{ "cells": [ { "cell_type": "code", "execution_count": 12, "id": "cb7a2f4a-aea2-4c54-9320-d5f9045509a2", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 3, "id": "7daf90ca-5976-471c-bb47-b0df7b0056a9", "metadata": {}, "outputs": [], "source": [ "arr = np.array([1,2,3,4])" ] }, { "cell_type": "code", "execution_count": 4, "id": "3ffdfe80-87b9-472c-b430-dbee9d312c85", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 3, 4])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr" ] }, { "cell_type": "code", "execution_count": 5, "id": "3fba8412-16ca-46c4-ac52-50232fe0dfb8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(4,)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr.shape" ] }, { "cell_type": "code", "execution_count": 6, "id": "c3bcc560-6ddb-498b-bcfe-af548a0ec427", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([2, 4, 6, 8])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr * 2" ] }, { "cell_type": "code", "execution_count": 11, "id": "4274f1dc-2e5a-4ce0-9e49-a628df26527b", "metadata": {}, "outputs": [], "source": [ "rng = np.random.default_rng()" ] }, { "cell_type": "code", "execution_count": 37, "id": "59dce0fc-d4c6-4734-9cec-fa575d5faa5b", "metadata": {}, "outputs": [], "source": [ "arr2 = rng.standard_normal(1000)" ] }, { "cell_type": "code", "execution_count": 38, "id": "e8bf735c-90f8-486e-b074-87d7bac277f8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkN1JREFUeJztnQmYFcXV92tmgGGdEUQ2AVkVEdlUFIlGBeMat5jEJcbtNZu8L2reGNGYhE8NGpOoUUNMYjBvohKj4hYlYXGJijuIgAsquLEJ6AzrADP3e/7N1NjTU919qrp6u/f8nmfEmblzby/VVafO8j9lhUKhIBiGYRiGYVKgPI0PZRiGYRiGAWyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGq1EhmloaBArV64UnTp1EmVlZWkfDsMwDMMwBKCVunHjRtGrVy9RXl6eX0MERkifPn3SPgyGYRiGYQz46KOPRO/evfNriMATIk+kqqoq7cNhGIZhGIZAbW2t40iQ63huDREZjoERwoYIwzAMw+QLSloFJ6syDMMwDJMabIgwDMMwDJMabIgwDMMwDJMabIgwDMMwDJMabIgwDMMwDJMabIgwDMMwDJMabIgwDMMwDJMabIgwDMMwDJMamRY0Y5j6hoJ4afkGsXbjNtGtU1sxpn8XUVHOfYcYhmGKBTZEmMwya/EqMeXRpWJVzbamn/Wsbit+9tWh4thhPVM9NoZhGMYOHJphMmuEfP9vrzUzQsDqmm3Oz/F7hmEYJv+wIcJkMhwDT0hB8Tv5M/wer2MYhmHyDRsiTOZATojXE+IG5gd+j9cxDMMw+YYNESZzIDHV5usYhmGY7MKGCJM5UB1j83UMwzBMdmFDhMkcKNFFdYxfkS5+jt/jdQzDMEy+YUOEyRzQCUGJLvAaI/J7/J71RBiGYfJPYobI9ddfL8rKysQll1yS1EcyOQY6IdO+NVr0qG4efsH3+DnriDAMwxQHiQiavfzyy+KOO+4Qw4cPT+LjmCIBxsbRQ3uwsirDMEwRE7tHZNOmTeLss88Wf/zjH0Xnzp3j/jimyIDRMXbg7uLkkXs6/7IRwjAMU1zEbohcfPHF4oQTThATJkwIfW1dXZ2ora1t9sUwDMMwTPESa2hmxowZ4rXXXnNCMxSmTp0qpkyZEuchMQzDMAxTCh6Rjz76SEyaNEncfffdom1bmt7D5MmTRU1NTdMX3oNhGIZhmOKlrFAoxNKw46GHHhKnnnqqqKioaPpZfX29UzlTXl7uhGHcv1OB0Ex1dbVjlFRVVcVxmAzDMAzDWEZn/Y4tNDN+/HjxxhtvNPvZ+eefL4YMGSJ+/OMfhxohDMMwDMMUP7EZIp06dRLDhg1r9rMOHTqI3XffvcXPGYZhGIYpTVhZlWEYhmGY4hY0kzz11FNJfhzDMAzDMBmHPSIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw6QGGyIMwzAMw5RGrxmGiZP6hoJ4afkGsXbjNtGtU1sxpn8XUVFelvZhMQzDMAGwIcIUBbMWrxJTHl0qVtVsa/pZz+q24mdfHSqOHdYz1WNjGIZh/OHQDFMURsj3//ZaMyMErK7Z5vwcv2cYhmGyCRsiTO7DMfCEFBS/kz/D7/E6hmEYJnuwIcLkGuSEeD0hbmB+4Pd4HcMwDJM92BBhcg0SU22+jmEYhkkWNkSYXIPqGJuvYxiGYZKFDREm16BEF9UxfkW6+Dl+j9cxDMMw2YMNESbXQCcEJbrAa4zI7/F71hNhGIbJJmyIMLkHOiHTvjVa9KhuHn7B9/g564gwDMNkFxY0Y4oCGBtHD+3ByqoMwzA5gw0RpmiA0TF24O5pHwbDMAyjAYdmGIZhGIZJDTZEGIZhGIZJDTZEGIZhGIZJDTZEGIZhGIZJDTZEGIZhGIZJjZKvmkFXVi75ZBiGYZh0KGlDZNbiVU6LeHf3VsiBQ4mTRbAYhmEYJn7KS9kI+f7fXmvRQn51zTbn5/g9wzAMwzA5NkSmTZsmhg8fLqqqqpyvsWPHiieeeEJkIRwDT0hB8Tv5M/wer2MYhmEYJqeGSO/evcX1118vXn31VfHKK6+Io446Spx88sliyZIlIk2QE+L1hLiB+YHf43UMwzAMw+Q0R+SrX/1qs++vu+46x0vywgsviP3220+kBRJTbb6OYRiGYZiMJ6vW19eLf/zjH2Lz5s1OiEZFXV2d8yWpra2N5VhQHWPzdVS4QodhGIZhEjZE3njjDcfw2LZtm+jYsaOYOXOmGDp0qPK1U6dOFVOmTIn7kBwDANUxSExVZYGUNbaQx+tswRU6DMMwDNOSskKhEGtG5vbt28WHH34oampqxP333y/+9Kc/iaefflppjKg8In369HH+FsmucVTNAPcFkP6Jad8abc1AkJ/lvdBxfBbDMAzDpA3W7+rqatL6Hbsh4mXChAli4MCB4o477rB6Iln1UiAc86Ub5vkmx0rvy7M/PorDNAzDMExRoLN+Jy5o1tDQ0MzrkSYwNo4e2iPWvA2dCp2xA3e39rkMwzAMkwdiNUQmT54sjjvuONG3b1+xceNGcc8994innnpK/Otf/xJZAUZHnAYAV+gwDMMwTEqGyNq1a8W3v/1tsWrVKsdFA3EzGCFHH320KBXSqtBhGIZhGFHqhsidd94pSp00KnQYhmEYJi+UbK+ZJEM/SH4F3swT+T1+z4mqDMMwTCnChkhCSbEo0YXnww2+59JdhmEYppRJvGqmVEmiQodh9VqGYZi8wYZIEVXolDqsXsswDJM/ODTDFAVSvdar2YIkYfwcv2cYhmGyBxsiTFGEY+AJUVUlyZ/h93gdwzAMky3YEGFyj456LcMwDJMt2BBhcg+r1zIMw+QXTlZlcg+r1zJuuHKKYfIFGyI5hSfbL2D1WkbClVMMkz/YEMkhPNmq1WtRHQOjw22MsHpt6VVOeY1RWTnF4oEMk004RyRncJmqGlavLW24coph8gt7RIpossV+H7+Hgmsp7v5ZvbZ00amcYlFBhskWbIjkCJ5sw2H12tKEK6cYJr9waCZH8GTLMGq4coph8gt7RHIET7YMo4Yrp4oTrg4sDdgQydHDUcqTLU9ITBBcOVV8cHVg6VBWKBQym0ZeW1srqqurRU1NjaiqqhJZIO2HQ1bNCJ/JthgrRNK+5kx+4LFS3KXYxTzPFRs66zcbIjl8OEppss3KNWfyA3vP8n//vnTDPN/EfOn5ffbHR/F9zTA66zeHZnJYOlsqZapZuuZMfuDKqXzD1YGlBxsiOX04SmGyzdo1Zxgmfrg6sPTg8l0i/HAkD19zhik9uDqw9GBDhAg/HMnD15xhSg9ZHegXbMXPexZpdWCpwoYIEX44koevOcOUbik28D77XIpdnLAhQoQfjuTha87YTn6e/9568fDCT5x/s94AL67jzcN14CaWpQWX72pSSqWzWSEL15xLQvNNFsZQFo43b9eBn7v8wjoiMcMPR2ld87xN3ky+tWjiOt68XQcm37AhwjCW4Mk73+RNHCuu483bdWDyj876zTkiJUgeYsR5EFQD+D1fv+LQoinm483bdShm0pp/6zM877OgWYkRFGYoBbVWHVhQLf/kTYsmruPN23Uo1lB6WmHeWRkPL7MhUkL4hRnQzfd7f3tN7Na+tfh8y45MDtQ0KOXJu1jImxbNinWbYznevF2HYlyAg+bf7//ttdjCvGl9rg6xhmamTp0qDjroINGpUyfRrVs3ccopp4i33347zo8sOmy50yhhBrcR4h6oGMilSKlO3nlw5RajFg2u770vfRj6OpPjzdN1sL0Ae72aacxraYV563MSXo7VI/L000+Liy++2DFGdu7cKa688krxla98RSxdulR06NAhzo8uCmxa82FhBhWl3lhOTt6YuAoBCX7FNHlncSdpQ4sGCw/uVyHDWjR4RlfX1oW+7oyD+mofb56uQ1IL8JUz3xBbdzSIHlXxh2vSCvO+lJPwcqwekVmzZonzzjtP7LfffmLEiBHirrvuEh9++KF49dVXRZ5IY2do25o3DR+UchJbqQqqZWknWUriWNRntF/X9kV9HWxA2Xht2LxDXPr3heLMP77gVBTFOa7TCvOuzUl4OdEcEZTxgC5d1DvIuro658td/lOKO8Mwa97ESxE1fJD2QE0LOXl7x0CPHHoH0hp7WQD3KevJ2EmEAvNwHWygO1/FnS+hc2/rLSbX5iW8nJgh0tDQIC655BIxbtw4MWzYMN+ckilTpoiskFaSTxzutLAwQ9YHapqUyuSdJ1euCbhfQcecdnVFUqHAsOuQV9z3b93G8BCXX7jmqCHdRZtW5anc2882b2+h9xJl45uX8HJiOiLIFVm8eLGYMWOG72smT57seE3k10cffSTSIs0knzjcaUFhhiCKMYktyuR98sg9nX+L0QjJkys3jk0HFgC46SfNSMZd76VUQ4Fx3L9r/vmmMLlMCNccMnWu9n0PC99T7u1JI3qKi++xGxLNy5hKxBCZOHGieOyxx8STTz4pevfu7fu6yspKR4HN/ZUWaQoAxeVO84sRo2zXxkAthiqLUicvrtxizYkppTyOuO+f6fSzYfN2rftONWKD7u3tZ40Sj7y+KpaNbx7GVKyhGajH//d//7eYOXOmeOqpp0T//v1FXkhzZxinO80vzDB76WpSHoSf+7pYqixKnby4cos5J6aUQoFx3j8JLpuJUeK+70HzHjV8j/eobtdGXH7MPo6x06VjZVPFzksxh0SzPqZaxR2Oueeee8TDDz/saImsXr3a+Tn059u1ayeyTJo7w7hL7VQxYspA9TM24FL8wzPLMy2YkxZp5x3oUmplnlnNiSnWPI40qmNghFx9wr6iS4c2TsgGeRhhdon7vtds3a6c9/CeeD+KEava6MmNWkV5WSIb3yyPqVgNkWnTpjn/HnHEEc1+Pn36dKesN8ukvTNMo1ojaKD6Wf44tjueWa78mzxXWdjAppcoSYOmlCqFTBaAvBmXxQz1/nXtVClOHN5LfLhhq7hpzjvk94cBMf25FcpN1g/uWUAyZm6b9664ec47gRu1biUYEk00NJNXsrAzzII7DZPuC++tF1c88IZRtU3WqyziWlRsVlylEfbKwthLAt0FgEOQ+bx/K9ZtCew+7MdDC1cG5m1QmP7c8sD3+PkjS8Qzlx9VUiFRL2WFDFsLOm2E46KUJx7VuZtyyxkjnYqTLBHXvbXZct3PoJF/VcphLxvIexW2AOBeYXfM9yJ/96+6fWtRs2WHlvGAv+vcobVTRZMEl07YW+zTo6MzvoTPxjdv40tn/U6sfDev4MZjErr3okOcxRT/4vs8DQibmeim2HQp2qjOiaNSQh7XTbPftlJxlZc+EXmGWt4I+F7k7/7Ju6FrhIBTI26c8D67tdtVkRjGTY3hoqxXt8QFd9/NeZJPWpnoOmDTf8BenTPjxYijUsLEexQW385qImWxQcmJgYHJ9yKb4Dm9ZMLeTgjk8607mt2/Mw7qI26as0zr/eR9R4XLnc+tIP2NX/j+/HH9yJ8/5dGlzia3FEKiXtgQSYGsJ7uZNMgLApvEl5dvEOMGd81E3oXtBd7vuKJ6iYpVXCyL498vJwbACHmC6CHL273I+3hRbQDghYABMPGoweKxRStJnzHxyIFicPdOzd4fn0vJ27j6hKHimn+qjViMqRkvf0SaT1e55pxSM2bZEEmYPOScxDGZQjHw+q/tb3yONr0YNhd4E++RnMDgJcIi57cgF2MmfZbHv9fzaeLlysq9yKKxZ4LqHvSoqhRnjukrarbuEH9WeCzw85vnLBP79NhlWFAYN2iPFos/tWAB4/aYYf5eDLzme425H2GsLVFDlg2RBNEVv4k6kZi+h85k2oWY0AWXaRRNEZteDJsLvK73yC3n/OUbnwxckNMuIc9j7yZbC7CulytL9yLLxp6V8VJbFxjucG9Mnv7RkZGeIWope1D4Hq+5dMJgUoimW0YM2aRhQyQhdHb0QeI3SZR8Uhrkwf15+9mjxUH9ujgLKrWZnqmmiE0vhs0FXncH00NDAC4LJeR5UjANc9NT31fXy5Wle5FWo86s5anJjcmrH3wW+RmyUcqO8XfvSx+J1bXbMm/IpgFXzSQEdUcP8Zuo1RxRK0LCMtHxhTDLuEFdnS6V8rVhROnPY9OLYbMRFPW4Jh45yKm4wg5Np6dElvpE+FUrUaqY4u7d5Dfm4YnDTvSAa2eTK6F0vVxZqWoIM/YKjd1lZy7Ifi8oW3lqMBxsPENRml5KLaZRfaszb8imBXtEEoK6cw4Sv6HsGm3tPHXUNeVrIXrmzlq3GQe1HabwOz9oB1x78jDyokI9rkuP3tu53ibVF1kQFwuS94dhFeZ5izPxlrJ7/nwLPTRIPYZvj91LHDesZ2byLyiLN8Kol/59obaXNemcE1u5EnKjkNYzhOfmigffcMafHz1yGDazDRsiCUHdOQct5JQ8CJu5FDoPL17bqW1rcfafXhRxxEHjCFPgmBsahPjJw4udJlRyonZaiJeXkXdKOselsyBnJeHw8UWrxA/uaZls5yfvrwoDxJl4S909F4hGOPUYYIQEPUNZX7yp4Zo0ck6i5kqoNiZJyzDguoUlqSJ3ZKJG2LBY4dBMQsidc5kF8ZugCcf2zlPHJXnIgN1Dz7FnhDio7TAFJgpU80gjxFTUTOe4dCWpw1qLx83ji1aKiffSMv69YQB3iIky/k3Hhs4CTAn/2DhWamv4NBdvihBbHMJ/Qcgw3+qarU6TOpPlOQuhDpwHpNvDQGkvwx6RxKDsnKniN0ETTt66BuvuGm25WG0nT1KPixLKgSR1WJOsJNy4WGTCGnsF4fa8xZl4qzuWVYaLdxxCGwJGqsmxppUwSkky1/GQJpFgHEdLiSyEOnA9Ud0TBovg7YINkQQJy7uQ4jdR8iDSLvnUyS0xdfnacLHGoVpKOa6wBTlIkjrJbsZyEYoKKsDcuS5xdPWVY566gHkNF79x+J3D+7fIfwk71qQXb+rYMjHOklT2NRUFdHPhuH5iwtAemcjZ0fHSrS1R7RA3bIgkTNjOOequMQslnxTvQNplhmmqlgYtyGGS1ElJiduqWnh44Upx1QlfjLc4kgblmA+Lx6uM8KBxiBLr288aJTp3qCQfa9qy/H5jy8SrlNQzQkk2hl7R1SfuJz5cv0Xc+9KHzcpgs6iRouOl61ai2iFu2BBJgTDxm6i7Rr/3qG7UVMBCkOY5UnaNiK8i+XXdprpYEv3SVi31W5CpktRhk3/URElbBtj6zdtbLLq6Hi3KueB6/h6VWz4VCiojnDIOkbhM6ZKcJVl+99hCrgXO4bPN27U9pEk9I9Rqnx5VbcWpo/YUE48alIkk7iBwTFCADQvPRMmZKybYEMkgNnaN8j2gSyKbQUlNBYR/0txBUHaNeIDdFTi2dz1ph7D8FmQbk7+NKgebBpjfoksxMHTORTXmgwz5OLwX1Ou2bM0mJykzrkXUPbbatakw8pAm9YzoGm95aEKKY/z5SfuFeumieKfrM1JVZwM2RDKKjYcN8fksJD3a2A1Sjtn7YKKXC5QVVQ9qFkJYquNvaCg41VN+Zdxhk7+tkJdu3oXu4kwxMEzOBfdrklMSGb5rjsN7QU0Yve3Jd50vqoEYZdEx9bIm9Yyk7Z2MiyAvXef2rcXU08x7b80qEhl/SVmhUMisvF5tba2orq4WNTU1oqqqKu3DyRWYuFAu6LeQyAVNx+1sC+wEUc6oS9Axqx5MvMRdlah6ULPyQFMqBuQZ+xkTtu85RQchCL/PC0tMRNLhUUO6ix/+4/VQSWzve+ss2NRxCEVcnU2BPD8QNrmG3VObY9TUmIn7GZHjNszzksZcZQOprDr//XXO2WAsQeogSiuD7yueH8pYyur6zYZIEYKBf9dzy53YsO1J1gZhE4/uMVMz7v0e1LAJ2nQCD/o79++gGaLyXHkJm/zjWFhvmfMOqaRc51oHGUu6uM/Fb8G8+oR9lQmncS6AOqWoYQZ2FhaduMMAfsZb1hbXKNfFhkFST3h+embEaNNZvzk0U2To1uKnUToWpczQe8w6zbH8yieDwmCmu0HV3yHz/9SRe4qqdm1aZP4HIRsMhk1acYQaKM26oHvStlVFs9f4uf1tVeN4zyVI/dWrheK+f3GFHtx5Xs+9+6m47cn3tHNR0iwF9hJHgrGbOEq7kzCeqHODSuodobkOlRXijAP7+JYde8+hoVAIfX7yqE3ChkgRYVKLHyXuGsVTUN2ujVPB89DClS2UTXWO+YX3g3u3RElA9Lue+HuELBD/lRMOxcOBzP87n1shdEG+SHlZWei1jSPWvivpbtdiLXwW6+tP25+cXG3b8MVn7VJ/pQuveXNM4tA2cS/epgZi2qXAppga7zZLu+MOJ+nkLwWFODfX1TtzAr5UOVKqbtK6+j15oCQNkTgs5bQzmE3aZmOHjoROE+LwFMi8gDW1tCx9Z5fxwBtGx08pfw27ntjhYOLEQ29DETJq5UnXDpVOiSP1+lGhLtaUic9WwqE8F5Sl6qq/er0JcTdEMzUQs1AKrItJgrHtuTNujSIdTxWgSL17jw+ozoHSVFSl35N1Ss4QicNSzkLCo4nLGzv0L9/4pPZxmj7ofn/32eYd4s/PrRAH9e/StPsOc5VHVWIMK5+kXE+4WSfNWCD+uWhVJEVIm5UnHSsrfI0QW6GGKAuGiQy5F/mJyP245p9m6q9eb0KcJaGmZbBpV5PoGggmoSSM4Z8/srR5WK+qrTMPmIZjbIWz/M5fx1MFKFLvQB7zLsOlLNKcotLvyTIl1fQujgZOSTeFsr0r0j3OsAfdr4kW9e8wQYQ1kDPx/nhBfDaoERn1esZthJT5iB75jbtNdfXK9zFtDGjaADFoYj9uWI+mRcEEeS5IQI3qhUrCmyBzooTinIMMxDgbBYZh0rRPd4GWIQtv/hG+/57h3Kl7DCbnr+OpMpIqqK0j54+FfX5eKBmPSByJX3Emk+nuRkx3RbrHSX3QkR0+bnBX7b/D68J23zYTHv28ONTrGbcR4tcoUMcQS7rVuGrsqsJXZWVChNXs4Yi7V1WKX39jZAuV3YcXfhL5WJPSpjDJRXEndXuJU+tG1+Mpq0H+Mn856f0xLvA3CG0GMbkx9BmHIrB8nd9YDTr/SyYMJn1G2ron3XKku1IyhkgciV9xJZOZhHqiuLx1jpP6oKNz6fVf+0Kwx6Z6IvW9KAudnyGG6xkkLJYEtipP/jJ/hei7ewfH5R137pIywa59a6XsunSajR+yh5j71qe+4TgoVI4b9IVRa2OiTUI511Z4q1px/XaLKIhla3OlqgYJA+eNJPOwv/lsyw7ndap7H/Te1Nepxipk2bftbAg8f1S86eRiUaTebRMl/y8NSiY0E0fil433xIOPXAXs7vAvyhBVLndZqSHdld6/A37uX5vnQ33QsYC7Qz5R4t3ec+3asZL0Xv933hhHZ2LikQMDX6dy12KSRVVP0sB7ccsZI53jhhaAaqHRdbkiF+jSv9Pc635474E39BYULgpacDBWl67aKH53VnA4TkVY6CLoM9NQztUNb8nrqbp+WKSj3q+omysZWqEaIe5QkpyzwqC+TjechSRnZUi9ti7wfGT7iTPH9G16P+/7u8eWlHrXpbpd68BzgCGKf8tC8v+SSg2ISsl4ROJI/Ir6nn5qoGGVGg0NaMal9pio3L+wjjEwbZyPrudF7p5ME/b8di14EGu27Ah8r0MHd3UmgjlLVxOOtOUCj3DGHc+8L7ZsV+dd2Oa7h/cXkybsHfq6KJ4Ak8oBiofONG9HLmydO7RxDC8dbwFFj+aiw/qLxxatsl6aGzdh1zMonBoleZ5q5KKZ3g2z3iK9Vh5vc+OPOlL0RhRFll4mOUcJq/br2p4cagtryKjignH9HQmAsoCSeRBUrZd2Kw8dSsYjQtk9wRUPwRjq7iFKMpnf7jHsozGQIdzklxwLMKFjRy131i9MnmAt6c2deBeGe/dkkrDnd43WNO5aVAmPquoaqnaHd4HH33/38AHCBJN99iOvryKNPVNPACg0fqkSinU8dN4k56h5O1gATZJhZe6F15uC64PJHyWM3ufBz9OUJUyTLqMmz1ONXGj/6IQbvN6tsQNo4Rbq6yhjwmaSM0rloYV0+TH7iKuOHyIuPnKgmHjkIPGrr49QdjfHMb36k6PFX88f41S2BdGzuq3TKyksaR9fT//oSNGlQxvl+wQVD2SNkvGIUHZPCCeg4yt192DaFMpG1UdY/NabX2FTQVI+6NDwoORQyF2WX8Ie3JAIg8gHWCa/4f2DqmzwQHesbO2r6Cmvc5R8AXhFpj+/wncn46cs2r0x1qwTOw/K0/Em1V19wlAnD8cU1WepdtJOng1hvEXN0I/i5QnLvchDt1YbYV8byfNUz2UXYngUIDR66dH7NPvMQwbu7ps7JMHv8TrbYyJKkrN83v36IAU1MsRnH7bPHo6x4ic9UOaaiyk5RWjqGSQImVXRu5I1RIIWwiguLZNseNsy15RBZ1tBEq/v1La1Y7jpLDKqVu34Qj+TGS9/JE4a0dPxDFCuD0pVW1eUO3kV/bp2MK6uKQQYYvgZ3KBB/T5UyqLwrFGuDWUB8nO1f+fw/uRrpcI9kfpVSgQl+7rHm6khESVptFiECVWfaRL2tZE8T91cwRtAZdygPVpcQ/lcBTVVxO+j9HTyM0CjjFVcj13G0w7j9cNvLu6pmIvDjGiqwTr9ufedOSlKs73cGiLPPPOMuPHGG8Wrr74qVq1aJWbOnClOOeUUkSZyIcSOGztK1Y5et6RVNxs+7vpuv/c3zdr3e9AxqE3yPlAep5JAx0N5xzO0EkB30t7Nc5Y5D7b3gaVe5wvG9QuVntZVFjXddXknyaBSyj88s1zcftYo55goDQ69bNhUZ8VDh+t84vBe2lVbUZJGi0GYENfdbZC7PxN5DLrPFnW8o/dN0PNPGe84dko1SFDIV+ZOQMDL/T54XyR4Uq55HBWGUb2clPXDlkBgN6JR9e+la50veJlg4GUtNBmrIbJ582YxYsQIccEFF4jTTjtNZAXc7PLyssCwgtw9oIvteeP6hyoKJqH5QSXo/XXd1GEPum7IJ46wlPB56KnXWRXTjTpx6N5j1cJCEYGDAYI48R//s1xbBEnGlqN66HCuYTtpfO91xZt64+KQ8I5bFlz1eX7Ji/jMi+9Z4Hi8YGxSny3qmHM34PNbtCnhLhgLQR4N1THaXJDDekH56efIsep37AULXk6q9ylquGSMZvEAxpu3T1bRJ6sed9xx4tprrxWnnnqqyBrU3QMm+qCSRxMFwijJhmHgmbNVP05JfAtLDIu7+2pQ4t5nm8OT6XSUKTFxSLc5xg8+zy8JTOce+y0slGuF30976j2xbad+ZU+P6naRPXQwLuT1CxoLmPiQrBc1adRU2Tfp9wwirOxVfgrCbrdrlDWbzCtBSax+ycMyobluZ4O4dMLeykZsndu3Dl3s5Ps8tmil8z28atQkZcqGBuHecdeblaurzh+CerrE7f2uCCgCCAJGcJYSWDOVI1JXV+d8SWpra2P7LJ0dq9+uyHQXRdk9moKxhQSmqJa2TuKbzq4mzgfTm7hHCVcg6VN1nFR10KDEtLDk6DDPAPVa3TTnHaGL2wCL4qE7/9Dm3sKwseAdl7reRFNl3yCS7HJLTaA2KWsO2+n7fQ7eCeER5Hx51Wu9+JXTTzp0UOPCtmvxDstFiBoGo25o4CX0zsVh98AvrGLynCShbnosMffRDYxghAUnEVViS8oQmTp1qpgyZUoin6Xj0lLF/KJmqIfFYYGqBbROlUoUdCdnqpsxzgdTJ3HPXbGDXVmYweGX4R9kdPre46pKRxBJlWDrdz42cWfmR1HlxTVBmaEX6lgwWYxMlX2DSLLLra5H0F3WHAbmpE6VrcWYfp3FSys+I3+GFOlyhx1U98Fv44Vy+t/OfZccvgrbwCHvCSW2QYaX7r1wz8WmhqfOcxIlCdsEuQG4afY7TuUOhenPL3ee3ywkr2bKEJk8ebK47LLLmnlE+vTpE8tn6exYVYMzyi5K7gLh2vzV6SOcUavaiXh3li++v17cPHcZqcbdu7jqDra4Jmcb3VcpDz1VxMybsOxncIS50bGjVBmdUWLgeB1VjI6KX2a+zrOgW9VgEt/3c+vrKvtSFscku9xSx6XuZ5pIrQfhNbBt9dWihMEm3rugmZ6Saszq3AvvXGw6t1GfkyhJ2FHAZ0EOn2qIYKxkpaw3U4JmlZWVoqqqqtlXnPjFtCmD03Qwe3NKzr7zRfG//3hdVLYqbxEfdccoa7ZuDzVCyhoXUtS4u3NWDrputrjm0SVaUs9xTc6mMU2h8dDriJh5PUymEzl2lHB1Rs0t8f7dqSP3FLbo1LZCHLtfd6f00vv5fs8CxhO+VGJhpslulPi+XwxbNw+CktuRVJdbHMdMjWoq1WeqpNt1pdZNhO9sdLXF+yD5P8wj5L1d0ji9Zc47TfcSeXB+Ql5hczF1zsKGzmTNwO/g1cFzpiuxHxWMF3hc89ahN1MekTSQO1Y8IJScAjmITRZq05wSnbiyqsYdO2oszPiixmFNJdmDcHuCLpmwt9M8yl3pgc/T0RFR5VdQr1UcIFdjnx4dW1zbKPHwo4Z0JxtVYWzcVi+mP/+B86X6fK/3xpmIy4RYW7vNEU2CiJWNxnmU8IRfDBufizFCKfOm5naYChPqguPQ8W6dcVAfUn7G1h3xtSCQ18+0TULQseuC5NN7X/pInDxy1xwRJOSlYt3GOscwwLgOalonwYbu5yeFVxTJ50R6tdHHxq8FR9yVKhXEaqasdeiN1RDZtGmTePfdL3aJy5cvFwsXLhRdunQRffvuahqUBXDzUKL7p2eXkxde3YU6imuTGlfuWNlKbKrbqe1y9RMDsjk5+02iKjGyy4/dN1DnRYKwBUpX27Qqj10sjor3HkYuC43Js+v3+dILh+P+3/tfV06mURdksgiTIoaN40JJq+3Psy34ZyMsI0X+pAdROY4S6Or6ryWrxCOv76psMVnY/J4BE7Bx0dUaAhhC7o0mvHxy3vU7Lhgqfs+oX94OzhXzlu0y8HqNpG68/+/OGiUuvneBryBh0jksqRoir7zyijjyyCObvpf5H+eee6646667RJbQXXh1Xx8lp4Q6cYcZIV6jJ6h5nuxlQJ2cgx6UoCQ3lRgZRecFYHfprRBK29UotWe6dqp0dko/f8TM+JTX819L9BYvKkGfH7emBjnPwxPDNtWgoX6eLZEpFTrhQu81x+5WLpxpcN/LH4ktOxpCX7d7hzZOyMSdn4bv49AN0sUbGUHDTFDVrpWo2aqeN3WFLSn5L5MffMPxcro3T2GYeFSPH95L3C7KnL5kWclhSc0QOeKII0QhSCM6Y+juivxe37lDa3HyiF7ik8+2ipkLPnHcgP8mLiiqhdS2+0waPapB6l1sKJNz0IOCvzXxBJnm4GTB1UhVOfUzPk3c2IiX67qqVZ9PmUyvnPmG2LqjITBME2SY4v9NKsB0vV0mu744+tJECRfKa24z/0MXihECRvSpdlrPm3T+jgsMOVV6hpx7ytFMKQCd0m3K+IQS9OhrZotffX24lQqjaQGbguOH9xS/L4/Xy2eLks8Riborcr8eZZ8PLVzpLAiIw7uh2p2qhRS7Cr8Hyv3+Nkw+lXEQNDmHPSiXTBhs5AkyTZalhMwg1Yz/C4sRJwXGjTx3XTe2XGwRooJ3CPLdbuVMCrqLPRaWS/++MLDMM2gHh/GEJocIPYSxYt0W5XFSKCjyLNIg7XBhUsx769MWP0vDCEGTvcHdOzk5IUGbgkKjYUCBMvZ0PNcUddN6C5VKYetZGr2VMl81kxX8FAWDXo+qlunPrfDdlVIWFrg2Vbs3LDBhSdeFxl2xjSEkjQPUpAdlfIc9KPj683O0eK73ITatZAiqypHfI5kLSWiq16TBn59b4SzeuqEHt4sVrl6MVXQ51VXXdBtzujLxXmVOaht6SG9XtwvfB814+cOm8Wfi7YKxE6Z0HDdphwuTICMe/qYme5i7ER61BcaeqmLJ+xodwiq6XrJQqRS0npmogscFGyIuwgZa0N/ZiIPCtRlFjXT/Paut7vBRjx40OCk7Pb/4qxfvQ0wxKPxinBTZeZPSbYBYPT7R5rwrdzYvvL9ea+eskvp2XzfK5yJhGD00MOZvmbNM/GTmG1rH7pZA376zgSyVjuO8YFz/0Pd3T7QUyX5dGfMk5o0V6zaLOMF9hFGnOybLPGPa9LNBFtTCvZsTqmEQtIGT74lKmLBFW26eqIQZEWstaDn5jU3qhiEpODRjocTSlusVrk3Zv8UN9YF6+p1drtGwMI4uqngkBvRz766L/N5BcfwolQyUEBulE7P3WCHiBaKWIqp2NpgoKHx77F7iuGE9fd2oFMlnGcpDN1FqI6+w4//r/BVaYThUS1HA/aNK9ttIOrQ5b+D3lBBUqKHRvnVTgqUqMR5Gne7nuFWcdcXs3O9x/LAe1krMJW1bl4ttxNwUv80JtbIRbR7w/KvOH9+fOLwnqRLGRGI/yIhYQTRg/dYHv7GJzs54lqKK09mEPSIWrEObrtcrHnjDWeDduypdESf5p+OH7KEt+iMIu1np0qMq+EmCPBtAZbnjAUevDZNmaZQQm6NGOLirIwce5OlAEy+3NwWTl20+/uyLfIggYISEhQzldUNTsvZtKlr8Xv7MZhLki8tphhTyWHB/dfKAohr7VDe2zXnj8UUrrWjaFBoNYJUHD4nxEM+iGnXIn/A+R6beQSxoeI8JhO7VVOQz+Juvj2ghpBfFOxg09yCpM+j873x2ObkhIj4fkgRU/J6B+oaCo7MUhp/QXtDY/ME9C6yEfGxS8h4RGwlBNis1sCvHDtWb3KcrwY3XLV21UbwwebyTY7K6ZqtjBetWVngH561zl5Fk5lWggZf78+WODGXEB103p9nvvOdvWslATcby8yKgugOJle524rt25/ZF05DobLMKBEmwN895RzleNm+3L4L176VrSa9DMu0Dr33iLGRULR7ZoTUqtjYNlHnjJw8vtpKsecG4fk0LLJ6VXe+761nB++O5piblIn9C9Sy5PYhyrkA4Iui+QHtJqgabtm3wVk+5vZ0o4Vclbss5UKVBpONVxfiT6qd4jyuP31f8970LWrxHkHdZlWyPueKeFz8UazYGhxKD1Hpfwn0gaMSccVBfZel/WIg0a7lNJW+I6CQEYdCoFjX5INrMjFeV0ep0WJTHLXU24GUwNULc3GJohICdO+vF6aP3FG3bVDiTyag+ncVji1Y5X15WEcrTwoyMsLJi799SK6Z0dudy0tyt0bVuGjGT74MFB4tyWIa7rbyluMD4vvieBeI7h/d3BMrCtHhsGfu23ocyb9iqGMGYDBPLQlgmaIxRjFi3wd+uTYUVTaUwbj9rtGNwqJ43WyJzqudapX4aJQoB482tn/Kzr+6nlEdwE6TjsZZoBPTr2j62VIEkpRBK3hCh3nDsLi+7b6FvLFg+iLYmfpU3xv1APbF4lfi/+c1LhG30xqEclym1dfXi/te+6LXx1xc+DP0sP28UJTbvV1YsBaLcYQn334Z5X3SupY04vGjMEQDuPICgHKasl4zK8Q2pbixG3kXBu9g42iM+DQkp2FaSTGK36D5migfG/XdhxkNSmkph53YIIcRoQ2TObWT5GXRR8uq83mY8m989vL/4+ysftxizCPNOPS24M3S3CL2+bIxNvwrOuCh5Q4R6w1FiGea10HkQKajcfu4HimKIyE68y9ZsFHnET/ArrI14UDIW8E4OOqqh1DED1690X4Mo40O1ALuP2TtZ65bhpoEc3wjZIdcgLj2DOJQkk9otymPGMxzmgcEYQU4QSp5tCFhF0VTC66EBg9CgPD7T+2FTZC4uT6HX24xnE54+2fxu/vtI7N91HocMCJeEGBOh15eNsXnyyF6J6omUvCFCKQmE+J5KINbrtfDGWTE4N2zZLm7XFJiiWLiUuGzHygqncVMeFiXq+ccVm6fmA+HzGxoKTrLnFp88C28M3bRKh3rMVzywSFw584u8Aalomaf7G7bY4Jky9YbEoSQZJS+CArw/SFCVx6zjqo9i1KnCnTpGgPc+oglk1BYRNknKUyifTWyIcD+QEK9DRYReXzbGpgwHJkVJGyLUksAglXqv18L7ICIRKioqC5cSl91UV+98RYUqxx0X7vOPMzYfJudMlV4vBEwS1D46Osf8uUKrhXoNTENFNqHs4HTdzTDErj5xPyvdglVEyYugcPuZo5stXjquepm3Jhd2md8Wdg0wvtEbyb1xwfVTdaClErVFhG0Z8iQTMMPmkzCONcyRiTo2kw7LiFI3RGxax34D3IabDIlVKuIIB6nK/cYO7BpZa8IUdBR2PxRJTCSqz9CRXsduNmhHkRWlzaOHdhNvfFyj3cH1vEP3Ev9asiayN0Anb0PnOcL7/uLU4Bi8DUyevx8cMdDpqOuXOO7OndDd5XZoUyGeffdT8eL7653PcBsUfgu79EQgB04Zfq7dRpIjDyJKi4ioDRa955lGiDrK836sYY5MlLUh6bCMKHVDxOaC4DdR2nCTIZHvmGFfhAu8bsx5PzxCjLthnpWqGFW5n06TMtv815eahzeoC5JfOI2C9zN048qqrrHu+9W1oz3p6Si8vHyDKC/TlxI6Zr+eTpw7ijdAN0+A+hzZ3ElTwgVyoUA7BIquzrYd9Y6Sre41oexyUZLtFwZWLeyPL1rVrBQ4CHSNdYcs5bWRIeguHStbeJ/Crp+udIJp+EbnPOPAPZ+YnEOFYY6M14gJ672TVlimpA0RDAjcmKiE7erCYn2USdzt3lO5MU07XAZ9vvu8dJqU2QQ7vP8eP1g7iQsiT6bhGRhcWCikDLmp50wauar7BVn1qOW8NlCFdILwjoko3jjdvA3KQgxdCbfeSxR0wgWOKN6griRDROV1kOwWUE2B8YikRzyHsrGmDt6F/Zez3hR3PEPrAyUam8OhBQHOMyhEKa8RCLt+OtIJ6OVlEr6Z+vhSrfO0iXdtSDIEpTJiMIb+9OzyQGM+SNskTkpSWVUqg5pKRvvlA/jp+gf1PrlwXD/ywuanlhclJyLod+6dGSZ4lUKnnwQ5svexQ4rCr78xwndnGKSWeOrIPSMLyrn7SJh4zrDb8btfa2rrHK+Jt+wyy6h2617VW1QJ6ShymlRxqJ4jGOJ4jsb03z01pWWK+nGYfVTZqly5G3U3J4MhAyOkc/tWon1rvelbLuy/nbvMaHHGnOZ3bST4OUI531O8Rv7uljnvOHOjjnSCifI1lG3TNELcz4uN3i71hr3QqHNnmeXKMh3KCgVTB3b81NbWiurqalFTUyOqqqqsvKdum/UwsIt59SdHOw9LmLWrcsvhe0wwYdx94cHif+9/PTFtCG/WPsAEQvGKYGGCFe4+X5TyQbJYVcHjDaNQdglBuwvsHCnXNAj5KGLh03k/uQt6+kdHii/f+GRgrxdog7RtVZGLqibKPcH9xoIZtuOCERKlDbk7r8HrHYi6w5TnEHTfenjOwTu3CEPPp/vZ8b6nzUkaBk/dTnofF8kPjhggZi5YaWUOwiblzDF9SPMJ2lSE5dR47wfu40HXzSZt0iYeOUi0rij3nZ8oePt7ucdhlDEVFF4yHetJeWZ01u+SCs3oxPqpOQbY2d42712llLaqKZI31nfAXp0DHzSAsfnyimQFqnBe3pgyvCLTn1/hW0bpdUV6z3fiUYOcBeTfS1Y5wmYbt+0KDeA6Y1cLTwb6VsjFKGiRCkriwt9Fzctxu7JhVFDez70LgqItRffh7gubK0vOe2uN+NN/1L0tkgaJyoO7d9KKZcvwiR8nDm+uM+Gd/CkTIj4Hrvrpz62wnuSoEy7wPst+CYIIFZ48opeY/jxdgDBOzQsTIwTs1raNtTkI95yiBrsrzLo99H4gRwdhI8ynePaeXfYp2VM8uHtHpx+VnJ/QCwltCCjIJ+K2M0eJzh0qlXOVyZiqd819s5euMVafVuGWEfDqm6RFSRki1Fh/p7atmhZJCtOfC26K9PNHlgSqg4bFe2Fpm/Z3iYo7WQxf8JL49X8QHteeypDAAnLX8x+0+PvPNu9w3M4HNT7AFKvdL4mLsiBSkBMEkjop5XDuvAdq2fa6zXXOJCjBNVq/sU48GNJ3Jgn8+pIEgXOHbLufS/yP/1nhfPlBMSRs9IeKq/U6jlnVD+bh11daL1VPEoRlb386mh6SF4oaLDYnlM6+yM/Bl0nncXnN5XwyZ+lq8t+6n3n3fOcumdYdU7OIMgEAp3rlzDfE1h0NTcnCIMzL6PXg49rFna8SREkZItQBoWOEgLBqEpRHwmsyydWVMQ6Xq21Uljq1tt0vSRNt58MWEEzklLbbYR4TvA4PadSeH9/56yvixtOHK89b5ckxlWjGNbviwTesdsQ1xVRLAPcEsu2mFFxdqDu1ba1UoYy6wwzy8FDvGxSLVfjJh4eNQVXSe1bKvMEu8T67jRKD1GA7Nz5XvXZrp/WeukaId5zj/lEMH69ysmq+q27bShw9tLvoTuxqvG5jnfh/jy4JTGhWgbF16d8XOv8vOxb7ta9IsmRah5IyRGzLMjtxfmJZ601z3nFUBuUCmlZDMiS5NRTg2qYvdt4JMay23Xegh+hVyAUEu0mKseLtT+JtaAcX9C3fGCUm3bcwUukeyiLROhu9I6iqlZRyU3eFDnYoSOSLi3MO6StG79VFdOtYSVLbvebkYUZJa7Z28aou1BIbO0y/3R+1TBjX0Cv0RX2uqUqZSTYdSxO3Gqw770caBCZeDipTvrpf0/MM4xKCbmF4lZP95ruabTub9dYKorxslwprVFSbGJkkDC0YzI1xeROjUFKGiE1ZZnmLdMpa5Q2OOllHUXL8bIuetydI2VXltrdhZFFiwqrOln4N7bDgg6gKmAg3jOjdWRw/vKeVclO52EpPURzISfPnJ31hWGABDfLGweCinKMK27t41S6NukAvW7NJ3DJnGSl/y9taHRuHINbUtvx76nPd0RP69StljltGPitINVi/vJ+4jJAJ+3YT1z3xpvZc7K2UtLGpbEjgBsPbCi+jaQ5UnJRU+W5Q+ZIumDwwCX3/iEFOsikFeYOjTNZwY3avSk4QC2uXn7KrijTj2gWfXYH0WMkOthLpxtTh6ocXtyib0y3bFgpPURzhGL+dtjwuLHJuEGb63VmjxOTjdz0jJtjexcsrjcleXldKqayMe8OgKBDfV5bJhhkhfn8PcS8KMEJkyTGqZPxKmW3OV0mB+4KdN4zZsGMuc+lWpOElnvPmWqO56oJx/bSNzyzw+ZYd4m8vhCdMpxEWLCmPSFCOA1UUDKVeyM7GwwM3Iko0ddz+mKx6VOvFPd07W2R2H9ivM0ly/fTRvcW4Qbu3aFGtA+ZYxLynldPihlEGcFQxslAKBXH3fx0s1m2qc9ywcK8LofdZ6zdvb7Zb8MuFOXNMX9GvawdnYUbVDRJebTS608G70/bmSeC4UGFgs9FYHLt4uUu767nlomunSudYrz5hqHM9o3i5vIJZujlb3t2jzjPmTc6OQ6ob77pr01LmeHDiXOQvPmKg+NLgPZrmRXSeLWh4FsK6C2cJt9ZLHkrv3Tyz7FNBIemwYMkZIn45DqhUmDhjQeDfYb4Y2rOqSeHUJNkURsG1J+/nTNa6D558aLGQUjhs767OuVEmyLByZWrc0HQAy3e99uRhzjWKwx0tlURRpYKJz3QScece+OXCuMN1uNdnHNQnMSMEO21v8mxQQzN31U5UbFUsqXDH0HFNUZ2DxNioCxg2B7/819vG402OB8icU9GJx8v5CgnvFG8NkO/285P2c/6Nqzmf3CBd9pV9tEMVbo9klhJzw47ZrZR6zWNLRJ7YXFfvePDh5S5E7P9kk5IKzahyHDAJ46IjVkj1DkCxz9SNiAFw8T0LxEkjemoNfpMYOXQaqA84tcNwGFS3uV+o6/jhvUKVU6MAAyTqxIfrrzPhOjoHCcnj4xo9vnh1CyMEuTNew0s2NKOoOuqAcXr7WaNClUSjAEMVu25ULiC8Ac0TU2CoRzFm5POoqySs81wBVJboPk+4F9QQoY3Qn06oAvohUlU0K/2XwsBZ4tlH7hGendi8tzFyyshegfNrGuqqJWuIuNGN86Gqw3TiKjR+PbxwpbjE00clqCU4dkTPLVsnfvWvt8R/ln3qWLVhQwVJeivWbRa2oCze7rg2Fa/k966FbLTo7Mm9wUSKHAYTQ+cLCpE8NzKmnXRsGB4rxN3RT0VnccOkiSS1sIZmunLRYUDcifKWHdqUi6+N6iWq2uo5ZwsuLwnuB4TXTEBIluquDspxcBvhunhFzFT5RtTxhtCxKu/ELcePFgw28G6QvOeik2fTkES2pgXQc+fgX8whe6Zs0aV9a3GiYQK5l/FDuvu2HEmjdLdkQzNedB8eG1Yw3PeFxl2UX4hAuslQanvAtbONEhqhXInP8IsR6+RlUBdvuQODFgQlHIG4v9sCd1ye/2wu9NahskJ888De4phhPR0lUlNX89gBXZstGjrGhLsXQxyu5I6VFaJVebn6mhWE4wFAohwFeXxoVBY2btwNzUzx5p9Qw16btzeIBxasdO6vLm6jy9SwxLh/+h2oS+qh2j16w1LUsSmPPajMmKqGCpVQv2oHd6Xb/82nJS2GjRsvuvdB3sMXiV4hW6CSDvOqkVc7BZ2fq47fV/xqth3jR5aeU6UIkoA9IinW698yd5k4eWTPpoZDbuT3COGgVNXECCk0GjxInBQBn4G8jCAvg3fnR8Hxapw92kjUS9UcCrHNm+e+6xhk2D1dMmFvR8NFdT5BO7hDGidiXc+NaXhMh0119aJ2m/o+ywnzwQUfawluyVBUGNTXqXA3ZZs0Y6Hzr27sHPfXFEykpiFBKt752W/3KI1wb4VWWLg2rCka1bNJGZeUawVP0a+/PiKwIlDmuLi9aeb3IVmPyHmH9stVSTQ2J7Y8sLL0HEnFMj0B/6ZlhAA2RAwfHkpohAKS7RCGULnJEGdHCMeGYFCQK46Sl2ESN4QqZliJbJmrPJiSdwGDDOJicI1KzwF2NwhZ4DoGAXl69zkg3EXdiSM85l50MGZQHWObIA91QUcHpuk0qdOt2bRsuyN0FB0KqmHZVrNrLUA4Q3YZDiq5dec/UPl/jy1xEomDyoylZ9PGZoHShfUXp+7vqJpSNH3cOS6mJcfwVMZpSHo9j+iZlTQXHdZfO3RX1nhfdRKhQeeAeVdVep42bIho7o7lwIAXwcYtxIOMXAh3O3U50SHOHqZGSk1a9bZs906mfgltYXHDqK2pC40JwFjQTPMu4GK9ec4yUV4uHA0Dr4GA73+vOAd8HmUnDhlo6UlxjxnpacoisrJKhqLCoL7OjY6SaBx4F1+ZJAvjNohtO/TF447Zr2ez3SNQjXsTPQw840GhLKpnU2ezQHneTfvu6CTHynuIMmYIyZnOqWWankcdZWlb2ipXnbArHAItKCmyGESZ677qJELDm4VraTNROm44R0SzXr/QmFwJ4+G4Yd3FE4vXRP5sPMgqpVJbeQjItof+iJ8aKlW63UuYdDbehxJSwjXF+1x+7BCj83OXQuJBp54D9fqePLKX8u+hE5JVpIseBpRXaTYoZKUD1XDEsxJFYl+F3+K7bO0mUtdsHbyehqBxX93OXodaP89mWJ8nKmHPu0m/JNV7IwQAzRQ/aXuEn6HHZHrdVL1qkARd3yBiUyymAGMD4Wl3vyRcC5XSL6WhHlWfB97IacQGhVkpm07EELn99tvFjTfeKFavXi1GjBghbr31VjFmzBiRNbwPz32vfCw21TV3hVe2KhdXPrTYqhKm3wNvKw8BDyhaPrvbzfstzl5jRXo8vH/3+KJVvjLrUvpap904jnEDUR+FIi5FaXZGvb5uASM3WSw59OoAyI7JQX1svCErKtRJDIY7RPyo7dW7eAyX3dq1EhhK7mdRtfjiXkMiPE5jJ6xhGDWZ2ASMV4xrnc1CGEGbkzBxOqrmxIg+uznGAsJLzXRsqts6RghF/CxM5BFf3msC8DPoxEQRdZTgEsPIpR4rQsflZbu6llO9ZV06tBZXHT9UfL5luxOOgWGLv6O0jDAhK/2MYjdE/v73v4vLLrtM/P73vxcHH3ywuPnmm8Uxxxwj3n77bdGtWzeRJn6LFB5M2ffACxZXnQU2jOp2aEJXcFy83klF5iHYCM94VT0pLZ/9dn4nDu8h7nx2Rah34ldfH6F1jFiATITe/BbHMI8NRQXUL+6+SyBMX8woDlEpP7VKCc4VruErHljUJOoWReZedxKDEYJnCtfxgdc+CV3Y3IqvCCt6FzBM1jBuVKE2m6JxKmXasIZhMxfSmpxFEdIK82wmIU4XFg7yUxxGLpdUHD5gr86OJ8TUCPF+vuqa4GfYSEUxQspcOR4wmnSeYfd8RPEgbti8Q1z3eHOjyT1nqTxi6PJbX2huqFPOKQ3hstRyRH7zm9+Iiy66SJx//vli6NChjkHSvn178ec//1mkiSrTH9/j50n2PYD7EHLt3mMAeMCkMmJUvBO03MH5iVn5JSHi+z/+Z0VoUqXzd4VdDxEVLFi6GiRBpZBBVQj4PSVpT/7enQ8AbxDeI8hALPNZ6KlaKN7fUWLK3j4YXmo8RohXVEoXavUFFhwQdr0Bft+mVbmzgMD7CDe2N38C8ugQBZTHLL12T1gSZjtuWA9lQmrYQiJL+20lsruBBxZe2qg5WSaoKoBUGiISv2dvTW2dk8tV2Xh/YWyabjp0NC90ww+dPJo28rPQg0lXGM5trFOPY4PHaHLPWapcv9996wBtIyQt4bJUPCLbt28Xr776qpg8eXLTz8rLy8WECRPE/PnzW7y+rq7O+ZLU1tbGclxh7tVLJgxOTKzKO4C8XUGbdrMPvtEiHITM6NMP2NPxTujOR3IHh109OjIiudHt0rRhiK3bXOcM9rD29l7rHG7cO555T2zZrlfSicUa3qXtOxvIra79dhlyN9zQIMRB181pNjk4LtqQY0FpMTozoymiqp9LmBZKwXVOeJ8D+3Uh9RdShZEoO3nd1t/Sm4hFWxX/l2Bhxq5X7ujk9W4hN6/pfRCNYxf3B5oztp5XLLC3nTU6Uk4RlCvhTbXp/cJ7YQ7wXjeKZ1NFUMhSEtTGwqulId9PhkEoY800PwEqupcevUtS3nb4AW/p7ozs9b7J8D1C3UG9o1QeB9MwSEHxjLq9PzMX6HnhTHOKcmuIrFu3TtTX14vu3bs3+zm+f+utt1q8furUqWLKlClxHhJpUrYZZ7Yx6NyDf/776xyjo3P7NmJlzVbHOxHls7Crdy9wsi+KjYldxrT9DCmvdY4dn9cg0JnMMSngXMIaGHrzSfyS9n45601xxzPLW/w9xejDsUDWfcbLHznn5u3nQk2OlhVBqAYxjddTdvI6rb9VbvegXkVe4/qLT/2ChoYG8fbqjWLr9nrH6NuwJVx2HWNXlacUhaB8GaqWB+L6qnuLjYOpGBau1q7nR+3Z1FHEDAtZgjCvsHuOUj23cYrQocJLx2CG7hAMekrYzvtsS+/btMZ5GOCzxw3uKq7/2v6+4nX4HvOoGxMRRcozSs2tO3VkL/GNg/qmKlyWi6oZeE6QT+L2iPTp0/xmRoUyKcfdnAw6BkElhKpBJwf/xrod5IfeZEe22lJfFG9ZpWzaNf255c2ur7TOgWr3VfA0coPmSNgOmKph4d6ReXcZ6CekMkJ0CVooKLsraZhil+nXcTbM1WpahqnCb5ccFqoDUNp9a9VGR8jP+/I1G7cn1o9HRZhnAedNPT5o3CD85lWulDkRtjsT63i0wrzBcpxSjddb5y4TN8/Vv2+4JicO72XWqTlkDZXeGRhIDy1cGanpp1tzQ15f+f7IFYSwojeHSeLeiOCaytBkmIdY9xkNEp1zc/jeeySSW5Q5Q6Rr166ioqJCrFnTvMQV3/fo0dKFXFlZ6XzFyZylq0mv69CmQmzWDA1QwK4IC8plTgt6vUGn2/HXZLKzNUFiN/DYopXN3L6TJgwW3z9ioPjr/BXigw1bxF5d2otzxvZzfofcmEJII7crT9i10B4zLNw1SsFvR4aJBv2EklgoZJgm6DzkpI8yWJPyzShlmG6i5k7hHE0Wrbg5fXRvccPpw30XcXneOky8d4G47cwycbynP0gcnYmpHi2dEB3VeIVRGVWETrcSJKj7uMrbEzbPI7x4/2vB4Q15fVHEoErCRR+Yxxa1zFHC62B4nH/oXuIr++3aeGBTdaeh172b4hlFbh0F6uuKzhBp06aNOOCAA8TcuXPFKaec0uSCxfcTJ04USYNBSh0A/3XYAOOHTIWc4qaetr/jutUddKaLQPs2Fdq5FlHPE8lt7t2j3G0C70P8p2eXh4aCvBMtZfGOkjGOz7GpDBq2UPx7Cc04RjLmccN6OlUlLy/f4ITpcDZ4T2gV+MX/sRMPC+t0r6r0rd6SJN3oLymeWLJK/CIgJGNy3vAQIWz0+/LmnjDdPkw6/GvJqkBDRCdERzVeCxGfPWqI0o3fselu1AA2m97kVD9+//R74ul3PlWGCFVGiJvpz3/gfMnQt805a0z/LqFaQbotOoouNINQy7nnnisOPPBARzsE5bubN292qmiShLqrkTf8f8YPFtt27DR2z0NGGAp+JuI0qkFnuggkaYQ0j2V/Ac7Tzx2pEwqCDoVuUzWTjHGq10wX1S5z6uNLyXLTaFSGL4wtuJGlx+62J98NNPZ6uvQaVGEdfI+x6s0V8npZsiJ+ZBuo646+Zrb41deHNz2fJg38VKg8YfgMhKhse4fuev4DpyIF1R0qdEJ0xmGTEPBe4wbuLh55faWjFoo5LkoCaNSNGt7z/tdo/ZtURoguqxrnuzDDQYXfnIUQVNh7HT9sVw5cFvNDEjFEvvnNb4pPP/1U/PSnP3UEzUaOHClmzZrVIoE1bqgLuVuH4fJj9xV/f+VjrQGj0kLw7jDxLxaGICPHO+hMFgH8eVKtBOCehIqh6loFHYLO4bnFsJCQSsErjhUWxsCERtWC0L2+73/aPNnRNA/FbeBSjD2Me3zO+CF7iAUf1TS7Hu0aPWbe6q1VityWLAq42QLnj+sHF/uzy9Y1WwypY02FyhOGMQYlUBvPlhfc5xG9O7cICQGqlwMNE+MS0AIIg8hQCM4NEgUYY0EJoGEbCNONGj5j47ZkN2u6ZkDHygpx0WEDAiviwkAkAF+mVVZF0WsGYZgPPvjAKc198cUXHWGzpKEu5G4dBqpEeZAWgqqzIVyI2J368Z3D+7cYKCYZ5kn2M7rwSwOsqs2GERY6kT0sXpg8XqtZmU5Y5rffHOW8503f2NWlNGyCQagPHhDbeSiAcqvnvvWpY4RgYUWcetL4wYEeMym9j2PFmP3hfQtFsQMXu3dHHjVMhx2rG6fMlSBSiNyFuy88WPz6GyPFaaOaV10FcfkDi5rpi0jtEZTWUsYp2sRLzQoYogjbmYJFNAhcBxiAUhMGi62qs3aYbkhcXsw4vcZ4/ijOiU119Y4XZdz1c1vo/egaYGH6UWmRqaqZODGR89b1QlDqsykuRHTcPXzvbs20PSgqoGny0WdbrLyPye4rqIpEGoRUqPd8VJ9qUd/4qSeN3NPxLFCy4eWOdVf/leQMN29JInZHlM7DmORQ7UTtj5EFsMveugONzegiT3GCVhFoeCY3I9RFE8/7/97/uvZOH94d3DMkh+smbwKEotzeMOgMUTRsVLSqwF433OOA8n6VJozU0Zl41ODAnlemyZ9psnHbDnHbmaPJJejSaHM38NRdo0x1g+KmZAwRk74JVONl4pGDxLhBXUnxN4oFq9L2wKKqk3EfpqVhG1TAREXVvIqCt6laFMEe6j1HiGPBjIXN7g/kqyn5Llc/vFj85MRoCrJRkOOf0nkYoOQ6D0bID44Y6HRKRo+OD9dvccpos4DbMNAJ/UEozpTpzy8Xg7t1dHIuTO+dXKyCqlTCoHpJ8TrVgix1dPbp0Un5PJtUNGUF3F+sGb/XTNb98QOLmkQo123Uvze6ukFJUDKGSFDM0y/+SDVeLj16b7JlaZLr4a7xD8swl0dx7cnDHO0JHQ/K10bvKR5sjN3qTF64RijDRQWMicfGr3nVsjWbnERMalM1G03ATDxPug3P1kOwK8LknjRx6uqgfPKwvbuKl5Z/FqkfSMfKVuKBVz8Wa1wTM5rlba8vJJ6w7WcYyLFN2SBEze/Cwo7Qn+lb2BAes4HfDl4mFCOBPa+VXKqO4f9Ztlb87qn3A/8Onj73RjVITDCILCWfJ5IjkhVkzNPbK8Av/kjtjaGz6Jk81F5RHdlrAAufV8xGnsvxw3tp92157t31Tn6KTi8FdwgE/5pql8CYwHWUwmLIrYGXSaepmiofR5egex50/EKz4Zls8FfqoPJn1uI1Tbkrx+7X3djr4DZCABr8wQiZNH6QOG5YssnxKsNAGthJ5XdF7TYLcLyUnkJx4jaKvH3CKN2cwdCenVrMldT+TVTKGo1fk/OqaJz30K1XFxMjJEudd0vKIyJxy3kjecuZAD3tlr2vNxGR8sM010MO2rueWy66dqp0BhHizvjy6xkhE7+8aqZ+rKnd5iTRQk78k8+3OV0gKeEUGxnYMnETBpTOtXJ3JbWFibYBjg87XWgSuHtVhDX4C9I9OHpoNzFn6dpchEVs5a7MWrLGuadoxkc9b5SsBnXEhqfu2lP2F0N6VJOfhTiADoyNEGaSRBEesw3mOBOtEHD1ifs584R7roRujmnuixe5alz/teHOvzpzx9pmxmn85l7WOu+CskLB1J6KH0i8V1dXi5qaGlFVVWX1vSn9FiQwUGSfF7eAlOnO2/Rh8hJUiqU6P4ib4YiDFGOlIFllRXmLHaYqKfC5K8Y3yR4jq5tSDRDEdw/v75RNywkDbeDDYv2Isap6xbjvD6XJlxf331DDROcdupej5xB23+DVwuer7hM8AwitwSijJhtiJ/bNg/pol5tnDTn+YIiAoGcE1+lbB/cVv51H2xXLMYsGgvPeWptayCYs7JJ0fhdlnAKTxFfbOUCQTNf19HjPw/18w7NiowBA1asHm0aEx8O496JDmnI1nnt3XSTjqKptKzHl5GFOjhQSzIVPGoJOb6Ik1u+SNET8DAHVTdIxWHSAhgRkoKO4YP0GVdD52bjZqs9FeSBcpTZAvN+taxF03HLhatuqwrcrqY17eMucd0iJqJhUnnp7ja8+SJnifoUZSZTeGdSmXnlBlbgMI+LMMX1Fv64dmq7TTbPfJrvnQZo7+jDkHYdH8sqHFqduULqrM/zGKqX3EwVdL5gOvzsLoeqe1jeFCCdL77T0Luj0FpKeiWddRhKu7wHXzo5076VhE9faFcf6XXKhGZ1+C5j4KQ2iTOjcAZLaRn/qe7wAnpvL7ns9sH16VFRhKZuJT15xrUKErqTIeUG4Kco9pDY8w1yCiRnKlijRRbjJbTRIT4cqFykoe13+Hl8H7tVFWV0QlxEiJ0v0R/rJw29o7dQx6SE2D/0SXfp1bd+iaZzai6XnlcySEeL1jMjnCs8yDJE08Qu5qsYqej/JxFEdoxC4FYHjCv2gqs7PkMK11g3DymfivHH9A71FYYrGqhzDivIypwO0jcZ4qq7iMI4gtBnUyiENSs4QofZb+PW/33bcgBSDxeRG2lq45fGiPNCk9NWEX50+wlFBzGriE5D37Q//WR7pHuqUB2JRQbnktPIvdmBuYwSLOFy16JNjYsDiWLD7TBppdE4Y2l0cMnVuoGu8U9sKccrI3qLf7rsaGmLSMzFEZG5CWHlhqxjT7eP2nmC8eHfVOGd4F9P0hsDzhAofKvI+6cxp8ODdfvboZiFuXYOAijyuoDCoNHrDOvaqDIigjsYwQrAZeuT1VeQcw2OH9SRLAahwz8XuZwjHefgvn2zmOYbM/s9PSl9pteQMEerD8run3ou1Ftv2wp2kZgKuISZL904VX5jAouaI2CYo8Ei5hybS0ZjsIM6k0nAI8sSEhWjSaDrnVvlFZdQvTh0W6MqGXPZfX/igKUkUC61O2EgnkQ4T681zw/N2TOlITDyOAowQVHtloaxSjjRIrptsrnTmNEi5e6viMM6OGhJu7Jocl5+xgM3BD+5ZIL57+OeOJxPzgCwAUBklXgMizMMOYIQEtfxQAQG3e1/6SLvPEQwreD284PxVXha8v1ckLQ1KzhCxbQCYThpZV0oNArt698Mp3auYwMJcim1blTt9M7IEqhmAanIwUS6EseCn4eDniaHEc9NYoDCJInlYHieOBcYJpUcOxvbF9ywQJw7vIR5dRJfgppTEJyFkdfLIXqL/7h1ICYc256O0vIt+u3RqojdlTsOfQU3Ub9HDYm3LCJFGrczVCJpnMZ7btW4l+u/xRf6R2yiJsjnA73FeOhvWivIyx1Oh6rsTBAwrnKvXWIJybRCTH3wjVaXVktIRAbZr4k0nDVkSRxlgGBvpR/G+wDtRyF0+gGWN6hw/smaEAHS0RaItMui9PRhMG70FTaYqXQRcP++E5u0LEWWBQomrCe7jlJMajBMKhcYv/D2SEcPAc0nNu0rCOwQjBHkAuvMFPEB/vWCM4/YuI+QUucH1bWgoWNe4COLLe3f17cPk1uyYNGOh73MiOeOgvoFzGsrbywOGom1jG3MsjADKWEE3ZO85ytAGuhGDxxatdLzBspcP9Xi9/Yb8qG/sC4QcDkhK3H5WS92r9m3KA8eVd9544f3wUN9nW3Y4r0uLkjNEZOfbqF4I2VQN1rYcOO4BGjbI8C8sUMQCw8Bbyp10FnELrsG1WtXWfxLFOQQZKmnifYDjbvSGSYzi2pWN56IY0UE6G5TjjGIArNm4XXxpUNfA48ZzAPc1Jl/Ks2S6YFGvHYwE5LjoCNyVNX4h7HDY3ns4O1pKThHGGc71ljnLxAHXzBZn3/liohVQT7+zTtRs3d5iN0w1kOVrsXiHhYhrt+70bbqGa2AiWe4HNJRgWEVRs8ZxBhlj1M0B+ocFjWeg+hzkhCG8KRt3Iol46/YGUkdzOW/gWaJAfV0clFxoJqzzLQX5uMKggRuMUh7l53o/fljL1s4qoKL6xOLVkXeBpnLAYchd/l/nrwiMa+J10G+4ZPxg8X8vfGA1FhwVd9jEL8fDJpjEqMnTMo8lirCUafKle7I1NQDQ1fa7iqQ9PAOYaJet3SzGXDen2QIcVGpIXQCgpqmK8T/w2sdi9tK1vn934Zd2JdpKlzx2pt4yVW/VS3VjgzZZwYbjRinuxfcuCHzm4Da/4oE3rBkfuvdZFSrcvrNBXDlzcaTqQmqlHyVJ1ARUXkVRsy5rvDeqsmJpqOD+UnRf0NbBnYumKoO+2CenDOFNeArhlYGhQr3OX3gzqaMhvSSBkjJEKJ1vKfRwlWVRkhEfX7RKWXKJ11K7Ru65Wztx+TH7iNc+/Ez89YUPjY/9O4epy1lt8cEGWhdexGJfvmpCM+Eymx1ekTiLMJCuNkFYjocN3AmZcPXqluSZVheY9gAyaQSpQpW0hwn4yofeULqOgxJ7KX2g0L7+xtNHiBeXr28hRIj3u+6fS52EWreRgHV4/L7dxGOLVos//mdFs/EEwbhdu9pd73VQvy5i2lPvNam14guVDn+Zv0KcOnJPMWFoD/HOmk2hCdOUChlZZfLU22vFH//jv5E6ffSe4v7GflFUvMYuNk1Xzgwu1ZZ/A7kA3Tk1qUo/OVYxVkxE4oLujTxf5A+dPGJPMf35FZGqd8qwQQwx3NDoTvda4TPHDuhKKqvG69KipAyRKHFlDGTIBHfrCP2Pgvhv7HIIFv+/Fq9yhMtUFFyTHyaroASvqAlz7t3lqL6dY1NIpEpYw/Dwlmfu06Nj6AQYxoXj+jkLACYfuVMzgbIz8+62KXjL/6gLu/t1uIfw2FDbh7s5asgeYh6xnLZg0AhSJ2kPE3LQOQSVWMuQiV9yNP4Whug5f36p6Wfwgrg9LEhE/NExQxwv3vL1m53PqigrE3fNb6mMi2qwW1wVOngvv80Ixi82GPiyFU51vCWFXZ4lP/BZc9709/LEIaEOtWnTeSTOSr+eLgMaYwUluqiOsQ3OvXfndpGrdwqE6j6T0IlMsEWOVpjBi07HaVFSOSImbmUZ9/3FqfuLdq3Lxf/e/7ozuQW5Ud0WPwZ/mHBZWA6IqfAZjCcszN5ENPyL7+ESt4XMmUFcHbvHMLAT8sZMcVww9ih4k/nw2UiUvfqr+zU1vpPeA1yHOMD1072GHSornDCb7G0Ulvchr6vbKxFFT2ThRzUiCu6ciSjPILXqxZvY686zenv1psC/9U68qtwGlCTv2bmdmPvmWsfTqDJCVOCYUGkR9mja9KqFLfrODj7CYvL+p5sNPMbZzFzzGtBol4DQYBx89NkW0jOMfMJoHvmC9l/A44jr8ItThoW+FnNKWB5LXJSUR8TErSxjykBXChguWyqqHBDTVuBY7H5/9gHi0EFdfcux8HNUBMA1bauEWHbhhQx3mBiPXFywwLr7+CDOTgExe+Dt/+MFxsjOnQUxcYb93RAa10GcTIdNdfVNu2XppfLL+/BTXzTx7OGvOzvu6e1af/PzR5Y4LuF1m+qadlcy98GkRYF8BnXPAaqdUeXEVR4WW32fkoE21kzl/v/6wgqyN1KG7fDcUXowJUXn9q3F1NP2V+YV+SkeR+XR11eJa04e5uR4BD3D1OqdoNDJA699ojVf43mB8i2UvMOIoosVlZIyRKhx5V9/Y2SziRdQk4Tc6EwGmBjdNevIHjcNx2yuqxeXP7AosKeATJY6blgP8edGF7LpZLx7hzbiulO/kC5HLxAKTujk7ldb7FyDEmrlBAg3ontRwmSoSm7EeV73hH0dCHh9ZDdPU9w5EDodnnU9e3IyRN4CNScJFBpDEu4mXPIa67Yo8Oab6J6DrnQ4xcOCY7GRM5YEPTUW/XMP7SdumauvyqkbEsU4gPGPY0urEZ7O5gtA8RgLM7UhXdvW5WLbjobQRNRVNVuVCc3uZxhePBPKGt/nEINkdTnWqc9bWmJ6JWWIBLWzdqsKehX/4ArWfdA6VlY4u18K0vXuzpkwHbSURD/fZClP0h5locEEMH/yeMcToluCBwNIRZARAhCbp6qWxqU3gfwDGFIwIE0nYvcOHaEyal8IXc+enAwRDtIxRFTIawwPHhWVZyftlgC4xmko1ZpQ5ln0w5qoxd3e3bvxCMrV8YJchXPH7tUs38YGv/76CKdkmgLGIBRtKRzcv4tT3hwGjBpZAQYjXSWAFmXM/6zx2TFJVpfHQiGt57KkckSAvJFekZgeAWJKJlbiYZ5eLLpKktQBAYEgSi15mDaAfInMKXnrmuOcf8MWHHhf5r21pum94Tmi7DQoTmbvxgb3CCEBVF9QdDfitPDhxcF1hDESJWfCvUOXhigkv6HrgNJwlXYBRU8EeTE3fXNks/wgmbQWBXmNZ2oYyqpny7awoC54vtLa/emGGuS1C9I0cRt78ObGBcYVNh6mcuAXHzFI7Ky354PCHIHuurrHQ51fDx9MM27cpbZ4dvEMy1w175jXNfqmeZ4d3Rw/aRDp5qIlSckZIu4bKUVi8G+QmJKJlfitg/uFTrSqh0gm462u2epUZYRNCkG9MFSJfmGuaCww0AHBThyDEuGioMVL7uhRoqwycFSvl8dGbQom7xHuGXYbVN2NuC18fBb0H5BDAV2UKLgXxTAhKbfxo1qQ8IUqASh7yp2/zSS0QqMbH+OzLCRX4e7/Olip2KkjFGYT94Sb5O7PRDn7uGHdxSs/ObrFIhS2kYrjvNxJ+9L7qSu1j2tw3eNvittD+nhJMO8gwVR+torbzhzV1GBSB+rCjOR7qsHst/kzTfTu0Kbc1+jDe+HYwsYVfi97z/ip3vrloiVJSYVm3Hi7EgYJk+mWLPYkxvO8D5EqZBLEqD67kTqbykWO4orGAnPp3xc2nccZB/UJLPvS1d3o0SjiRg0ReJuC6cY64+7pgzwg5FAgZ4RSIueHXDzClFbdoRy/vBKEruCV8o7nsHupyykje4npAflFEPdyd1f1EkUTxQTvhBtlbMj3UnVWVb0Oz7p02VPzv7499os2825U7d3dIYA4xrxfvpJOeEvXFr79zNFOl2+V3ECQ2J2tML1MvtfJy/BqskTprFtWVu54m4P68lAqMqF1E6TXEtQJOCnKCoU4dDbtUFtbK6qrq0VNTY2oqqqK5TP8sublYJS7DL/uhULxd25XGqWZWdBxBEEV6YE3AQ8FvD1w86cFvBuo1MFDilADBXnsEniLKH/r/rskKiNMk31lXB+GhWwBr3N+VIXGKMnIQccAN3SQIREWNwfuc4iSpO3+TBhjKhVX+dzJz4R3yS9XSYYq4fHyqgD7vZdXHVR1/rIJW5ChIHWL4NUK69SqwtaYn3jkICdnzu8Y4phTvM+ETuM9XXTmZx2DGV5cb1dlCc5l3PXzQjvrljX+65cycM2jSyLnfMEoQqffODwhOut3yXpEdHaf2H3gK2zHi4RPWPFeV2rQ7iXsOIKQ7nEsPpTktbQTBOHdkDtReBBQkRGEKmZJqXzyJuzJnbdNGW0vBVeScsfK1s0mGZm4TCnP1fX4uD17GEd+1V02jRD3NcbnY3xDM0clUIWJ2ysk5Z3ovecQpaQcCzjCrNjJomuw6rmjLCpIwkYCJMBr3caFYyScsG+L41d1a1WVHEtDCWJofgai1zOpu2ONUmLtZnD3joHlnLbnFL8wgVf80BaU+dn9Omq1TdB1cXfWDbo1hQBBPzwnOnlaKvBuM17+yDFE0qYkc0QkOn0+8BXm1oZvadnaliJL7iREbwIT5TjC3ONhyWv4vLi6euJzqIJh8uHc9SCGC5epYpZhuQW4Zwj9QJvkuXfXNWswCInsuIHBUbez3tlpyNyW1392jCO2RkmQjpLdnkQViN9CAdcvFZWwmC3BNCzgcFn7PXd++TeqJGyop6pe+9nmHU5Sot/xuxOO4Z1S5frACEFYxzsmdK9XELol1irCxqPtpGNsrKgdmG0RNj+7XxfWjZma9EkVWywoOmADfB9FgTrovdOgpD0icdRWT39+uZh41CAtV1eU7H0k2IZpUOi6FanIM0RiJHYJFC+FdLGiGyw6Sco+HVRRoqDcAllyLAXD3GByOHE4rcFgVNBS++Y5y5xjlLs46s7LxONjMo5MQzWqeLKuARS005NUK7yPHdpUiM3bw0vi/a6DrufRryme/Hu0I9i6o0EZPqF4W929d5CcjmdIJbRFuV625xVqKXBYroXuGPuJy9OURai5JZR7hPN88f0NWn1q/L6PQhaqx0raEImjthqTp646XRT3JnaiKg0Ktxs6rvwI96IEhdGwhxMx9BYGU1WlmHTooGbNxIISHCXuhV3G+YN2f/hMdxOzJPAuHBT3cpSJTmcc6XZhVuUKSKPyCc2delBSX9B4pRghQdfBtscoKHxC9bbK3ju3zHknUO0zLAnS5rxisqD6bYYQwvImToepFWcNb34KnmkdAUI/MNYpRojszRVXSCztkL0odUNEd/dJlU7WtTCpTYlUuCcn7wRF2QFWt20lKirKtSWPJx45UFx69D5NE1XQZBQkkb+mtk78du67Ru5YmW9y2X3JJODqiNTpLBy2JjqdaglptJ1/6F7i4ddX+eYZOZ9bVSkuPXrvZouSLS+b+1mhjNegBpFhu/g5S1eLuPCK6el4W3EtKVUU8vU25zd4ntq2qmiW02RSRSE3Bu52DXJTgU0KJdE/TR0Lk2RWbABNE2h1yp7lhtPtaac867t6fpWJNbXBSdGyvDdNStoQkbXVqiQ71a7gvEP7iZsJ0snuUsw4Mr2pkxNlB1izbaeYNH6wtiT0uEF7NOWeuM/R2+Y9TCLf1O2sc442MGkjDuByT2qiC/KmqMBrZi1Z44TWVH0yvCqy7kowW142927shffDFYylAaXrLbKR3BeEdxxTd5ldO1Q6jTSpeHfGUb1r15+2P1nRNwyvx9PddgE5Upfd97rYEuDVQgJvWjoWKvzGeZBqdVzz1irPpoaqEg6C5gPMaajgSrt8t2STVaUKqF8ram8iIV4flpDnTlSS769SxvRCSYQNwm/So+6e6tFTnkjYOWJQe5UFdZKCsxrfRJ8WE+CW9ksypAiXUZLo3PgJXgVd986NCYLYHauoaVSRxfGaVniFJfXhvS++myYTDrVfHWVkW8l91OuJygos5pSkRvyPzoJ085x3tJJWKQJoVEVfibsDshR/9BvL+B7eECTKV7UNTsxEzkxa3V+9hOX4BAmXxTVvrfX8DeXeUuYD02ToXHhErrvuOvHPf/5TLFy4ULRp00Z8/vnnIiuE7ei8tdU6O0CZC0GxpKPE2N0SwH7uTHrsT28XonOOIM6GSzbjm6pdg0ycNe3TgpCHavekUzquu0uUbvKbZr9DapKG637i8F7i54/AVbwj8HigqRHVA+X1Xuh6WLwNIim79iQT8mB83v7Uu47gIK5VkPdGV469QBgXqlAfJVHa7z5IY+J3Z41ywiyqPC94zYLu348eWORUImW1+6sXnc2TyfGazFvdFH9DSYLHa44a0l0cMnWu1WToXBgi27dvF1//+tfF2LFjxZ133imyAmVHd8cz74sD+3VpaitP2QHi3l10WH/nRlLCEHBCRGlpLkH7ab+BQ82BoXb1lM2uqOcoB7WtpGBVqMvJr9Fse+63MEB3AQaHN8YtQ1AmapV+D3ncEx0+B8mllPuKa4nPCRJYkseDHXBU3DkIOh4Wr35JUgnhJsD70qR67Blw7vN/bll4QzUvQeOCKtDlhXIfULKs+n2YHhAIM0KyVMEB4u5Wq6t+26Ox27cKyrOAUJvtZOhcGCJTpkxx/r3rrrtElqDE5hDHhGy3lMWmGAvw0EEboH2bVqQF5gf30NzQQaAPQ1ifBb8cGHkslK6e7mZXEIoK60bsHdRUgwjubLy3yrIPmmAhJU5N9sM18ypuepPzICsdNf8i6HqAJNpy6yRjP7ZoJfFdo7nOvWJgOrFyOV5NdmyUib996wonKRdesP+9f5Gwhbs6yXv+pgIcMmxnK6eBch+SCJokYTBScvfi7larO59s8+Rp6ZLEfFM0OSJ1dXWOLKz7yzY6FxoPMHWBk6D3RtxgMoObdPLxQ41zYIBsZkdpQOZudmWi/hnWNRSJan6x6bBcisHdOoZ2lZUNBnHNkFCLxeDbY/dy/sX3lAfcL95a3Y5mz7uvWxJtuandWnW8VmMHdI0kYOUVA9N5HnGP4VWK41rg6zffHCEuOnyA2LNzexEX3vM37ZT78MKVzfITouY0pO2JoAqBRUWV13bANbOd8mn3tUmiW61OPleNK0/LhCTmm6IxRKZOnepo08uvPn36WP8MnQutuwPA6+OSEAcIQSB/5eWrjhbHD++lTBoDVPVI9+CWD4UqYbF9mwrx9uqNTe9vMqiDEqugMAlvksrQQGz6igffCJxgEZP/xSn7By6OssGgbHCIv/m/+R84/+J76gOu6tz8u7MP0L4eSbXlpiS06RyPbOYof6aLd1E00egxAZ+FsBu8Z0jOpVyLOIhy/m7Wb97e7FpETQhPU0tCV7fEFL95EXM2NpwHXDu7aR7QMeKj4J5PbvrGCN+O61ETZCljOs3yaa3QzBVXXCFuuOGGwNe8+eabYsiQIUYHM3nyZHHZZZc1fQ+PiG1jxCSnQBe8f83WHdZdmXhPKHbu06OT870qVCEFhAoG+QvOZyiqdxCqwoMK8R1Z7mei/qlKrJINwIIMDUr3X1n5ERQft1WO543JhuWPqK6HTYXGMCgJbTrHE7VrrrxnSKYdO2B3R5k0rAFYlJ27KqwHryIqoSYM7RF4LeIIR7iNgiidct3XIqrrfVf/J/p9sEkS3V8pOTCYZ9zzgN8479yhtTh5RC/xyWdbxcwFnxg3JvTOJ/PfWx9bHgc+A17nO55ZnsnyaS1D5Ic//KE477zzAl8zYMAA44OprKx0vuIEF1onp8CE88f1d8rsTGW0wwwHeAhgMKgWVG+DMcp7YnD/+dn3xe1Pvkd+UE0XUe8iHpZvQgUTLMoP/RbcOKtUTI2KMBE4mxMzJaGNejzSu3D5Mfs4E2eXjpXiw/VbnDEvNMY8EmnxFRZWi7Jz9zM+ESKBGu9BPgtIVGOLAsaoe+zo4r4WUV3vyD/YtpOWUGpzw4b+TxQl5ahQc5G8VUleBWfZXXn68x80+zuTxoRe1moakzo6VXgtcuOCwO/RKDLzVTN77LGH85V3UJqLypggcR0v6Ity70sfBGaIy50vFPD26dExlkmsEOAhiGL0XPf4W+TPx3nBnWhjEbUVm3Y31FMtuHFXqZgaFdQeNEkRdjxBScOmC7f0wgXJzoeppqqIanzqdlw1HbNy7KB3DVXrxOtGj9KjKM42EEHAK11eVpbIWNeZZ1TiYdBXQf5fIeBvooqcddMwJsOqozD23Sq31e3Cy+6Lsmrmww8/FBs2bHD+ra+vd/REwKBBg0THjh1FmmBgfffwAWSvCNy43z9ioGNg+LU7V7mv5YQe1NAqj8gBa2MRjRqbpi5Q1IlIVY0QBEVZNux6xNXi3BS/46GEtmCgYgKEUis1/CmNArQb+Hzrzha/Nw1V2TA+ZcfVPz273Ch8Qh2zeJbQQE/2rgnDey1MvXIYv345WEmQVJKs7jyj23oAFEIaIYYxhmhMQpsIz5ffc4icu7+/8rGRSGbRVc389Kc/FaNGjRI/+9nPxKZNm5z/x9crr7wisuIVobqEpQwuFqlJEwY7csU9CcqOckJHI6diMUJUFTG66p+22ojrLFDUiQjuemriKlVZthigVmXI8ufrv7YrebhMK9F7p+N5pDxbSZYsUqrK5IZl/JA9RMfKVkZjFosXBVwj1bWgJia7uW3eskiqzlFJKklWNwHZfVw6JeayEWKQkrYfFYQE2V05gP7PIb6QB2J6T9NKWo7NIwL9kKxpiHhvOhIvqS5Jb0KjjicgLSvTdo5KHANWPnyUpli4vO6EcZ0wkJyIwiYUaq5InH0osoiud8E0x6Jf1/aRmonFVbLodz7epFdsVuZJITMFuzUq9arGBrWRGTyzQcdJnZtgXCYhN2Ar1JbEPKM6LtP522QuOHZYT3H7WaPFTx5e3GzzKuc65GbFkbOU9P3wUtJN73QmS1VM2Vs54SfGZdvKxGSmSlZ1D6irTxjaQrnVu5BnZcDiPqAsOSxUhmPHjqBrp8pmDfX8rrvJRERx15vmHnjDOLK5WBZyQ+LwLrgXxefe/VTc9uR7oX+P62ArVBUlb8Jkkae48CtblftqoVBErs4c0zf0OKnXz+lxpVk9aDKH2K4KM20mivsHbzZCUSqPgd9xmc7fJknwsxavcuZttxECY/eq44Y4RkiUdiBpl08HUdKGiO5k6bdIhSUOUXY6Qe3Nve8JwmLB+NxjhrUslX15+QYngenjz7Y6GeBZGbD9unYgvQ5GCMIeJnLW+NmF4/qResYELbwmuQeqY/XePxuZ93Fh6l2QiyKegQde+8SaUUAhjhLpoEWe4sJHsnuQkRu2OYKxPuPlj6yME6px2aGyQlx7yv5O6EjmJ4CguUpe0e8QlIx1MJWw9873yPWb/tzyZoaY33FRvalRk+Bn+XhZEe6ZOIOWO5TV8ukwSt4QcU8uJrs+qos+bEJEnxqIevnthLyN+CgVGt5JU/UQB+E9ljgHrO5CZxoagQudYogEHY/uOPE71jyFdUb22S2wqgVgaMLYVZGkbkpaJdK2EqLdi6UqMd7WOKE+c985bKA4ddQX3aenlbe8nkFhU5SE2gi12dQBQq4fQlyU47KhKxM2NuotdbWm4vUsp+2JZUPE4MFcsW4LOYHPnUWN2J83XOJ+YEf17Uy29nXzVHRK9NxN4Dp3qEwkdKDjRqeERn7+yBKnUywktN3HbsNdr2M06UwwUfVMbOJ2f2O83/X88kAjBGAhQqhJd7cf944sqRJpnYRofH7Y+c54+cNYxwnFU4swMCoGEf5E9Z/UjfnV6SOcg5DPV1CY0UaojZosrXM9dI4L73vJhL1beFFsjY2XNBJio4J7jkqwtI0PN2yIuMDDREnwxAQhremwwSOzqN3Kp36Lu+6EqXqQVPFToGNtp+Gq09kxU5ruwQWOxoUqgy7qzlzHmNGdYHT1TEzj5UHoes50dn5p6aa4n5U4rpnthOi4dW+oOSnfPLC3UwmmOhb5TMnPj7MEnfIc2dbBkOPELWQmQan50UO7i7EDu4rrHn/TCVlFCTmutVDQgPsRpp6adi6IH2yIuIBFT1ms5YDXHTxYuNDwCrtCmefgJcruwS9+Su0gPPHIQU7r+LRcddQds8lD63XfRtmZ6xhNphMM5e+ixsv93jOKC5riFUhTN4V6zUyMFZsJ0dRxg7y2KAaV37MgFzWEi+MU8aISlw6QqTFeu22nk/M0YWh38YtTh0UOOXaLUNCA5p3HNeYi4nPgWVcl5HYOqNhKGzZEXOgsGvLh1yFO13tQ/JQq3Da4e8fUhbUoO2aTh9Z77aPuzKnGjOkEE/Z3cZQPR4lTp13+R4F6zaIYeLYSoqnjxp1cb2qE6vaA8pJEKJF6PdCV+KoTou34Kca4ez6xoTI9JkLPIRgh7nlb3k+3sip+n4SUvilsiLjQWTTkwqU7eORuCIMEwk82oMRP0xSz0d1dhu2YTR9a70406s6cYszsaiZWGdgaQLcLZlx9c6LGqbPo8tW9Zg0NIlC1kmLg2UiINhnjUYxQ0x5QNkJEFHA9UL2zua6e1JXY9Fh0c7psqUxXEMJkfjk8qrkC74f1xdYak1tl1TwiFw3qQoGbDfelyQ4Sk52O6l6cC0hZjC2gVeqjuoqDfg9tXBnsuscSpCyL7ynaD5Iyz4Iu9WkeXviJ86806qK0fLd9XXZv7HysWvxUx58G1GsGIakg1Uokn6PjatC5hKkFU543qpqr9xijtIqPMhZ0X687LhByCTNCTI8l6lxqS2X6WB9l3CAQfsG1yTvsEXGBgfPzk/YLjfHKhQKLKWKoJiDz2lZ8VefBS7J0Mk71UaoIWhZkjKkaKR3aVIhff2NE0zXxCxEcP0wtiBV1Qja5LhBbmj95vGjTqjyRHBZTqNcirBWDN/lcdS62SpVN1GlteSh0x4LO63XHhfRSxHEsNowYm/PJsR7PStcOleLie1/zlWzPSpVdVNgj4qO+p+pDg2Qf/E52N7RR921j90J9ENCjQqcPRRLldlHOnbrAJ+H5sXF//nDOgc2MECxk3gUIRhzF7a/zuSZ9f8oav35x6v6+Rojf8ePnjy9amainJA7jU56Lyrtn0vdFBV6HHIR7LzpE3HLGSCehPAmvH7U3i+4zFTYuVNdSx0sR9fnWGSdxzScVLs9KeXlZYN8YU+9n1mCPiAJKso+Num9buxdqOSlKjqkiPlFJovxwxbrNuZAxpsT78ftDXOWlYUZckBKvaeKoTpw6KBGPcvwT713QTADLuyO2XWJLeUY6d2jteDyohOXj2CpVdudvwGi77cl3Yze8dES8qM+UaW6TjlEVdixh44qam0OZT2yM4bWWGjdmHTZEfAhL9rF546O+l64rOInKmLgfIDzk976kFnzKmoyx7v2hGLlyETdx/QdNkL7VQFWVTq4LvFBhk6rO8avCdcB2SIdyD649eZi45p9vGiWf+xnUtkuVqVol0LWISlhoSPeemG5OdDy+QcdCCQlRjfGw+UT1WQhjYowdP7yXiENksz4mfZwkYEMkA65eG+8Vp2qlyQC32flUBY6HUoly3LAe4ttj+6X+UOrcH6pxdsG4fuKJxau17jdlMo66kzcxLuWOGPoHqoaOtvKKwu4BXOG6lQtJ7khxDyCK+IN7FgS+DgrO6DUVdcy7x4JbWRVK0brPlOnmxEZXYp18NWqnZV0Va3jbcN+++/HnYvLxuxKRwzhgr85OSsBnAeEZMP355c7GbHVt+vlYJrAhYkiURkhxaS/EoVppmnBou/Op6aR27LAeqWuj6N4fqnGG94JmQlSZf9VkHGUnH6VbqV883JYGT9g9MEkQTToBGsrMYdgsqbXl1YnSODHMm4UigyAPoG5IyHQupeQOQvl0RO/O4vjhPUlz72chRohoem525KZ3lRdOVjXEXV5HoSyhnIWoJWRRE8so5Yc2zj1uj0tcUO6PTvkn9X4nkTxMPX5TbCXmhV0zd4LoTd8YIbp0aBN4LtC3wE40qfLkvOYNRClrjpL8a1rubjKXUnMHr354ceBYmeUz9+pg+7mOEzZEYqqwcVcWfPfw/olVq9jCxsJlq3IgLq2GrBKHEWcyGZtqgJhoYOgQZYGlnpNchE4d3duR8A46c+hboKTXhkZOsRvhUca1t4II/+L7sHkkScON+h5SeC3uTryFnFTVcGgmIu6W3d7OjHG0wk4KW1UvcTU5i6LVkIekLts5P7qTcVQNEL/j97aLN8F0gTXtM3PUkO7OZiOojDJJd3jcYc+0xjVyX6rbtXGMRL/n0iRMlKThpvMefs/kSzF04s2ad8wLGyIWwMMxacLgwNLYNBt9mWBzFxHXuZss1lkS2QrDphGnMxnbEqJTHT+qOaAqLBTGI77Hgq9KVo26wEbpM4MkRYoRIs8pbpEpW4JppkQ15P3GBRJs43gukzTc8B5diGXgfs/k2hiMhqx5x7ywIWKRvBkbxeD+1Vms41R6jWsytzWmqJNxULMzk0VWdfzTyv2NR+BXtYLvoSqL66az+EXtM6OjLZJU/5U4q+SCsGXIu8cF3jNqf5+sGG54D5TohlU1BYWNu2nMqagW2razIRbjPUnKCgXIImWT2tpaUV1dLWpqakRVVVXah1NSYPJGvDts4UKMNsmwhuluTJ6Pn8szyfOJ0ysTdH2kISZ8JmNM+HCNI9chDMTnoyyyYcfpvT5ljQJuJtcLuSCUc0JSapjEuw7IY0CiY5zEFWZUvS96mqgMeff4Men4nNRzmaQ3dOrjS53qGBVlIdeqPmTuBbu1ay1uP3u0I7Ip7wtQvf53Z43S0i5JY/1mjwijJEzYp5CCSmmUiSQJpVcKcXplwq4PZReN+HxSInx+1xnHAe8EGtBJw8C7XdK5Xrb6zOiShLfQthcWi6Ay361x523LU5bGcxlXvpoK6ISgRNc9hqnzVQXBg3P91/YX4wZ1JZWcQ6QP+jhZCz27YUOE8UUOcIhMeWPkfpVCUXZtlN286QKehZJHU4lrCtTrEzYZUxfPZWs2OZ6GOCZyP1e96fVKOnyYF3e46rqrnnUQJh5oajAk/VwmGT6HTghE5UwMn2M1Q2/SeP9BY/5V2ByZtYR9NkQ0ydoNTALEH1U/oxgAVC9G0Ouw0ERdwLOQ8xLX7k/XwAmajKm9NtDvBF+2Xds6pYvU62Wzz0xY+CaJZNE4wPMX1nU8zY7PaeeipWH4HKvhwcFzg2RfQZgDEMrJWsI+64hoPqyI3SHePGlGcroBedUSoQqihb3utnnLjASJsqY7Etfuz1SwyYYGSJC4nYkOiUnp4hOLV4VqgoTpVyDBkDI+Xpg8vknHwulmXZUvfaCg59wGtjs+51kPyAYVHlE1oHqmqHMAwm6mIpVxwh4RoscjSxUXSRFlB0/dpUOjIex104lt74MW8LRLHuPc/dk2cHRkzv08Uqb5PCYu+P+b/4HzFfT+UfrMuMdHm1blzcZ6Ut2s48SGboVpOCoLz2VemBXwTNXtbCC9B3J/4ggNR4UNEcKNhtAOEn7iuoFB4Z40Q0HURQHNsGCdu4+RasT8df6K0Ne5k+aiLOBplTzGrWdgauCEdeGVbuHn3v1U3Pbke2SDNIrRHsUFH/b+pn1mgsZHMZTsR82/iGowpP1c5oFZIc/UJRMGk94naC5NKmFfBRsihBsdVhPuvYE6xkOQlQvSjOVRFwUYad7McOg9UPhgwxbS61CuVrM1eq18kpnzSe3+TAwcakt0jGcdj0vUhFxqjoowfP8wwyHN8ZEWOsYfktTbttrVW8emwVCK151KPeGZQuddhAnX1PrPAdXtWpM2dWmosLIhQsyFoIAbqOOSDjJ+/BLHkgwFURcFb/IeXn8nMZyyV5f2pNedP66/uHnOO1YW8DR3sXHs/nQNHF2PBXWhWrexTrzw/vpICblhZeNh2NjVFYOXI47nHPfj+tP2j81gKLXrTuUlgncZVU3IWfKbI/H9hH27iftf+ySTicGcrGpR23/Fui3kRCBT4yfJjoqmzcvkUWFuCktCO2dsP1KyGmLxcTXQSxrT5l1h70m5PiYJyNRuuvCMXXw3rfIiaNfldy6Qzv7y4K6R3z9tTJsJpvmcd27fumkc2ezwzYRDHcv9urZXPjfV7Vs7nqwwIyTNxGD2iFiKkXavqnTcY1SXdBTjJ8lYnt8OntJPQc6vYcl/1N18Mblv49j9Ua6PSQKyjpfCZj6Pqh/JTx5+w8r7p0VWex35PecIiZ4/rp+YeNTgXD5nxUA3jRwwPLPu5wabY3hJwkzdtBODYzNEVqxYIa655hoxb948sXr1atGrVy/xrW99S1x11VWiTZs2IkvoTFp+i+WZY/qKm+YsI0/wSbacjopqUUCMGK3Pw7hgXD/xxOLVgWEInXAFu2+DCbs+phU2OpU0Qejk81D6kUR5/6TJeuVdMRn6xcQYzRww+dxIqXiKvy3txODYDJG33npLNDQ0iDvuuEMMGjRILF68WFx00UVi8+bN4le/+pXI442++oShLTpE9tAsn5ITfNItp20vcHApU8DEdtUJQ0MnN54EkyFKCbG8R3c9t9wJw+hiuuuiipylvatLS1XXJmzoZ48KwyR3qtcdVaHnjetfnMqqxx57rPMlGTBggHj77bfFtGnTMmeIUG80JmI/yV7qwiwn+CjVAVnY9elY6dTJjSfB+IlaQox71LVTJemz4NZv1q/EcNdFnVChenrdqcMymS+UlV5HTD4xSXKnej/xPKdtuCeaI4IufF26+C+edXV1zpe7e1/WbrTfYmkywZ9xEMI57yhfK98jqyI/LESUT2zcN6pX5fazRjsiYVE9XNQJ9Scn7JtJI8SW6FwptpdgzL3GeZLPT8wQeffdd8Wtt94a6A2ZOnWqmDJlikiLKOEBnQlelbDmRho/IMsiPyxElE+i3jeq0X2IpYoK6kTZo7qdyCpRF4WsJrlmhVIx0io0vMZxCSjGQVmh4G2wHcwVV1whbrjhhsDXvPnmm2LIkCFN33/yySfiy1/+sjjiiCPEn/70Jy2PSJ8+fRxPSlVVlcgDYROGX8Ka5NIJg5tlqOfhAcvDMTJ275scx8LH6LaZeCmT7sImVJRAZ3XcRTkHvzkjjmudxzmDjbRsPKdesH5XV1eT1m9tQ+TTTz8V69cH50MgH0RWxqxcudIxQA455BBx1113ifLy8lhOJA8PmZyM/DwheZhQGSaNBSDNCTXNcyjGOcPmuClGI802aRlqsRoiOsATcuSRR4oDDjhA/O1vfxMVFRVaf59XQ8QPJLSiY28YELjKQ8Jamp4Q9sJkgyTvQ1Z3vrZaOqjOodjmDJuGQzEaacU0X+qs363iNELgCdlrr72cvBB4UiQ9etD6kBQbcbWBTwPbi0KckzkTH0lWOmWxxFt3LOqeQzHNGbZLmLkSiU7WKxJjM0Rmz57tJKjiq3fv3s1+F6MTJtPkKYs5SWEmW/15siAKxZTOhGo6FnXOoVjmjDgMh2Iy0kqd2HrNnHfeeY7BofoqVcJ6dqSp9U/FpFcJZTK31Z8niR48DJPUWCyGOSMuw6GYjLRSh5veZaS5VF60N3R2NbYnc5ufzTBRSGosFsOcEZfhUExGWqnDhkjCULuklsKuRncyZ1ds9shaJ9mkSHIs5n3OiMtwKCYjrdTh7rspkMWkuzR2NbqTObtis0UpJw0nPRbzPGfEqcbMoorFARsiKZGlpDsdbKr16U7meVIKLHZKPWk4jbHoN2fkqZQ9DsOhGIy0UocNESa1XY1Je2vub5M+eekkGydZGYt59ErFYTjkdWPH7IJzRJjUYtYmMd5iiZfnOdeCk4azMRZ1Ks6yhjQcTh65p/NvsRqsDI1YlVWjUmzKqsWGLZewya4uT+7oYtvVwliaNGNh6OtuOWOks9AUO2mMRVYVZbJOJpRVmeLHljvUxFVbLK7YPOZacNJw+mORVUXTp5g2Q2nDhgiTiQeyWAyLUsi14KTh9OFS9nTJmxcz67AhwkSCH8jS29VmJVGzlGGvVHrk0YuZdThZlSnJZLkskOddbdqJmqVOVHGwPCVHZwluMxEP7BFhSiqskCXyvqtl/YZ8eqVseTFLMUcir17MrMOGCGMEP5DRKYZci1LM7cmzOJitsEKphmTz7MXMMmyIMEbwAxkdzrVgkvRK2fJilnKORN69mFmFc0QYI/iBtAPnWjBJiYPZEKIr9RwJ7vgbD+wRYUo2rJAVONeCyYsXs9RDsuzFjAf2iDBGcAtuu7DkNZMHLyaHZNmLGQfsEWGM4RbcDFNaXkwOye6CvZh2YUOEiQQ/kAxTOmEFDsl+AVeM2YNDM0xkOKzAMKURVrAZkmVRNUbC3XcZhmFKjKhiZFF1REpVh6SUqNVYv9kQYRiGYRIzZvx0SORfcsJncaCzfnOOCMMwDJNIjgS3hmBUcI4IwzAMkwg2RNWY4oMNEYZhGCYRWIeEUcGhGYZhGCYRWIckPeoz3C2ZDRGGYRgmEViHJB1mZbxKiUMzDMMwTCJwa4jkmdVYpeTNzZHdkvH7tGFDhGEYhkkM7tWSHPU56ZbMoRmGYRgmUbg1RDK8lJNuyWyIMAzDMInDvVriZ21OqpRiDc2cdNJJom/fvqJt27aiZ8+e4pxzzhErV66M8yMZhmEYhhH5qVKK1RA58sgjxX333Sfefvtt8cADD4j33ntPnH766XF+JMMwDMMw4osqJb+AF37eMwNVSon2mnnkkUfEKaecIurq6kTr1q1DX8+9ZhiGYRgmetUMKCTY20dn/U6sambDhg3i7rvvFoceeqivEQIDBQfv/mIYhmEYpnirlGJPVv3xj38sbrvtNrFlyxZxyCGHiMcee8z3tVOnThVTpkyJ+5AYhmEYpmQ4NuNVStqhmSuuuELccMMNga958803xZAhQ5z/X7duneMN+eCDDxwjA64aGCNlZWVKjwi+JPCI9OnTh0MzDMMwDJMjdEIz2obIp59+KtavXx/4mgEDBog2bdq0+PnHH3/sGBbPP/+8GDt2bOhncY4IwzAMw+QPnfVbOzSzxx57OF8mNDQ0OP+6vR4MwzAMw5QuseWIvPjii+Lll18WX/rSl0Tnzp2d0t2rr75aDBw4kOQNYRiGYRim+ImtaqZ9+/biwQcfFOPHjxf77LOPuPDCC8Xw4cPF008/LSorK+P6WIZhGIZhckRsHpH9999fzJs3L663ZxiGYRimCODuuwzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpAYbIgzDMAzDpEar9D6aYRiGsUV9Q0G8tHyDWLtxm+jWqa0Y07+LqCgvS/uwGCYUNkQYhmFyzqzFq8SUR5eKVTXbmn7Ws7qt+NlXh4pjh/VM9dgYJgwOzTAMw+TcCPn+315rZoSA1TXbnJ/j9wyTZdgQYRiGyXE4Bp6QguJ38mf4PV7HMFmFDRGGYZicgpwQryfEDcwP/B6vY5iswoYIwzBMTkFiqs3XMUwasCHCMAyTU1AdY/N1DJMGbIgwDMPkFJToojrGr0gXP8fv8TqGKWlDpK6uTowcOVKUlZWJhQsXJvGRDMMwRQ90QlCiC7zGiPwev2c9EUaUuiFy+eWXi169eiXxUQzDMCUFdEKmfWu06FHdPPyC7/Fz1hFhRKkLmj3xxBPi3//+t3jggQec/2cYhmHsAmPj6KE9WFmVySWxGiJr1qwRF110kXjooYdE+/bt4/wohmGYkgZGx9iBu6d9GAyTHUOkUCiI8847T3zve98TBx54oFixYgUplwRfktra2rgOj2EYhmGYPOaIXHHFFU7SadDXW2+9JW699VaxceNGMXnyZPJ7T506VVRXVzd99enTR/fwGIZhGIbJEWUFuC40+PTTT8X69esDXzNgwADxjW98Qzz66KOOYSKpr68XFRUV4uyzzxZ/+ctfSB4RGCM1NTWiqqpK5zAZhmEYhkkJrN9wKFDWb21DhMqHH37YLLSycuVKccwxx4j7779fHHzwwaJ3795WT4RhGIZhmGygs37HliPSt2/fZt937NjR+XfgwIEkI4RhGIZhmOKHlVUZhmEYhileHRFJv379nEoahmEYhmEYCXtEGIZhGIZJDTZEGIZhGIYp/tCMCTKUw8JmDMMwDJMf5LpNScnItCECQTTAwmYMwzAMkz+wjqOMNxUdERs0NDQ4+iOdOnVqJoxmAymW9tFHH7FGSYzwdU4Gvs7Jwdc6Gfg65/s6w7SAEdKrVy9RXl6eX48IDj5uzRFceB7k8cPXORn4OicHX+tk4Ouc3+sc5gmRcLIqwzAMwzCpwYYIwzAMwzCpUbKGSGVlpfjZz37m/MvEB1/nZODrnBx8rZOBr3PpXOdMJ6syDMMwDFPclKxHhGEYhmGY9GFDhGEYhmGY1GBDhGEYhmGY1GBDhGEYhmGY1ChJQ+T2228X/fr1E23bthUHH3yweOmll9I+pFwxdepUcdBBBzmKt926dROnnHKKePvtt5u9Ztu2beLiiy8Wu+++u+jYsaP42te+JtasWdPsNR9++KE44YQTRPv27Z33+dGPfiR27tyZ8Nnkh+uvv95RGL7kkkuafsbX2Q6ffPKJ+Na3vuVcx3bt2on9999fvPLKK02/R07/T3/6U9GzZ0/n9xMmTBDLli1r9h4bNmwQZ599tiMKtdtuu4kLL7xQbNq0KYWzyS719fXi6quvFv3793eu48CBA8U111zTrB8JX2t9nnnmGfHVr37VUTHFHPHQQw81+72ta7po0SJx2GGHOWsn1Fh/+ctfCisUSowZM2YU2rRpU/jzn/9cWLJkSeGiiy4q7LbbboU1a9akfWi54ZhjjilMnz69sHjx4sLChQsLxx9/fKFv376FTZs2Nb3me9/7XqFPnz6FuXPnFl555ZXCIYccUjj00EObfr9z587CsGHDChMmTCgsWLCg8Pjjjxe6du1amDx5ckpnlW1eeumlQr9+/QrDhw8vTJo0qennfJ2js2HDhsJee+1VOO+88wovvvhi4f333y/861//Krz77rtNr7n++usL1dXVhYceeqjw+uuvF0466aRC//79C1u3bm16zbHHHlsYMWJE4YUXXij85z//KQwaNKhw5plnpnRW2eS6664r7L777oXHHnussHz58sI//vGPQseOHQu33HJL02v4WuuD5/qqq64qPPjgg7DoCjNnzmz2exvXtKamptC9e/fC2Wef7cz99957b6Fdu3aFO+64oxCVkjNExowZU7j44oubvq+vry/06tWrMHXq1FSPK8+sXbvWGfxPP/208/3nn39eaN26tTPJSN58803nNfPnz296cMrLywurV69ues20adMKVVVVhbq6uhTOIrts3LixMHjw4MLs2bMLX/7yl5sMEb7Odvjxj39c+NKXvuT7+4aGhkKPHj0KN954Y9PPcO0rKyudyRgsXbrUue4vv/xy02ueeOKJQllZWeGTTz6J+QzywwknnFC44IILmv3stNNOcxY3wNc6Ol5DxNY1/d3vflfo3Llzs3kDz84+++wT+ZhLKjSzfft28eqrrzpuKXc/G3w/f/78VI8tz9TU1Dj/dunSxfkX13jHjh3NrvOQIUNE3759m64z/oX7u3v37k2vOeaYY5wGTEuWLEn8HLIMQi8IrbivJ+DrbIdHHnlEHHjggeLrX/+6E7oaNWqU+OMf/9j0++XLl4vVq1c3u87ooYGwrvs6w52N95Hg9ZhfXnzxxYTPKLsceuihYu7cueKdd95xvn/99dfFs88+K4477jjne77W9rF1TfGaww8/XLRp06bZXIKw/GeffRbpGDPd9M4269atc2KU7kkZ4Pu33nortePKM+iQjJyFcePGiWHDhjk/w6DHYMXA9l5n/E6+RnUf5O+YXcyYMUO89tpr4uWXX27xO77Odnj//ffFtGnTxGWXXSauvPJK51r/z//8j3Ntzz333KbrpLqO7usMI8ZNq1atHOOcr/MXXHHFFY4RDIO5oqLCmY+vu+46JzcB8LW2j61rin+R2+N9D/m7zp07Gx9jSRkiTDy79cWLFzu7GsYuaMs9adIkMXv2bCc5jInPmMZO8Be/+IXzPTwiGNO///3vHUOEscd9990n7r77bnHPPfeI/fbbTyxcuNDZyCDJkq916VJSoZmuXbs6Vri3qgDf9+jRI7XjyisTJ04Ujz32mHjyySdF7969m36Oa4kw2Oeff+57nfGv6j7I3zG7Qi9r164Vo0ePdnYn+Hr66afFb3/7W+f/sRvh6xwdVBIMHTq02c/23Xdfp9rIfZ2C5g38i3vlBpVJqETg6/wFqNiCV+SMM85wQobnnHOOuPTSS51KPMDX2j62rmmcc0lJGSJwtR5wwAFOjNK9G8L3Y8eOTfXY8gTyoWCEzJw5U8ybN6+Fuw7XuHXr1s2uM+KImNjldca/b7zxRrPBj50/Sse8i0KpMn78eOcaYdcov7Bzhxtb/j9f5+ggrOgtP0cOw1577eX8P8Y3Jlr3dUZ4AbFz93WGQQjjUYJnA/MLYvHMLrZs2eLkHbjB5hDXCfC1to+ta4rXoEwYeWnuuWSfffaJFJZxKJRg+S6yhe+66y4nU/g73/mOU77rripggvn+97/vlII99dRThVWrVjV9bdmypVlZKUp6582b55SVjh071vnylpV+5StfcUqAZ82aVdhjjz24rDQEd9UM4OtspzS6VatWTmnpsmXLCnfffXehffv2hb/97W/Nyh8xTzz88MOFRYsWFU4++WRl+eOoUaOcEuBnn33WqXQq5ZJSFeeee25hzz33bCrfRbkpyskvv/zyptfwtTarrEN5Pr6wrP/mN79x/v+DDz6wdk1RaYPy3XPOOccp38VaiueEy3cNufXWW53JG3oiKOdF3TRDBwNd9QVtEQkG+A9+8AOn3AuD9dRTT3WMFTcrVqwoHHfccU4tOiajH/7wh4UdO3akcEb5NUT4Otvh0UcfdQw2bFKGDBlS+MMf/tDs9yiBvPrqq52JGK8ZP3584e233272mvXr1zsTN3QxUB59/vnnOwsE8wW1tbXO+MX827Zt28KAAQMc/Qt3SShfa32efPJJ5ZwMw8/mNYUGCUrd8R4wKGHg2KAM/4nmU2EYhmEYhjGjpHJEGIZhGIbJFmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAyTGmyIMAzDMAwj0uL/A9Q5mMKUmDBnAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.scatter(x=np.arange(arr2.size), y=arr2)" ] }, { "cell_type": "code", "execution_count": 30, "id": "da1966ce-c17e-4602-8d19-2bcffeb8f9f4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(100,)" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr2.shape" ] }, { "cell_type": "code", "execution_count": 31, "id": "3d76e615-dd1c-4fa2-a1f8-71c07893fb79", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "100" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr2.size" ] }, { "cell_type": "code", "execution_count": 32, "id": "8c73f1c7-4b02-40f4-b741-16cc3f6c4c28", "metadata": {}, "outputs": [], "source": [ "arr3 = np.zeros((2,100))" ] }, { "cell_type": "code", "execution_count": 35, "id": "3dfeb61d-2143-4d49-91f8-5c3c8aa34c5d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2, 100)" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr3.shape" ] }, { "cell_type": "code", "execution_count": 36, "id": "f2808445-9561-43d6-99b8-43df8a50145c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "200" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr3.size" ] }, { "cell_type": "code", "execution_count": 40, "id": "f16dbdaf-329d-4cbb-80d1-1c54ad096000", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('../module_07/gapminder.tsv', sep='\\t')" ] }, { "cell_type": "code", "execution_count": 43, "id": "1409925e-8b05-4403-ab5a-5e2a9397371b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 False\n", "1 False\n", "2 False\n", "3 False\n", "4 False\n", " ... \n", "1699 True\n", "1700 True\n", "1701 True\n", "1702 True\n", "1703 True\n", "Name: continent, Length: 1704, dtype: bool" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['continent'] == 'Africa'" ] }, { "cell_type": "code", "execution_count": 44, "id": "2b0e7528-82b5-4a04-97e8-04bf56671b4b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1704, 6)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": 45, "id": "35f4218c-f955-434e-a50a-ab08e254a0b5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countrycontinentyearlifeExppopgdpPercap
24AlgeriaAfrica195243.07792795252449.008185
25AlgeriaAfrica195745.685102708563013.976023
26AlgeriaAfrica196248.303110009482550.816880
27AlgeriaAfrica196751.407127604993246.991771
28AlgeriaAfrica197254.518147607874182.663766
.....................
1699ZimbabweAfrica198762.3519216418706.157306
1700ZimbabweAfrica199260.37710704340693.420786
1701ZimbabweAfrica199746.80911404948792.449960
1702ZimbabweAfrica200239.98911926563672.038623
1703ZimbabweAfrica200743.48712311143469.709298
\n", "

624 rows × 6 columns

\n", "
" ], "text/plain": [ " country continent year lifeExp pop gdpPercap\n", "24 Algeria Africa 1952 43.077 9279525 2449.008185\n", "25 Algeria Africa 1957 45.685 10270856 3013.976023\n", "26 Algeria Africa 1962 48.303 11000948 2550.816880\n", "27 Algeria Africa 1967 51.407 12760499 3246.991771\n", "28 Algeria Africa 1972 54.518 14760787 4182.663766\n", "... ... ... ... ... ... ...\n", "1699 Zimbabwe Africa 1987 62.351 9216418 706.157306\n", "1700 Zimbabwe Africa 1992 60.377 10704340 693.420786\n", "1701 Zimbabwe Africa 1997 46.809 11404948 792.449960\n", "1702 Zimbabwe Africa 2002 39.989 11926563 672.038623\n", "1703 Zimbabwe Africa 2007 43.487 12311143 469.709298\n", "\n", "[624 rows x 6 columns]" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df['continent'] == 'Africa']" ] }, { "cell_type": "code", "execution_count": 46, "id": "9b755679-3122-499d-8c99-e8058e303926", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countrycontinentyearlifeExppopgdpPercap
4AfghanistanAsia197236.08813079460739.981106
5AfghanistanAsia197738.43814880372786.113360
6AfghanistanAsia198239.85412881816978.011439
7AfghanistanAsia198740.82213867957852.395945
8AfghanistanAsia199241.67416317921649.341395
.....................
1699ZimbabweAfrica198762.3519216418706.157306
1700ZimbabweAfrica199260.37710704340693.420786
1701ZimbabweAfrica199746.80911404948792.449960
1702ZimbabweAfrica200239.98911926563672.038623
1703ZimbabweAfrica200743.48712311143469.709298
\n", "

1136 rows × 6 columns

\n", "
" ], "text/plain": [ " country continent year lifeExp pop gdpPercap\n", "4 Afghanistan Asia 1972 36.088 13079460 739.981106\n", "5 Afghanistan Asia 1977 38.438 14880372 786.113360\n", "6 Afghanistan Asia 1982 39.854 12881816 978.011439\n", "7 Afghanistan Asia 1987 40.822 13867957 852.395945\n", "8 Afghanistan Asia 1992 41.674 16317921 649.341395\n", "... ... ... ... ... ... ...\n", "1699 Zimbabwe Africa 1987 62.351 9216418 706.157306\n", "1700 Zimbabwe Africa 1992 60.377 10704340 693.420786\n", "1701 Zimbabwe Africa 1997 46.809 11404948 792.449960\n", "1702 Zimbabwe Africa 2002 39.989 11926563 672.038623\n", "1703 Zimbabwe Africa 2007 43.487 12311143 469.709298\n", "\n", "[1136 rows x 6 columns]" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df['year'] > 1970]" ] }, { "cell_type": "code", "execution_count": 47, "id": "3f4b4cd7-1a19-4358-8978-5d28470dc9d2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countrycontinentyearlifeExppopgdpPercap
24AlgeriaAfrica195243.07792795252449.008185
25AlgeriaAfrica195745.685102708563013.976023
26AlgeriaAfrica196248.303110009482550.816880
27AlgeriaAfrica196751.407127604993246.991771
28AlgeriaAfrica197254.518147607874182.663766
.....................
