odds Ratio 95% Lower Bound 95% Upper Bound p

Intercept 7.22 4.57 11.25 <0.001

Tumor Size (cm) 0.80 0.73 0.88 <0.001

Tumor size is significantly associated with probability of conversion (Odds Ratio: 0.80, 95%CI: 0.73 – 0.88, 
p<0.001)

One cm increase in tumor size reduces the odds of conversion by 20%. We are 95% confident that the odds of 
conversion are reduced by a factor of 12% to 27%.  Where did these numbers come from? 1-0.8, 1-0.73, 1-0.88.

It is also common to say one cm increase in tumor size reduces the probability of conversion by 20%. Incorrect 
but commonly used.



Variable Odds Ratio 95% Lower Bound 95% Upper Bound p

Intercept 7.22 4.57 11.25 <0.001

Tumor Size (cm) 0.80 0.73 0.88 <0.001

Tumor size is significantly associated with probability of conversion (Odds Ratio: 0.80, 95%CI: 0.73 – 0.88, 
p<0.001)

What is the null hypothesis? b = 0 or exp(b) = 1 → OR = 1



Binary Covariate 

• Example: Clinical N+

• Equation: log(p/(1-p)) = a + b*NodePos

• Estimates
• a = 0.81

• b = -0.15

• Interpret the “b”



Remember to use the odds ratio version for 
interpretation
• p/(1-p) = exp(0.81 – 0.15 * NodePos)

• NodePos can only take two values: 0 (negative), 1 (positive)

• Therefore a one unit increase represents the odds ratio for positives 
to negatives

• exp(-0.15) = 0.86 is the odds ratio for NodePos 

• Node positivity decreases the odds of conversion by 14% 



Building a Logistic Regression Model

• Let’s use both tumor size and node positivity in the same model

• Log(p/(1-p)) = a + b*TumorSize + c*NodePos



Variable Odds Ratio 95% Lower Bound 95% Upper Bound p

Tumor Size (cm) 0.96 0.94 0.98 <0.001

Node + 0.87 0.81 0.94 <0.001

It is very very very important to write the regression equation every time

Log(p/(1-p)) = a + b*TumSize + c*NodePos



Interpretations

• When tumor size increases by 1cm and nodal status is held constant 
the odds of conversion decreases by 4%

• Helpful to think of two patients: same nodal status but tumor sizes 
differ by 1cm

• The one with the larger tumor size is 4% less likely to convert

• Same nodal status means they could both be negative, or they could 
both be positive, 4% applies regardless
• “Equal slopes” assumption



Interpretations

• When tumor size is held constant nodal positivity reduces odds of 
conversion by 13%

• Again, think of two patients: same tumor size but one is N+ the other 
is N-

• The odds of conversion is 13% less for the N+ patient

• Again, applies to any tumor size because of “equal slopes”



Equal Slopes

• It is an assumption in this model … 4% applies to both N0 and N+ 
patients

• Log(p/(1-p)) = a + b*TumorSize + c*NodePos + d*TumorSize*NodePos

• A term that has the product of two variables is called an interaction

• Adding an interaction allows for different slopes

• How?



Different Slopes

• Log(p/(1-p)) = a + b*TumorSize + c*NodePos + d*TumorSize*NodePos

• What is the equation for N0 patients?
• NodePos = 0 → Log(p/(1-p)) = a + b*TumorSize 

• What is the equation for N1 patients
• NodePos = 1 → Log(p/(1-p)) = (a + c) + (b + d)*TumorSize 

• Slopes now differ by d



Effect of Tumor Size

• Odds ratio was 0.80 when we only used tumor size in the model

• It is 0.96 when it is used in conjunction with node positivity

• Which one is true?

• Achilles’ heel of regression



All interpretations require a correctly-
specified model
• Memorize this

• Interpretations depend on model being correctly specified

• Correctly specified model means all the important variables are 
included, all the unimportant ones excluded

• How do we ever know?



Correct Model

• Choosing the correct model is the most important thing in any 
regression application

• As much an art as it is science

• It is very important to pre-specify a list of candidate variables

• Then try a combination of these variables to find the best model 
empirically



Pre-specification

• Requires subject matter knowledge

• Beware the statistician or the computer scientist who says “just give 
me the data”



Finding the best model empirically

• An important area of statistics 

• There is no one widely-accepted method

• Most common in medical research
• Forward selection

• Backward selection



Forward Selection

• Take your candidate variables

• For each one of them run a logistic regression with only that variable 
(called univariate analysis sometimes)

• Choose the variable with the smallest p

• Enter that into the model. Now run a logistic regression for all the 
remaining variables one by one. In each logistic regression include 
that variable and the variable already chosen to be in the model in 
the previous step

• Continue until you do not have p<0.05



Backward Selection

• Run a logistic regression with all your variables in the model

• IF all p < 0.05, then you have your model

• If not, exclude the variable with the highest p and re-run

• Continue until all p<0.05



Which one to use

• Backward selection requires more data points

• Rule of thumb: 10-15 “events” per variable in the regression model

• Event is the least common of the outcome categories

• 450 of 626 (72%) converted

• Non-conversion is the least common: so the number of events is 176 

• One can include 12-17 variables here. 

• Forward selection is less demanding but you have to stop adding to 
the model when you reach the rule of thumb.



What we mean by variable?

• When we say 10-15 events per variable

• We actually mean number of coefficients in the model, excluding the 
intercept (a)

• So an unequal slopes model has 3 “variables”



Back to Confounding

• We reviewed matching

• We saw how regression can be used 
• Put all your confounders and your treatment variable in a regression model

• The interpretation of treatment variable is “hold all confounders constant, the 
treatment coefficient is the treatment effect estimate” adjusted for 
confoudners

• Propensity Score Matching



CY’s Data

• Treatment: Embolization (n=64) vs Y90 (n=17)

• Confounders: Age, gender, histology, number of tumors, largest tumor 
size

• Hard to match on all of them even with large calipers or groupings



What Are We Trying to do?

• Remove the arrow from confounder to treatment

Treatment Outcome

Treatment Outcome

Confounder



What if

• I am able to calculate the probability of receiving treatment 
(propensity) based on confounders

• Can I use it to match?

• Would it remove the link?

• How can I actually do it?



Logistic Regression?

• Outcome (treatment): binary

• Fit a model and estimate the probability for each patient

• Match patients with similar probabilities
• Side question: probabilities are continuous – how can we match?



Model

log(p/(1-p)) = -5.41 + 0.06*Age(years) – 0.016*Female + 

0.18*Cutaneous – 0.29*Uveal - 0.39(2-5 Tumors) + 0.65*(5-10 Tumors) 

– 0.06*(>10 Tumors) – 0.0034*Size(cm) 

Let’s check the signs of coefficients. Do they make sense?







Overlap score

• C-index, AUC etc

• 0.5 (full overlap), 1 (none)

• We do not want either extreme (why?)

• In this case c = 0.73, sweet spot
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