1699ZimbabweAfrica198762.3519216418706.157306
1700ZimbabweAfrica199260.37710704340693.420786
1701ZimbabweAfrica199746.80911404948792.449960
1702ZimbabweAfrica200239.98911926563672.038623
1703ZimbabweAfrica200743.48712311143469.709298
\n", "

624 rows × 6 columns

\n", "
" ], "text/plain": [ " country continent year lifeExp pop gdpPercap\n", "24 Algeria Africa 1952 43.077 9279525 2449.008185\n", "25 Algeria Africa 1957 45.685 10270856 3013.976023\n", "26 Algeria Africa 1962 48.303 11000948 2550.816880\n", "27 Algeria Africa 1967 51.407 12760499 3246.991771\n", "28 Algeria Africa 1972 54.518 14760787 4182.663766\n", "... ... ... ... ... ... ...\n", "1699 Zimbabwe Africa 1987 62.351 9216418 706.157306\n", "1700 Zimbabwe Africa 1992 60.377 10704340 693.420786\n", "1701 Zimbabwe Africa 1997 46.809 11404948 792.449960\n", "1702 Zimbabwe Africa 2002 39.989 11926563 672.038623\n", "1703 Zimbabwe Africa 2007 43.487 12311143 469.709298\n", "\n", "[624 rows x 6 columns]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.query(\"continent == 'Africa'\")" ] }, { "cell_type": "code", "execution_count": 49, "id": "d1231c66-58f1-4aee-870c-9cf7b90162e0", "metadata": {}, "outputs": [], "source": [ "queries = [\"year > 1970\", \"lifeExp == 36.088\"]\n", "\n", "dfs = list()\n", "for query in queries:\n", " dfs.append(df.query(query))" ] }, { "cell_type": "code", "execution_count": 53, "id": "84ce1698-18db-4869-b99a-733b758802f0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countrycontinentyearlifeExppopgdpPercap
4AfghanistanAsia197236.08813079460739.981106
\n", "
" ], "text/plain": [ " country continent year lifeExp pop gdpPercap\n", "4 Afghanistan Asia 1972 36.088 13079460 739.981106" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dfs[1]" ] }, { "cell_type": "code", "execution_count": 57, "id": "fc05594b-407b-42de-84e3-17a25f3b6917", "metadata": {}, "outputs": [], "source": [ "df_new = df.rename(columns={\"lifeExp\": \"life_expectancy\"})" ] }, { "cell_type": "code", "execution_count": 58, "id": "7d87f376-c5e2-44af-8041-d8a57ded260f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countrycontinentyearlife_expectancypopgdpPercap
0AfghanistanAsia195228.8018425333779.445314
1AfghanistanAsia195730.3329240934820.853030
2AfghanistanAsia196231.99710267083853.100710
3AfghanistanAsia196734.02011537966836.197138
4AfghanistanAsia197236.08813079460739.981106
.....................
1699ZimbabweAfrica198762.3519216418706.157306
1700ZimbabweAfrica199260.37710704340693.420786
1701ZimbabweAfrica199746.80911404948792.449960
1702ZimbabweAfrica200239.98911926563672.038623
1703ZimbabweAfrica200743.48712311143469.709298
\n", "

1704 rows × 6 columns

\n", "
" ], "text/plain": [ " country continent year life_expectancy pop gdpPercap\n", "0 Afghanistan Asia 1952 28.801 8425333 779.445314\n", "1 Afghanistan Asia 1957 30.332 9240934 820.853030\n", "2 Afghanistan Asia 1962 31.997 10267083 853.100710\n", "3 Afghanistan Asia 1967 34.020 11537966 836.197138\n", "4 Afghanistan Asia 1972 36.088 13079460 739.981106\n", "... ... ... ... ... ... ...\n", "1699 Zimbabwe Africa 1987 62.351 9216418 706.157306\n", "1700 Zimbabwe Africa 1992 60.377 10704340 693.420786\n", "1701 Zimbabwe Africa 1997 46.809 11404948 792.449960\n", "1702 Zimbabwe Africa 2002 39.989 11926563 672.038623\n", "1703 Zimbabwe Africa 2007 43.487 12311143 469.709298\n", "\n", "[1704 rows x 6 columns]" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_new" ] }, { "cell_type": "code", "execution_count": 59, "id": "15d7f2e8-8e6b-48f1-80d7-63b38278c35e", "metadata": {}, "outputs": [], "source": [ "df.rename(columns={\"lifeExp\": \"life_expectancy\"}, inplace=True)" ] }, { "cell_type": "code", "execution_count": 60, "id": "75304f93-4976-4452-8fbd-7f74e4622023", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countrycontinentyearlife_expectancypopgdpPercap
0AfghanistanAsia195228.8018425333779.445314
1AfghanistanAsia195730.3329240934820.853030
2AfghanistanAsia196231.99710267083853.100710
3AfghanistanAsia196734.02011537966836.197138
4AfghanistanAsia197236.08813079460739.981106
.....................
1699ZimbabweAfrica198762.3519216418706.157306
1700ZimbabweAfrica199260.37710704340693.420786
1701ZimbabweAfrica199746.80911404948792.449960
1702ZimbabweAfrica200239.98911926563672.038623
1703ZimbabweAfrica200743.48712311143469.709298
\n", "

1704 rows × 6 columns

\n", "
" ], "text/plain": [ " country continent year life_expectancy pop gdpPercap\n", "0 Afghanistan Asia 1952 28.801 8425333 779.445314\n", "1 Afghanistan Asia 1957 30.332 9240934 820.853030\n", "2 Afghanistan Asia 1962 31.997 10267083 853.100710\n", "3 Afghanistan Asia 1967 34.020 11537966 836.197138\n", "4 Afghanistan Asia 1972 36.088 13079460 739.981106\n", "... ... ... ... ... ... ...\n", "1699 Zimbabwe Africa 1987 62.351 9216418 706.157306\n", "1700 Zimbabwe Africa 1992 60.377 10704340 693.420786\n", "1701 Zimbabwe Africa 1997 46.809 11404948 792.449960\n", "1702 Zimbabwe Africa 2002 39.989 11926563 672.038623\n", "1703 Zimbabwe Africa 2007 43.487 12311143 469.709298\n", "\n", "[1704 rows x 6 columns]" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 63, "id": "358e7079-b73f-4c57-95b3-12ce4c5544f5", "metadata": {}, "outputs": [], "source": [ "df.to_csv('gapminder_modified.tsv', sep='\\t')" ] }, { "cell_type": "code", "execution_count": 65, "id": "567b454b-4743-48fc-a797-690a9ae51ae6", "metadata": {}, "outputs": [], "source": [ "df_africa = df[df['continent'] == 'Africa']" ] }, { "cell_type": "code", "execution_count": 66, "id": "8177be2e-68d4-47b6-8a34-2955bc1290fe", "metadata": {}, "outputs": [], "source": [ "df_africa.to_csv('gapminder_africa.tsv', sep='\\t')" ] }, { "cell_type": "code", "execution_count": 67, "id": "8727c4fa-46eb-4d98-bd8c-0cd6a254d99e", "metadata": {}, "outputs": [], "source": [ "df_africa.to_csv('gapminder_africa.csv')" ] }, { "cell_type": "code", "execution_count": 73, "id": "ea6a9da5-5b82-48b0-b264-ab54613331ac", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
life_expectancygdpPercap
yearcountry
1952Afghanistan28.801779.445314
Albania55.2301601.056136
Algeria43.0772449.008185
Angola30.0153520.610273
Argentina62.4855911.315053
............
2007Vietnam74.2492441.576404
West Bank and Gaza73.4223025.349798
Yemen, Rep.62.6982280.769906
Zambia42.3841271.211593
Zimbabwe43.487469.709298
\n", "

1704 rows × 2 columns

\n", "
" ], "text/plain": [ " life_expectancy gdpPercap\n", "year country \n", "1952 Afghanistan 28.801 779.445314\n", " Albania 55.230 1601.056136\n", " Algeria 43.077 2449.008185\n", " Angola 30.015 3520.610273\n", " Argentina 62.485 5911.315053\n", "... ... ...\n", "2007 Vietnam 74.249 2441.576404\n", " West Bank and Gaza 73.422 3025.349798\n", " Yemen, Rep. 62.698 2280.769906\n", " Zambia 42.384 1271.211593\n", " Zimbabwe 43.487 469.709298\n", "\n", "[1704 rows x 2 columns]" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby(['year', 'country']).agg({'life_expectancy': 'mean', 'gdpPercap': 'mean'})" ] }, { "cell_type": "code", "execution_count": 74, "id": "9e4001c6-f807-4df6-8d0d-1f656146688c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
life_expectancygdpPercap
yearcountry
1952Afghanistan28.801779.445314
Albania55.2301601.056136
Algeria43.0772449.008185
Angola30.0153520.610273
Argentina62.4855911.315053
............
2007Vietnam74.2492441.576404
West Bank and Gaza73.4223025.349798
Yemen, Rep.62.6982280.769906
Zambia42.3841271.211593
Zimbabwe43.487469.709298
\n", "

1704 rows × 2 columns

\n", "
" ], "text/plain": [ " life_expectancy gdpPercap\n", "year country \n", "1952 Afghanistan 28.801 779.445314\n", " Albania 55.230 1601.056136\n", " Algeria 43.077 2449.008185\n", " Angola 30.015 3520.610273\n", " Argentina 62.485 5911.315053\n", "... ... ...\n", "2007 Vietnam 74.249 2441.576404\n", " West Bank and Gaza 73.422 3025.349798\n", " Yemen, Rep. 62.698 2280.769906\n", " Zambia 42.384 1271.211593\n", " Zimbabwe 43.487 469.709298\n", "\n", "[1704 rows x 2 columns]" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby(['year', 'country'])[['life_expectancy', 'gdpPercap']].mean()" ] }, { "cell_type": "code", "execution_count": 75, "id": "32696f56-cb72-4b44-bc52-c0d991c4e74c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
life_expectancygdpPercap
yearcontinent
1952Africa39.1355001252.572466
Americas53.2798404079.062552
Asia46.3143945195.484004
Europe64.4085005661.057435
Oceania69.25500010298.085650
1957Africa41.2663461385.236062
Americas55.9602804616.043733
Asia49.3185445787.732940
Europe66.7030676963.012816
Oceania70.29500011598.522455
1962Africa43.3194421598.078825
Americas58.3987604901.541870
Asia51.5632235729.369625
Europe68.5392338365.486814
Oceania71.08500012696.452430
1967Africa45.3345382050.363801
Americas60.4109205668.253496
Asia54.6636405971.173374
Europe69.73760010143.823757
Oceania71.31000014495.021790
1972Africa47.4509422339.615674
Americas62.3949206491.334139
Asia57.3192698187.468699
Europe70.77503312479.575246
Oceania71.91000016417.333380
1977Africa49.5804232585.938508
Americas64.3915607352.007126
Asia59.6105567791.314020
Europe71.93776714283.979110
Oceania72.85500017283.957605
1982Africa51.5928652481.592960
Americas66.2288407506.737088
Asia62.6179397434.135157
Europe72.80640015617.896551
Oceania74.29000018554.709840
1987Africa53.3447882282.668991
Americas68.0907207793.400261
Asia64.8511827608.226508
Europe73.64216717214.310727
Oceania75.32000020448.040160
1992Africa53.6295772281.810333
Americas69.5683608044.934406
Asia66.5372128639.690248
Europe74.44010017061.568084
Oceania76.94500020894.045885
1997Africa53.5982692378.759555
Americas71.1504808889.300863
Asia68.0205159834.093295
Europe75.50516719076.781802
Oceania78.19000024024.175170
2002Africa53.3252312599.385159
Americas72.4220409287.677107
Asia69.23387910174.090397
Europe76.70060021711.732422
Oceania79.74000026938.778040
2007Africa54.8060383089.032605
Americas73.60812011003.031625
Asia70.72848512473.026870
Europe77.64860025054.481636
Oceania80.71950029810.188275
\n", "
" ], "text/plain": [ " life_expectancy gdpPercap\n", "year continent \n", "1952 Africa 39.135500 1252.572466\n", " Americas 53.279840 4079.062552\n", " Asia 46.314394 5195.484004\n", " Europe 64.408500 5661.057435\n", " Oceania 69.255000 10298.085650\n", "1957 Africa 41.266346 1385.236062\n", " Americas 55.960280 4616.043733\n", " Asia 49.318544 5787.732940\n", " Europe 66.703067 6963.012816\n", " Oceania 70.295000 11598.522455\n", "1962 Africa 43.319442 1598.078825\n", " Americas 58.398760 4901.541870\n", " Asia 51.563223 5729.369625\n", " Europe 68.539233 8365.486814\n", " Oceania 71.085000 12696.452430\n", "1967 Africa 45.334538 2050.363801\n", " Americas 60.410920 5668.253496\n", " Asia 54.663640 5971.173374\n", " Europe 69.737600 10143.823757\n", " Oceania 71.310000 14495.021790\n", "1972 Africa 47.450942 2339.615674\n", " Americas 62.394920 6491.334139\n", " Asia 57.319269 8187.468699\n", " Europe 70.775033 12479.575246\n", " Oceania 71.910000 16417.333380\n", "1977 Africa 49.580423 2585.938508\n", " Americas 64.391560 7352.007126\n", " Asia 59.610556 7791.314020\n", " Europe 71.937767 14283.979110\n", " Oceania 72.855000 17283.957605\n", "1982 Africa 51.592865 2481.592960\n", " Americas 66.228840 7506.737088\n", " Asia 62.617939 7434.135157\n", " Europe 72.806400 15617.896551\n", " Oceania 74.290000 18554.709840\n", "1987 Africa 53.344788 2282.668991\n", " Americas 68.090720 7793.400261\n", " Asia 64.851182 7608.226508\n", " Europe 73.642167 17214.310727\n", " Oceania 75.320000 20448.040160\n", "1992 Africa 53.629577 2281.810333\n", " Americas 69.568360 8044.934406\n", " Asia 66.537212 8639.690248\n", " Europe 74.440100 17061.568084\n", " Oceania 76.945000 20894.045885\n", "1997 Africa 53.598269 2378.759555\n", " Americas 71.150480 8889.300863\n", " Asia 68.020515 9834.093295\n", " Europe 75.505167 19076.781802\n", " Oceania 78.190000 24024.175170\n", "2002 Africa 53.325231 2599.385159\n", " Americas 72.422040 9287.677107\n", " Asia 69.233879 10174.090397\n", " Europe 76.700600 21711.732422\n", " Oceania 79.740000 26938.778040\n", "2007 Africa 54.806038 3089.032605\n", " Americas 73.608120 11003.031625\n", " Asia 70.728485 12473.026870\n", " Europe 77.648600 25054.481636\n", " Oceania 80.719500 29810.188275" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby(['year', 'continent'])[['life_expectancy', 'gdpPercap']].mean()" ] }, { "cell_type": "code", "execution_count": 76, "id": "917e83ce-60c4-47b6-9315-1799d8797a61", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
life_expectancygdpPercap
yearcontinent
1952Africa39.1355001252.572466
Americas53.2798404079.062552
Asia46.3143945195.484004
Europe64.4085005661.057435
Oceania69.25500010298.085650
1957Africa41.2663461385.236062
Americas55.9602804616.043733
Asia49.3185445787.732940
Europe66.7030676963.012816
Oceania70.29500011598.522455
1962Africa43.3194421598.078825
Americas58.3987604901.541870
Asia51.5632235729.369625
Europe68.5392338365.486814
Oceania71.08500012696.452430
1967Africa45.3345382050.363801
Americas60.4109205668.253496
Asia54.6636405971.173374
Europe69.73760010143.823757
Oceania71.31000014495.021790
1972Africa47.4509422339.615674
Americas62.3949206491.334139
Asia57.3192698187.468699
Europe70.77503312479.575246
Oceania71.91000016417.333380
1977Africa49.5804232585.938508
Americas64.3915607352.007126
Asia59.6105567791.314020
Europe71.93776714283.979110
Oceania72.85500017283.957605
1982Africa51.5928652481.592960
Americas66.2288407506.737088
Asia62.6179397434.135157
Europe72.80640015617.896551
Oceania74.29000018554.709840
1987Africa53.3447882282.668991
Americas68.0907207793.400261
Asia64.8511827608.226508
Europe73.64216717214.310727
Oceania75.32000020448.040160
1992Africa53.6295772281.810333
Americas69.5683608044.934406
Asia66.5372128639.690248
Europe74.44010017061.568084
Oceania76.94500020894.045885
1997Africa53.5982692378.759555
Americas71.1504808889.300863
Asia68.0205159834.093295
Europe75.50516719076.781802
Oceania78.19000024024.175170
2002Africa53.3252312599.385159
Americas72.4220409287.677107
Asia69.23387910174.090397
Europe76.70060021711.732422
Oceania79.74000026938.778040
2007Africa54.8060383089.032605
Americas73.60812011003.031625
Asia70.72848512473.026870
Europe77.64860025054.481636
Oceania80.71950029810.188275
\n", "
" ], "text/plain": [ " life_expectancy gdpPercap\n", "year continent \n", "1952 Africa 39.135500 1252.572466\n", " Americas 53.279840 4079.062552\n", " Asia 46.314394 5195.484004\n", " Europe 64.408500 5661.057435\n", " Oceania 69.255000 10298.085650\n", "1957 Africa 41.266346 1385.236062\n", " Americas 55.960280 4616.043733\n", " Asia 49.318544 5787.732940\n", " Europe 66.703067 6963.012816\n", " Oceania 70.295000 11598.522455\n", "1962 Africa 43.319442 1598.078825\n", " Americas 58.398760 4901.541870\n", " Asia 51.563223 5729.369625\n", " Europe 68.539233 8365.486814\n", " Oceania 71.085000 12696.452430\n", "1967 Africa 45.334538 2050.363801\n", " Americas 60.410920 5668.253496\n", " Asia 54.663640 5971.173374\n", " Europe 69.737600 10143.823757\n", " Oceania 71.310000 14495.021790\n", "1972 Africa 47.450942 2339.615674\n", " Americas 62.394920 6491.334139\n", " Asia 57.319269 8187.468699\n", " Europe 70.775033 12479.575246\n", " Oceania 71.910000 16417.333380\n", "1977 Africa 49.580423 2585.938508\n", " Americas 64.391560 7352.007126\n", " Asia 59.610556 7791.314020\n", " Europe 71.937767 14283.979110\n", " Oceania 72.855000 17283.957605\n", "1982 Africa 51.592865 2481.592960\n", " Americas 66.228840 7506.737088\n", " Asia 62.617939 7434.135157\n", " Europe 72.806400 15617.896551\n", " Oceania 74.290000 18554.709840\n", "1987 Africa 53.344788 2282.668991\n", " Americas 68.090720 7793.400261\n", " Asia 64.851182 7608.226508\n", " Europe 73.642167 17214.310727\n", " Oceania 75.320000 20448.040160\n", "1992 Africa 53.629577 2281.810333\n", " Americas 69.568360 8044.934406\n", " Asia 66.537212 8639.690248\n", " Europe 74.440100 17061.568084\n", " Oceania 76.945000 20894.045885\n", "1997 Africa 53.598269 2378.759555\n", " Americas 71.150480 8889.300863\n", " Asia 68.020515 9834.093295\n", " Europe 75.505167 19076.781802\n", " Oceania 78.190000 24024.175170\n", "2002 Africa 53.325231 2599.385159\n", " Americas 72.422040 9287.677107\n", " Asia 69.233879 10174.090397\n", " Europe 76.700600 21711.732422\n", " Oceania 79.740000 26938.778040\n", "2007 Africa 54.806038 3089.032605\n", " Americas 73.608120 11003.031625\n", " Asia 70.728485 12473.026870\n", " Europe 77.648600 25054.481636\n", " Oceania 80.719500 29810.188275" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby(['year', 'continent']).agg({'life_expectancy': 'mean', 'gdpPercap': 'mean'})" ] }, { "cell_type": "code", "execution_count": 78, "id": "03bba6a3-32d6-4fd9-b5b9-42d62ffa0c6c", "metadata": {}, "outputs": [], "source": [ "grouped = df.groupby(['year'])[['life_expectancy', 'gdpPercap']].mean()" ] }, { "cell_type": "code", "execution_count": 86, "id": "92a248c0-0455-4b32-b226-80f1e67f499a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHVCAYAAAB8NLYkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgTRJREFUeJzt3Qd4FNXXBvA3vZIAgUAgJBB6701AaVJsNOkiIKAgKOWvIJ+IWBEQFRsIIqCCFBVEEJBeJPTeSyhJIAQS0nuy33Nu2HUDCRLYZLa8v+dZM7szmdys7OTMveeea6fT6XQgIiIiIotnr3UDiIiIiMg0GNgRERERWQkGdkRERERWgoEdERERkZVgYEdERERkJRjYEREREVkJBnZEREREVoKBHREREZGVYGBHREREZCUctW6AOcrKysK1a9dQpEgR2NnZad0cIrpDFsqJj49HmTJlYG/P+1JT47WPyAqufbKkGOUUGhoqy6zxwQcfZvqQz6i52L59u+6ZZ57R+fn5qbatXLnSsC8tLU03fvx4Xa1atXTu7u7qmAEDBujCw8NznCMqKkrXr18/XZEiRXTe3t66l156SRcfH5/jmKNHj+patmypc3Fx0fn7++umTZt2T1uWL1+uq1q1qjpGfubatWvz9bvw2scHH7D4ax977HIhd6siNDQUXl5eWjeHiO6Ii4tDuXLlDJ9Rc5CYmIi6devipZdeQvfu3XPsS0pKwqFDh/DOO++oY27fvo3Ro0fjueeew4EDBwzH9e/fH9evX8fGjRuRnp6OwYMH4+WXX8aSJUsMv3eHDh3Qvn17zJkzB8ePH1c/r2jRouo4sXv3bvTt2xdTp07FM888o763a9eu6ufXqlXrgX4XXvuILP/aZyfRXaG0ysLeQG9vb8TGxvLiRmRGzP2zKcOXK1euVAFVXvbv348mTZrgypUrCAgIwOnTp1GjRg31eqNGjdQx69evx1NPPYWwsDA19DJ79my8/fbbiIiIgLOzszrmrbfewqpVq3DmzBn1vHfv3irIXLNmjeFnNWvWDPXq1VPBoDW8v0S2Ki4fn00mqRARFSK5MEsAKL1tIjg4WG3rgzohPXOSR7N3717DMY8//rghqBMdO3bE2bNnVS+g/hj5PmNyjLyel9TUVPUHw/hBRJaNgR0RUSFJSUnBhAkT1JCp/q5beuF8fX1zHOfo6IjixYurffpjSpUqleMY/fP/Oka/PzcybCu9APqHDPUQkWXTPLALDw/HCy+8AB8fH7i5uaF27do5ck/kzja3x4wZM/I855QpU+45vlq1aoX0GxER3Uty53r16qVmt8nQqjmYOHGi6kHUPyS3jogsm6aTJ2QIoUWLFmjTpg3WrVuHkiVL4vz58yhWrJjhGEkoNibHDRkyBD169LjvuWvWrIlNmzbluAMmItIyqJO8ui1btuTIkSldujQiIyNzHJ+RkYHo6Gi1T3/MjRs3chyjf/5fx+j358bFxUU9iMh6aBrtTJs2TXX9L1iwwPBahQoVchxz90Xpjz/+UIFgUFDQfc8tgdz9LmhERIUZ1MlN69atW9XohLHmzZsjJiYGBw8eRMOGDdVrEvxJTbmmTZsajpHJE3IuJycn9ZrMoK1atarhRliO2bx5M8aMGWM4txwjrxOR7dB0KHb16tUqYbhnz54qx6R+/fqYN29ensfL3efatWtVj91/kYuozCaTAFBKCVy9ejXPY5lATEQPKyEhAUeOHFEPcenSJbUt1xwJxJ5//nmVXrJ48WJkZmaqnDd5pKWlqeOrV6+OTp06YdiwYdi3bx/++ecfjBo1Cn369FHXMNGvXz81cUKufSdPnsSyZcswa9YsjBs3ztAOKaMis2lnzpypZspKSor8XDkXEdkQnYakiKY8Jk6cqDt06JDuu+++07m6uuoWLlyY6/FSkLNYsWK65OTk+573r7/+UoU6paDn+vXrdc2bN9cFBATo4uLicj3+3XffzbUQYGxsrEl+TyIyDflMmttnc+vWrblePwYOHKi7dOlSnoVG5fuMCxT37dtX5+npqfPy8tINHjz4vgWKy5Ytq/vkk0/uaYtc96pUqaJzdnbW1axZM98Fis3x/SUiXb4+m5rWsZM7UOmxk8Kaeq+//rqq55TbFH2ZAPHkk0/iq6++ytfPkWGOwMBAfPbZZ7n29kmPnTzuLgTIWk5E5oV11goW318iy/9sappj5+fnpwpzGpNhid9+++2eY3fu3KlqNskQRH5JjagqVargwoULue5nAjERERFZA01z7GRGrARrxs6dO6d61+42f/58lVgsy/I8TA7MxYsXVSBJREREZK00DezGjh2LPXv24OOPP1a9abK24dy5czFy5Mh7uiBXrFiBoUOH5nqedu3a4euvvzY8f+ONN7B9+3ZcvnxZDfN269YNDg4OqigoERERkbXSdCi2cePGal1FKZL5/vvvq1InX3zxhZrFamzp0qWqqGdegZn0xt26dcvwXNZXlGOjoqJUbbyWLVuqAFK2iYiIiKyVppMnzBUTiInMEz+bBYvvL5HlfzY1X1KMiIiIiEyDgR0RaepCZAIm/3ECSWkZWjeFiKjQHLp6G99svYDjYbEmPS8XUCUizaRlZGH00sM4eS0O6ZlZmNq9jtZNIiIqFOtPRGDujhCE3U7GVP/aJjsve+yISDMzN55VQV0xdyeMaV9F6+YQERWa/Zej1dfG5bPXezYVBnZEpIndF2+pu1XxSY86KOXlqnWTiIgKRUp6Jk6EZw/BNi5f3KTnZmBHRIUuJikN45YdhczJ79ukHDrWLK11k4iICs3R0BikZ+pQyssF/sXcTHpuBnZEVKikwtL/rTyOiLgUBJXwwDvP5FxWkIjI2h24clt9bVS+OOzs7Ex6bgZ2RFSofj0Yhr+OR8DR3g5f9KkHd2fO4SIiG82vCzRtfp1gYEdEheZKVCKmrD6ptsc+WQV1/Itq3SQiokKVmaXDQaMeO1NjYEdEhULKmYxeegSJaZloUqE4hj9RUesmEREVunM34hGfkgFPF0dUK13E5OdnYEdEheKrLRdwJDQGRVwd8XnvenCwN21eCRGRJThwZxi2fkBRODqYPgxjYEdEBe7glWh8veW82v6oW22ULWraWWBERJZi/+XbBVLmRI+BHREVqPiUdDUEm6UDutcvi+fqltG6SUREmvfYNTJxYWI9BnZEVKDe/eOkWjJHajW916Wm1s0hItJMeEwyrsWmqKoA9coVzOQxBnZEVGBWH72G3w+HQ9LpvuhdD0VcnbRuEhGR5r11Nct4FVipJwZ2RFRgd6Zvrzyutke1rVwg0/qJiCyxfl2jArweMrAjogKp0zR22RE1pV+GG15vW0nrJhERae6AYeJEweTXCQZ2RGRy3+24iH2XouHh7IBZfeoVyJR+IiJLEpuUjrM34tV2w0D22BGRhTgWFoPP/j6ntt99riYCfTy0bhIRkeYOXb0NnQ6oUMIDJYu4FNjPYWBHRCaTlJaBMUuPICNLh6dql0bPhv5aN4mIyLzy6wpgfVhjDOyIyGQ+WHMaIbcSUdrLFR93qw07O64uQUSUM7+uYCeSMbAjIpPYcDICv+y7ConlPutVF0XdnbVuEhGRWUjNyMSRsJgCLUysx8COiB7ZjbgUvPXbMbX9cqsgPFaphNZNIiIyGyfCY5GWkQUfD2eVY1eQGNgR0SPJytLhjRVHcTspXRXdHNehitZNIiIyy/VhpbeuoFNUGNgR0SNZsPsydp6/BRdHe1XaxMXRQesmERGZ5YoTBZ1fJxjYEdFDO309DtPWnVHbk56pgUq+RbRuEhGR2Y1qHLii77FjYEdEZiolPROjlx5GWmYW2lXzxQtNA7RuEhGR2bl4MwExSelwdbJX6SoFjYEdET2UT9adwbkbCSjh6Yxpz9dhaRMiovvk19UvVwxOhbAKDwM7Isq3jaduYOHuy2p7Rs+6KOFZcFXUiYgs2YEr+vy6gi1zoudYKD+FiKxCZpYOX2+5gFmbs5cMG9g8EG2q+mrdLCIisy9M3KgQ8usEe+yI6IFcj01Gv3l78Pmmc8jSAd3ql8XEp6rD1u3YsQPPPvssypQpo4ajV61alWP/77//jg4dOsDHx0ftP3LkyD3nSElJwciRI9Uxnp6e6NGjB27cuJHjmKtXr+Lpp5+Gu7s7fH198eabbyIjIyPHMdu2bUODBg3g4uKCSpUqYeHChQX0WxPRg9b4vBqdBHs7oH5AURQGBnZE9EBDr51n7cTeS9Fwd3bAzJ518XnvenB1YmmTxMRE1K1bF998802e+1u2bIlp06bleY6xY8fizz//xIoVK7B9+3Zcu3YN3bt3N+zPzMxUQV1aWhp2796NRYsWqaBt8uTJhmMuXbqkjmnTpo0KHseMGYOhQ4diw4YNJv6NiSi/vXXV/bxQxNUJhYFDsUR035mvMklCn08nM7q+6lsfQSU9tW6a2ejcubN65GXAgAHq6+XL2e/h3WJjYzF//nwsWbIEbdu2Va8tWLAA1atXx549e9CsWTP8/fffOHXqFDZt2oRSpUqhXr16+OCDDzBhwgRMmTIFzs7OmDNnDipUqICZM2eqc8j379q1C59//jk6duxYIL87Ed3f/kKsX6fHHjsiynOKfvdvdxuCupdaVMDvrz7GoM7EDh48iPT0dLRv397wWrVq1RAQEIDg4GD1XL7Wrl1bBXV6EqzFxcXh5MmThmOMz6E/Rn+O3KSmpqpzGD+IyPQTJwp6fVhj7LEjohx0Oh1+PRiGd1efRFJaJop7OOPTnnXQttq/QQWZTkREhOpxK1o0Z/6NBHGyT3+McVCn36/fd79jJFhLTk6Gm5vbPT976tSpeO+990z+OxERkJCagVPXsm+WGgWyx46INBCfko4xy47gzV+PqaCueZAP1o1uxaDOSk2cOFENBesfoaGhWjeJyGocvnpbTTQrV9wNpb1dC+3nsseOiJSjoTF4felhXIlKgoO9HcY9WQXDn6iotqnglC5dWk2KiImJydFrJ7NiZZ/+mH379uX4Pv2sWeNj7p5JK8+9vLxy7a0TMntWHkRUcIWJGxdib51gjx2RjZN1DOfuuIges3eroK5sUTcsf6UZRrapxKCuEDRs2BBOTk7YvHmz4bWzZ8+q8ibNmzdXz+Xr8ePHERkZaThm48aNKmirUaOG4Rjjc+iP0Z+DiArXgTsTJxoWYn6dYI8dkQ27GZ+K/604ih3nbqrnnWuVxifd68DbvXCm5VuDhIQEXLhwIUfZESk3Urx4cTUBIjo6WgVpUsJEH7Tpe9jk4e3tjSFDhmDcuHHqeyRYe+2111RAJjNihdTBkwBOZthOnz5d5dNNmjRJ1b7T97gNHz4cX3/9NcaPH4+XXnoJW7ZswfLly7F27VpN3hciW5aemYXDV2MKfUasoqN7xMbG6uStka9E1mrHuUhdww826gInrNFVefsv3eI9V3RZWVk6c2aOn82tW7eqNt39GDhwoNq/YMGCXPe/++67hnMkJyfrXn31VV2xYsV07u7uum7duumuX7+e4+dcvnxZ17lzZ52bm5uuRIkSuv/973+69PT0e9pSr149nbOzsy4oKEj9bEt/f4ks0ZGrt9W1tc6UDbrMzEe/rubns2kn/4GGwsPDVS2mdevWISkpSVVLlxpOjRo1UvsHDRqkinHePYV//fr19z2vFAudMWOGurOV4qFfffUVmjRp8kBtkllkchctycRy90xkbXeSM/8+h+92XIR8+quU8sTX/RqgSqkiMHf8bBYsvr9EpvH9zhB8uPY02lXzxfxBjQv1s6npUOzt27fRokULVSldAruSJUvi/PnzKFYs53h0p06dVLCn91/JvsuWLVPDGlKws2nTpvjiiy9UMChDILIUD5GtCo1Owmu/HMaR0Owhgv5NA/DOMzW4ggQRkQWvD2s2gZ0ssVOuXLkcQZtUTr+bBHL6mV8P4rPPPsOwYcMwePBg9VwCPMkz+eGHH/DWW2+ZqPVElmX9iet4c8UxxKdmwMvVEdN61EHn2n5aN4uIyKrodDpDYeLGhTxxQvNZsatXr1ZDrj179lQ9afXr18e8efPuOU4Wtpb9VatWxYgRIxAVFZXnOaVsgFRyN67Abm9vr57nVYGd1dfJ2v0UfBkjFh9SQV2jwGL4a3QrBnVERAXgclQSbiWkwdnRHrX9vWFTgV1ISAhmz56NypUrq4WqJWh7/fXXc+TUyTDsjz/+qKbxSw+fLJAt6zLKoti5uXXrltqXWwV2fYX23Kqvy9i1/iG9iETWcuf4xaZzeOePkyqf7oVmAVj6cjP4F3PXumlERFa9Pmxdf2+4ODrY1lBsVlaW6rH7+OOP1XPpsTtx4oQaOh04cKB6rU+fPobjZa3EOnXqoGLFiqoXr127diarvi45eXrSY8fgjqyhPt17f57EouAr6vnodpUxpn1l2NmxNh0RUUHXr9Miv07zHjs/Pz9DcU296tWrq5pPeQkKCkKJEiVy1I0yJvscHBxyrcCeV56e5PDJLBPjB5ElS8vIwuhlR1RQJ3Hce8/VxNgnqzCoIyIqpIkTWuTXaR7YyYxYfbFOvXPnziEwMDDP7wkLC1M5dhIU5kYW05ZK7sYV2KVnUJ6zAjvZgqS0DAz98QD+PHoNjvZ2+KJ3PQx8rLzWzSIisnq3ElIRcitRbTcMsMEeu7Fjx2LPnj1qKFZ64JYsWYK5c+eqaur6iu5vvvmmOuby5csqOOvSpYuqdSflS/RkSFYqruvJsKpMwpBcvdOnT6vcvcTERMMsWSJrdTsxDf3m7VUrSbg5Oaj6SV3qldW6WURENtVbV7VUEc1W8NE0x65x48ZYuXKlynF7//33VakTqTnXv39/tV+GVI8dO6YCNFkgu0yZMmppnQ8++CBHLbuLFy+qSRN6vXv3xs2bNzF58mQ1YaJevXqqoPHdEyqIrMn12GQMmL8PFyITUNTdCT8MaowGAdoMBRAR2XZ+XTHN2qD5yhPmiNXXydJcvJmAF+fvQ3hMMkp7ueKnIU1Q2QJWksgvfjYLFt9fokfT5Zt/cDQ0RqXAdK1vutESi1l5goge3bGwGAxasB/RiWkIKumBn4Y0Rdmiblo3i4jIpiSnZeJkeKzmPXYM7Igs2K7zt/DKTweQmJaJOv7eWDCoMXw877/kHhERmZ4s1ZiRpYOft6umN9cM7Igs1F/Hr2PM0iNIy8xCi0o++G5AI3i68CNNRKR1/TotS0vxrwCRBVq89womrTqhVpN4qnZpfN67niYVzomIKNv+K9rWr9NjYEdkQWSu09dbLmDmxnPqef+mAXi/Sy042LPwMBGRVjKzdDh0J7BrFKhN/To9BnZEFrRE2PtrTmHh7svq+ettK3E1CSIiM3AmIg4JqRko4uKIqqW1rUjAwI7IAqRnZuHNFUex6sg19fzdZ2tgcIsKWjeLiIjwb2HiBoHFNB9BYWBHZAFLhL26+BC2nb2plgib2asuV5MgIjIj++9MnNA6v04wsCMyYzFJaXhp4X4cuhoDVyd7zH6hIdpU9dW6WUREZJT7vN9oRqzWGNgRmSkpONxv3h6ciYiHt1v2EmENA7W/GyQion+F3U7GjbhUNaJS178otMbAjshMe+pe+H6vCupKFnHB4qFNUcUKlwgjIrJ0B65k99bVKusNN2fty04xsCMyM7FJ6Xhh/l6cuh6HEp4u+GVYM1Ty9dS6WURElIv9dyZOmEN+nbDXugFE9K+4lHS8+MNenAiPg4+HM34Z1pRBHRGRGTNeccIcMLAjMhPxKekY+MM+HA2LRTF3Jywe1hSVOfxKRGTWaTPnbiSo7UZmkgPNwI7IDCSmZmDwgv04fDVGTZT4eWhTVCvtpXWziIjoPg7eWW0iqKQHfDxdYA4Y2BGZQZ26wQv348CV2/BydVQTJWqW8da6WURE9KD5dRovI2aMgR2RhpLTMjFk4QHsuxStlqL5aUhTNbOKiIgsKb+uGMwFAzsijaSkZ+Llnw4gOCQKni6OWDSkCeqW074GEhERPdg1/FhYrNpubCYTJwQDOyINpGZk4pWfDmLn+Vtwd3bAwsGN0SDAfO74iIjo/o6HxyItM0uVpQr0cYe5YGBHpEFQN+LnQ9h+7ibcnBywYFBjs5kmT0RE+V8f1s7ODuaCgR1RIUrPzMKoJYex5UwkXBztMX9gIzQN8tG6WURElE8H7kycMLcbcwZ2RIUY1L3+y2FsPHUDzo72+H5gIzxWqYTWzSIionzKytIZJk6Yy4oTegzsiApBRmYWxiw7gnUnIuDsYI+5AxqiVeWSWjeLiIgewvnIBMSlZKgc6Rp+5lVzlIEdUQHLzNLhfyuOYu2x63BysMOcAQ3Quqqv1s0iIqKHdOBKdm9d/YCicHQwr1DKvFpDZIVB3Zu/HsUfR67B0d4O3/RrgLbVSmndLCIiMkV+nRkVJtZjYEdUgDkYE38/ht8PhcPB3g5f9a2PDjVLa90sMrEdO3bg2WefRZkyZdTMuFWrVuXYr9PpMHnyZPj5+cHNzQ3t27fH+fPncxwTHR2N/v37w8vLC0WLFsWQIUOQkJC9/qTesWPH0KpVK7i6uqJcuXKYPn36PW1ZsWIFqlWrpo6pXbs2/vrrrwL6rYls278zYhnYEdlMUPf2quNYfiAM9nbArD710Lm2n9bNogKQmJiIunXr4ptvvsl1vwRgX375JebMmYO9e/fCw8MDHTt2REpKiuEYCepOnjyJjRs3Ys2aNSpYfPnllw374+Li0KFDBwQGBuLgwYOYMWMGpkyZgrlz5xqO2b17N/r27auCwsOHD6Nr167qceLEiQJ+B4hsy/XYZITdTlY37PUCzLCovI7uERsbq5O3Rr4S5VdWVpbu7ZXHdIET1ugqvLVGt+pwmNZNshrm/tmUtq1cuTLHv4XSpUvrZsyYYXgtJiZG5+Liovvll1/U81OnTqnv279/v+GYdevW6ezs7HTh4eHq+bfffqsrVqyYLjU11XDMhAkTdFWrVjU879Wrl+7pp5/O0Z6mTZvqXnnlFat5f4nMweoj4er6/syXOwvtZ+bns8keOyIT+/iv0/h5z1VIvcoZz9dFl3pltW4SaeTSpUuIiIhQw6963t7eaNq0KYKDg9Vz+SrDr40aNTIcI8fb29urHj79MY8//jicnZ0Nx0iv39mzZ3H79m3DMcY/R3+M/ufkJjU1VfUGGj+IyPLWhzXGwI7IhA5dvY15Oy+p7Wnd66BHQ3+tm0QakqBOlCqVc8KMPNfvk6++vjlnSTs6OqJ48eI5jsntHMY/I69j9PtzM3XqVBVo6h+Su0dE97f/zsQJc8yvEwzsiExERuI+Xntabfds6I9ejflHkszbxIkTERsba3iEhoZq3SQisxaXko4zEdk9240C2WNHZNU2nIzAgSu34epkj/91qKp1c8gMlC6dPQv6xo0bOV6X5/p98jUyMjLH/oyMDDVT1viY3M5h/DPyOka/PzcuLi5qJq7xg4jydvhqDLJ0QKCPO3y9XGGOGNgRmUBaRhY+WXdGbb/cKgilvc3zA0+Fq0KFCiqw2rx5s+E1yWOT3LnmzZur5/I1JiZGzXbV27JlC7KyslQunv4YmSmbnp5uOEZm0FatWhXFihUzHGP8c/TH6H8OET26vSFR6mtDM+2tEwzsiExg8d4ruByVhBKeLnj5iYpaN4cKkdSbO3LkiHroJ0zI9tWrMoHGDmPGjMGHH36I1atX4/jx43jxxRdVzTspRSKqV6+OTp06YdiwYdi3bx/++ecfjBo1Cn369FHHiX79+qmJE1LKRMqiLFu2DLNmzcK4ceMM7Rg9ejTWr1+PmTNn4syZM6ocyoEDB9S5iOjRJaVlYOn+7HSFJ6qY8ZKQhTJP18Jwyj/lR0xSmq7uexvU9PfFe65o3RyrZo6fza1bt6o23f0YOHCgoeTJO++8oytVqpQqc9KuXTvd2bNnc5wjKipK17dvX52np6fOy8tLN3jwYF18fHyOY44ePapr2bKlOkfZsmV1n3zyyT1tWb58ua5KlSo6Z2dnXc2aNXVr1661+PeXyFzM2XZBXecfn75Fl56RWag/Oz+fTTv5j9bBpbmRoRKZISbJxMw5of8y9a/T+G5HCCr7emLd6FZmt26gNeFns2Dx/SXKu7eu1bStiEpMw4zn66Bno3Jm+9nkXyCiRxAanYQF/1xW2//3VHUGdUREVujnPVdUUCeTJrrVN+/apPwrRPQIZmw4i7TMLLSo5IPWVc0454KIiB66t27ujhC1PbJNJbO/gTfv1hGZsSOhMVh99JpaYUJ66yRRnoiIrMviPVdxKyENAcXNv7dOMLAjesRixN3r+6NmGW+tm0RERCaWnJaJ73ZcVNuj2laCk5n31gnNWxgeHo4XXngBPj4+cHNzQ+3atdUUfSE1myZMmKBe8/DwUFP/pVTAtWvX7ntOmeYvvSfGj2rVqhXSb0S24O9TN7DvcjRcHO3xRscqWjeHiIgKqJTVrYQ0lCvuZhG9dcJRyx8ui1e3aNECbdq0wbp161CyZEmcP3/eUHAzKSkJhw4dwjvvvIO6deuq46VW03PPPWcI/vJSs2ZNbNq0Kcfai0SmkJ75bzHiYa2C4OftpnWTiIioAHrr5mzP7q17rU1li+itE5pGO9OmTVOLTi9YsCBHpXY9mdorldONff3112jSpIkq/hkQEJDnuSWQu99SOkQPa8neq7h0KxElPJ0xvDWLERMRWX1vXQPL6K0TmoafUom9UaNG6NmzJ3x9fVG/fn3Mmzfvvt8jNVxkaLVo0aL3PU56/mToNigoCP3791eBYF5SU1NVjRjjB1FeC0B/semc2h7Tvgo8XdgTTERknb11IWp7VBvLyK3T07SlISEhmD17NipXrowNGzZgxIgReP3117Fo0aJcj09JSVE5d3379r1vgT5ZX3HhwoVqeR05vyzx06pVK8THx+d6/NSpU1XvoP4hvYhEufl260XcTkpHxZIe6NOY/06IiKy3ty4V/sXc0L2BPyyJpitPyNqH0mO3e/duw2sS2O3fvx/BwcE5jpWJFD169EBYWBi2bduWr6rossB2YGAgPvvsM7XWYm49dvLQkx47Ce5YfZ2Mhd1OQtuZ25GWkYXvX2yE9jVKad0km8OVEQoW318iqN66VtO3qsDuk+610adJ3mlfhcViVp7w8/NDjRo1crwmC2LfPWwqQV2vXr1w5coVlXOX3wuODNtWqVIFFy5cyHW/i4uLOqfxg+huM/8+p4K6ZkHF0a66r9bNISKiArBk31WL7a3TPLCTGbFnz57N8dq5c+dU79rdQZ3kzMksVymLkl8JCQm4ePGiCiSJHsbxsFisPByutt9+qgaLERMRWaGU9H9nwkpunbOj5eTW6Wna4rFjx2LPnj34+OOPVW/akiVLMHfuXIwcOdIQ1D3//POqtMnixYuRmZmJiIgI9UhLSzOcp127dmq2rN4bb7yB7du34/Lly2qYt1u3bnBwcFC5eUT5JdkKH/11Sm1LHaPa/ixGTERkjRbvvYqb8akoW9Qye+uEplP6GjdujJUrV2LixIl4//33VamTL774Qs1i1Rcvlpmzol69ejm+d+vWrWjdurXalt64W7duGfZJHp4EcVFRUao2XsuWLVUAKdtE+bX5dCT2hESrO7c3OlbVujlERFTQvXVtLbO3Tmheq+GZZ55Rj9yUL19e9Zb8F+mZM7Z06VKTtY9smxQj/nhd9tJhQ1pWUHdxRERknTVKb97prethob11wjLDUaJCsnR/KEJuJqK4hzNGsBgxEZFVkt662Xd660ZaaG6dnuW2nKiAxUsx4o36YsSV4eXqpHWTiIioAPyy79/euucbWm5vnWBgR5QHybWISkxDUAkP9DWDOkZERFRAvXXbrKO3Tlh264kKyLWYZHy/85LafqtzNYtaToaIiB7c0n1XEWklvXWCf62IcvHp32eRmpGFJhWK40muMEFEZLW9dd/e6a17tU1Fi++tE5b/GxCZ2Ilw42LE1VmMmIjIynvryni7omdD61j/m4Ed0d3FiNeehlTZ6VKvDOqWK6p1k4iIqIBnwr5qBbl1etbxWxCZyNazkQgOicouRtyBxYiJiKzVsv2huBF3p7eukeXn1ukxsCO6I0OKEf91Rm0PblEe5Yq7a90kIiIqsNy6C2p7RJtKcHF0gLVgYEd0x7IDobgQmYBi7k54tXUlrZtDREQFZPmB7N46P29X9LKi3jrBwI4IQEJqBj6/U4z49XaV4e3GYsRERFbbW7f139w6a+qtEwzsiAB8t/0ibiWkobyPO/o3DdS6OUREVIC9dRFxKVbZWycY2JHNu5WQink7QwzFiK1lZhQREeWUmmHUW9e6otX11gn+BSOb98OuS0hJz0Jdf290rFla6+YQEVEBWb4/u7eutJcrejW2jrp1d2NgRzYtLiUdPwVfMeRasBgxEZEV99Zt+3eVCWvsrRMM7MimSVAXn5qByr6eeLI6lw4jIrJWyw+E4Xrsnd66RtbZWycY2JFNz4xa8M8ltT2idUXY27O3jojIenPrLhiu965O1tlbJxjYkU3PjJKZsGWLuuHZumW0bg4RERVwb10pLxf0ttLcOj0GdmST0jOz8N327Jmww58IgpMDPwpERNbaWzf7Tm+dFJ+35t46wb9mZJNWH7mG8JhklPB0Rk8rzrUgIrJ1Kw6E4ZqN9NYJBnZkc7KydJi9PXtm1JCWQVZ/90ZEZKsys3SYu0M/OmPduXV6DOzI5vx96oZaE7aIqyNeaBagdXPIBsTHx2PMmDEIDAyEm5sbHnvsMezfv9+wX6fTYfLkyfDz81P727dvj/Pnz+c4R3R0NPr37w8vLy8ULVoUQ4YMQUJCQo5jjh07hlatWsHV1RXlypXD9OnTC+13JDJHm07fwNXoJLVMpC301gkGdmRT5A/ot9uycy1ebB6IIq5cE5YK3tChQ7Fx40b89NNPOH78ODp06KCCt/DwcLVfArAvv/wSc+bMwd69e+Hh4YGOHTsiJSXFcA4J6k6ePKnOs2bNGuzYsQMvv/yyYX9cXJw6rwSPBw8exIwZMzBlyhTMnTtXk9+ZyBzM35ld+aBf0wC4OzvCJujoHrGxsTp5a+QrWZed527qAies0VWd9JfuZnyK1s0hG/hsJiUl6RwcHHRr1qzJ8XqDBg10b7/9ti4rK0tXunRp3YwZMwz7YmJidC4uLrpffvlFPT916pT6vffv3284Zt26dTo7OztdeHi4ev7tt9/qihUrpktNTTUcM2HCBF3VqlXzbFtKSop6L/WP0NBQi3t/ifJyLDRGXe8rTlyrux6TrLOVax977MimfHNnZlSfxgEo4emidXPIBmRkZCAzM1MNjxqTIdddu3bh0qVLiIiIUD14et7e3mjatCmCg4PVc/kqw6+NGjUyHCPH29vbqx4+/TGPP/44nJ2dDcdIr9/Zs2dx+/btXNs2depU9bP0Dxm+JbIW83dl59Y9U8cPpb1zfv6sGQM7shmHr95GcEgUHO3tMOzxIK2bQzaiSJEiaN68OT744ANcu3ZNBXk///yzCsSuX7+ugjpRqlTOlU/kuX6ffPX19c2x39HREcWLF89xTG7n0O/LzcSJExEbG2t4hIaGmvA3J9JORGwK1hy7bpgkZ0sY2JHN0K8R2LV+WVWUmKiwSG6d5HeWLVsWLi4uKp+ub9++qsdNS9IWmYxh/CCyBouCLyMjS4cmFYqjtr83bAkDO7IJZyPisfHUDdjZZU95JypMFStWxPbt29UsVukV27dvH9LT0xEUFITSpUurY27cuJHje+S5fp98jYyMvGeIV2bKGh+T2zn0+4hsRVJaBpbsvaq2h7asAFvDwI5swpw7des61SyNSr6eWjeHbJTMdpWSJpLztmHDBnTp0gUVKlRQgdfmzZtzzHCV3DkZwhXyNSYmRs121duyZQuysrJULp7+GJkpKwGjnsygrVq1KooVK1aovyeRln47GIbY5HQE+rijXfWc6Qm2gIEdWb3Q6CSsPnrNsJwMUWGTIG79+vVqooQEW23atEG1atUwePBg2NnZqRp3H374IVavXq3Kobz44osoU6YMunbtqr6/evXq6NSpE4YNG6Z6+/755x+MGjUKffr0UceJfv36qYkTUt9OyqIsW7YMs2bNwrhx4zT+7YkKtwD9D/9cVtuDHysPB3s72BobKepCtuy7HRdV9fFWlUvYXK4FmQeZmCATFcLCwtSEhx49euCjjz6Ck1N2HcXx48cjMTFR1aWTnrmWLVuqQNB4Ju3ixYtVMNeuXTuVmyfnkFw9PZnV+vfff2PkyJFo2LAhSpQooYoeG9e6I7J2W85E4tKtRFWA3laXi7STmif5+YaBAweqO0KZVm+tZBhELpJyMWYysWWLjE9By2lbkZaRhV+GNUPzij5aN4keAT+bBYvvL1m6vnP3qOoHrzwehIlPVYctfjbzPRQrJ5X6SZUrV8bHH39sqJxOZI7m77qkgroGAUXRLKi41s0hIqICcvJarArqZPh14GPlYavyHditWrVKBXMjRoxQORzly5dH586d8euvv+ZI2iXSWmxSOn4OvmLIrZNcJiIist4befFUbT+UseGSVg81eaJkyZIqIffo0aNq5lalSpUwYMAAlcQ7duzYexavJtLCj8GXkZiWiWqli6BttZzFXYmIyHpExqXgzzuT5IbYYIkTk82KlarpMsNLHg4ODnjqqafUjK4aNWrg888/N10riR6ijtGC3dkzo0a0rgh7G5wZRURkK34MvoL0TB0aBRZDvXJFYcvyHdjJcOtvv/2GZ555BoGBgVixYoWaqi9L5SxatAibNm3C8uXL8f777xdMi4kewNJ9oYhOTENAcXc8XdtP6+YQEVEBSU7LxOK92Wk3Q2y8t+6hyp1IcU0piinL4Ug9pXr16t1zjNRokgWribQgkyXm7cxe/PmVJ4Lg6MByjURE1ur3w2G4nZSOcsXd0KEmV1nJd2AnQ6w9e/bMUV/pbhLUSSFOIi2sOhyO67Ep8C3igh4N/LVuDhERFWRB4juTJgY9VsEmCxLfLd9dGc899xySkpLueV3WLJQ6K0RakkLE+uXDhraqAFcnB62bREREBWT7uZu4eDMRRVwc0asRb+QfKrCTJWyWLl16z+uSVyf78ktKp7zwwgvw8fGBm5sbateujQMHDhj2S/1kqZ4uQ8CyX2roPcis22+++UaVYpGeRVlLUYaNyfqtPxGBkFuJ8HZzQr+mgVo3h4iICqHESe/G5VDENXslF1uX78BOyptIDt3dWrdurfblhyyE3aJFC7Wszrp163Dq1CnMnDkzx4LV06dPV8vmzJkzR51fFtHu2LEjUlJS8jyv1NeTcizvvvsuDh06hLp166rviYyMzOdvS5ZEbgK+3XZBbUtxSk8XrphHRGStzkTEYdeFW5DRV1suSPzIgV1qaioyMjJynS2bnJycr3NNmzYN5cqVw4IFC9CkSRNUqFABHTp0QMWKFQ1/qL/44gtMmjQJXbp0QZ06dfDjjz+qGbhSKDkvn332mVosWxbYltIrEhS6u7vjhx9+yO+vSxZkx/lbOHktDm5ODmrxZ6IHERoaqh5EZFnm78zuretcyw/lirtr3RzLDewkAJs7d+49r0vwJAtP58fq1avRqFEjNRnD19cX9evXx7x58wz7ZQJGRESEGn7Vk7XSZGg1ODg413OmpaXh4MGDOb5HFsyW53l9jwSrkh9o/CDL883W7N66fk0DUMzDWevmkBmTm9N33nlHXU8kZUMesi03kVxBh8j83YxPxR9HsgsSv8QSJznke6zqww8/VEGSrDrRrl079drmzZuxf/9+/P333/k6V0hICGbPnq2GTf/v//5PneP111+Hs7MzBg4cqII6UapUqRzfJ8/1++5269YtZGZm5vo9Z86cyfV7pk6divfeey9fbSfzcuByNPZdioaTg52aNEF0P6+99hp+//13lerRvHlz9Zrc+E2ZMgVRUVHqukRE5uunPVeQlpmF+gFF0TDw3/QteojATnLi5AI4Y8YMNWFCJjTIEOn8+fNRuXLlfJ1L6uFJj93HH3+snkuP3YkTJ1TvnwR2hWXixIkquNSTHjsZIibL8e227JmwUt7Ez9t21wikB7NkyRI1CUzWudaT65h87qVGJwM7IvOVkp6JxXtYkDgvD5VdLkWJFy9ejEclM10lB85Y9erV1coWonTp7EKDN27cUMfqyfPcCiOLEiVKqOXN5Bhj8lx/vru5uLioB1mmU9fisOVMpEqgfeWJ7PxMovuRz7sMv95N8nxlxICIzNcfR8IRlZiGskXd0IkFie/xUCX5paft3Llz2LVrF3bs2JHjkd/ev7Nnz+Z4Tc4rS5XpL7ISjMlQr3FvmsyO1Q+f3E0uypLrZ/w90l55ntf3kGWbfadu3VO1/VChhIfWzSELMGrUKHzwwQcqv1ZPtj/66CO1j4jMk0yq1Jc4GfRYea4sZIoeuz179qBfv364cuWKeoON2dnZqfy2BzV27Fg89thjaii2V69eqtacTMzQT86Q88k6tJLXJ8O8EuhJwnOZMmXQtWtXw3kk169bt26GC7IMq8pQrgzzymQPmVmbmJioZsmSdbl8KxFrj2Un0I5ozd46ejCHDx9WN3v+/v6qHJKQvGGZfCXXk+7duxuOlVw8IjIPO8/fwrkbCfBwdkDvJkyZMklgN3z4cBUwrV27Vg2PSvD1sBo3boyVK1eqHLf3339fBW4ShPXv399wzPjx41VQ9vLLLyMmJgYtW7bE+vXrcyxpdvHiRTVpQq937964efOmKmwskyxk2Fa+5+4JFWT5vttxEVk6oHXVkqhZxlvr5pCFkGUPe/TokeM15tUSmb/v7/TW9WpcDl4sSJwrO93d3W7/QQoEy51tpUqVYK1kuFdKH8TGxsLLy0vr5lAebsSloNW0rWpm1IrhzdG4fHGtm0QFjJ/NgsX3l8zZ+RvxePLzHZD+pO1vtEGAj+3UrovLx2cz34PTUkPuwoXsemFEWvp+Z4gK6hqXL8agjojIyv3wT3ZvXccapW0qqCvwoVip//S///1PDXHKuq6yHJgxKRlAVNBuJ6Zh8d6ravvVNtbbe0wF59dff1Ulm65evapy64zJUoREZD6iElLx26FwtT2EtUpNG9jp81Jeeuklw2uSZycjuvmdPEH0sBb8cwlJaZmo4eeF1lVKat0csjCy/vTbb7+NQYMG4Y8//lATqyRXV4qkjxw5UuvmEdFd5EY+LSMLdf290YgFiU0b2MkyX0RaiktJx4Ldl9X2a20rPdIEHrJN3377rZp9L8WIFy5cqCZpBQUFqQlX0dHRWjePiIykZmTix+ArhuXDeM03cWCnrzFHpJWfgq8gPiUDlXw90ZHFKekhyPCrlFoSsnpOfHy82h4wYACaNWuGr7/+WuMWEpHe6iPXcCshFX7erqpeKRXAyhPi1KlTueamPPfccw97SqL/lJSWYShOOapNJdjLchNE+SSFz6VnTm5UAwICVH1OqWcnIxL5LBRARIVUkHjgY+XhxILEpg/sQkJCVDHg48ePG3LrhL5rlDl2VJCW7L2K6MQ0BPq445k6vHOjh9O2bVusXr1arU8t+XVSLF0mUxw4cCBHcWIi0tbui1E4ExEPNycH9G0coHVzrDOwGz16tCokLFXb5ausFhEVFaVmyn766acF00qiOws/z90RorZfbV2RS8nQQ5P8OllqUMhkCR8fH+zevVuNOLzyyitaN4+I7tD31vVq5A9vdxYkLpDALjg4GFu2bEGJEiVgb2+vHrIaxNSpU/H666+rpXqICsKKg2GIjE9FGW9XdKvvr3VzyILpr116ffr0UQ8iMh8XIhOw5UykKkg8uAVLnDyofHd5yFBrkSJF1LYEd9euZa/TKbkqZ8+eze/piB5IemYW5my7qLaHt64IZ0f21lH+nT9/Xs2ElSrud5OK7rIOtqSbEJF5lLUS7auXQvkSHlo3x2Lk+69jrVq11JJi+lUopk+fjn/++Uet9SrlAogKwsrD4QiPSUbJIi7o1YhretLDmTFjhloTNrcleWS5HtknxxCR9kXofzsUpraHtGRvXYEGdpMmTTLkpkgwJ7PIWrVqhb/++guzZs3K7+mI/lNmlg7fbs1exu7lVkFwdXLQuklkobZv346ePXvmub9Xr14q1YSItCOTMufsuIiU9CzULOOFphW4ZGSB5th17NjRsF2pUiWcOXNGlQ0oVqwYiwZSgVhz7BouRyWhmLsT+jXlrCh6eFKiydfXN8/9kl4SGhpaqG0ion9dupWISauO458LUer5sFZBjC0KusdOlhLTF/PUK168OJKSknIsM0ZkCllZOnxzp7dOuuM9XB669CKRGm6VpcPycuHChVyHaYmo4FeX+HLzeXT8YocK6lwc7TG+U1V0qVdG66ZZf2C3aNEiJCcn3/O6vPbjjz+aql1Eyt+nbuDcjQQUcXXEi4+V17o5ZOEef/xxfPXVV/ddQ1ZSS4io8OwNicJTs3bis43n1HqwrSqXwN9jH8errblk5MN44O4PmUUm497ykB47V1fXHDNlJcfufkMcRPkl/9a+3npebQ96rDy8XFnDiB7NxIkT0bx5czz//PNqfdiqVauq1yWlRCaCbdiwQdWzI6LCmSAxdd1pLD+QPUmihKcL3nmmOp6rW4YBXWH02BUtWlQNucqbXaVKFZVTp39IXooMw0qhTyJT2XbuJk6Ex8Hd2YE1jMgkZKUJWWFix44dKsCTa5o8ZN3YnTt3Yvny5WjQoIFJf6bc+L7zzjuqoLusS1uxYkV88MEHOZYuk+3JkyfDz89PHdO+fXtVmsWY5DL3799fDRXL9XjIkCFISEjIccyxY8dUj6PceMsMXwlWicyN/Hv/7WAY2n223RDUSf705nFPoEu9sgzqCqvHbuvWrep/hizF89tvv6mLoZ6zs7OqY1emDMfCyTTk39pXm7P/sPVvGoDiHs5aN4msxDPPPIMrV65g/fr1KqdO/q3JzWqHDh3g7u5u8p83bdo0zJ49W6Wx1KxZUy1bJsuYSb6fFHUXEoDJMLAcIwGgBIIyUU3W5NaPjkhQd/36dWzcuBHp6enqHC+//DKWLFliGFWR30GCwjlz5qhlH+WGW4JAOY7IHITcTMCkVSfUUmGiaqki+Lh7LTQM5MxXU7HT5XPFa7kgyqLZ1hxRywVSLrpSsJSJ1NrYffEW+s3bqwoR7xrfBr5e/w79k+2yxM+mBJKlSpXC/PnzDa/16NFD9cz9/PPPKrCUm2JZlvGNN95Q++X3k+9ZuHChWhHj9OnTqFGjBvbv349GjRqpYyQwfeqppxAWFqa+X4LHt99+GxEREepmW7z11ltYtWqVGmq21veXLGdyxJxtIWoyXFpmFlyd7DG6XRUMbVUBTlwe0qSfzXy/m1LjSYYy7rZixQp1t0lkCl9vyZ4J26dxOQZ1ZNFkmFfW1j537px6LgXed+3ahc6dO6vnUgtUgjHpadOTC7gUgJclHIV8lZ43fVAn5HhZFm3v3r2GY2RyiD6oE9LrJysC3b59O9e2paamqj8Yxg8iU9sTEoXOs3bi803nVFD3eJWS+HvMExjRuiKDugKQ73dU1oSVnLq7ycSJjz/+2FTtIht28Eq06qZ3tLfDK09U1Lo5RI9Ees2k161atWpwcnJSeX5jxoxRQ6tCgjohPXTG5Ll+n3y9e3Kao6OjSokxPia3cxj/jNyu5xJE6h+Sl0dkKtGJaXhjxVH0mbsHITcT1eSIr/rWx6LBjRHgY/q0B8rm+DAFPiUH5G6SYyf7iEzVW9ejgT/KFnXTujlEj0QmZCxevFjlwkmO3ZEjR1RgJ8OnAwcO1HyW8Lhx4wzPpceOwR2ZZHLEoXB8tPYUbielG3Klx3eqBm83Vjcwu8BO7hpl5lX58jlrisnwgo+PjynbRjboRHgstp69CXs7qG56IlPLyMhQQZYMU97dw1UQ3nzzTUOvnahdu7bKVZbeMgnsSpcurV6/ceOGmhWrJ8/r1auntuWYyMjIe34PmSmr/375Kt9jTP9cf8zdXFxc1IPIVC7eTMDbK49jT0i0el6tdBF81K02GgYW07ppNiPfQ7F9+/ZVM7lklqxM45eH5N2NHj3acOEietTeOqljVL6Eh9bNISskQ5jDhw9HSkpKofw8WZVHcuGMOTg4GNbclhEQCbwkD8+450xy56Qki5CvMTExOHjwoOEYue7KOSQXT3+MlHGRGbN6MoNWavVJWSqigu6lm7cjBJ2/2KmCOpkc8VbnavjztZYM6sy9x07qL12+fBnt2rVTF0ghF5cXX3yROXb0SM7diMf6k9m5QCPbVNK6OWTFmjRpooZEJYWkoD377LP46KOPVDUBGYo9fPgwPvvsM8MSjFJhQIZmP/zwQ1SuXNlQ7kSGart27aqOqV69Ojp16oRhw4apUiYSvI0aNUrdTOvLTPXr1w/vvfeeqm83YcIEnDhxArNmzcLnn39e4L8j2TZZ+vGjv05j/q5L6vkTVUriw661UK448+gsIrCTGVfLli1TAZ4Mv8qUfRlaKIwLJFk3/ZqwnWuVRuVSRbRuDlmxV199VeWWhYaGomHDhvDwyNk7XKdOHZP9LFnCTAI1+ZkynCqB2CuvvKIKEuvJKhiJiYmq3pz0zLVs2VKVMzFe4Ufy9CSYk5tq6QGUkilS+05PJj/8/fffqlC8/E4yyU1+BmvYUUHKyMzChN+O47dD2YWGJz1dXa3rbc0l0ayujp1eWlqamqYvVdT1PXfWgrWcCt+lW4loN3MbsnTAmtdaolZZb62bRFb82bx7aFTIHyK5HMpXSTGxRbz2UX6kpGfitV8OY+OpG3Cwt8P0HnXQo6G/1s2CrX82HR8mX+S1114z1KyT2kxBQUHqtbJly6okYaL8mr3tggrq2lbzZVBHBU5uSono4cWnpGPYjwdUPp0Ukv+mXwM8WaPgJyPRf3N8mOnxMgS7bds2lfNhXCxzypQpDOwo38JuJ+H3Q+Fqm7l1VBiYOkL08KISUjFowX4cD4+Fp4sjvh/YCM2CWBXDYmfFyvI0X3/9tcoBMR5Dl6Tgixcvmrp9ZAO+2x6CjCwdWlTy4ewpKjQ//fQTWrRooXLepPyI+OKLL/DHH39o3TQisxUek4ye3wWroM7HwxlLX27GoM7SA7ubN2/eUwFdSOIvkyUpv27EpWDZgVC1PapNZa2bQzZC1lWVyROy1qpMVtDn1MmyXRLcEdG9LkQm4PnZu9UqElI8fvnw5kydsYbATtYqXLt2reG5Ppj7/vvvDTWXiB6U1D1Ky8hCo8BiaBZUXOvmkI2Qmarz5s3D22+/rWrKGV/fjh8/rmnbiMzRsbAY9PouGNdjU1CxpAdWDG+OiiU9tW4WmSLHTmrVyeLVp06dUpXPpU6SbO/evRvbt2/P7+nIxvM0Fu/NXoZuVNtK7PGlQp08IWu23k1WYZDRByL61+6LtzBs0QEkpmWijr83Fg5uguIezlo3i0zVYye5dVLYU4I6qV8ndZNkaDY4OFjVTiJ6UD/8cwnJ6ZmoXdZbFbQkKixSBFiuY3eT2nFSDJiIsm04GYFBP+xXQd1jFX2wZFgzBnVm7qEK0EntOhnGIHpYsUnpWLQ7O2GdvXVU2CS/Tgr5yrJiUrtu3759+OWXX9T6rZJWQkTA8gOheOu3Y6oUVYcapfBl3/pwdfo3dYGsKLCTROOVK1fi9OnT6nmNGjXQpUsXqytUTAVnUfBlJKRmoGqpIniyOmsfUeEaOnSoWjVn0qRJqjanLMcls2MltYRrXhMB3+8MwYdrs//G92zoj6nda8PRId+DfKSBfEdiJ0+exHPPPYeIiAi1uLSYNm0aSpYsiT///BO1atUqiHaSFZGAToZhxci2lWBvz946Knz9+/dXDwnsEhIScp3tT2RrpAf707/P4put2eXLhrWqgP97qjpHVaw5sJM7XalZd+DAARQrll1z7Pbt2xg0aJBak1AmURDdz+I9VxCTlI4KJTzwdG0/rZtDNkzWbj179qzalj9ccoNKZKsys3R4548TWHJnUtv4TlUx4omKDOqsPbCThGPjoE7I9kcffYTGjRubun1khWsLztsZorZfbV1RrS9IVNji4+Px6quvqry6rKws9ZqUPenduze++eYbtSYjkS2RslNjlx/B2mPXIXHcR11ro1/TAK2bRQ8h3wPmVapUwY0bN3K9861UictB0f0t3XcVtxLSVHHLrvXLat0cslEy8rB3715Vk1MKFMtjzZo16qb1lVde0bp5RIUqKS0DQxbtV0Gdk4Mdvu7bgEGdLfXYyayx119/Xa0L26xZM/Xanj178P7776tcu7i4OMOxXl5epm0tWfwd4Xc7snvrRrSuCCcm4pJGJIjbsGGDKt+k17FjRzXb33gNbCJrF5OUhpcW7sehqzFwc3LAdwMa4nGWn7Jo+f7L+swzz6iCxL169VILactDtk+cOIFnn31WDcvKsjzGQ7V5keBQxu6NH9WqVVP7Ll++fM8+/WPFihV5nlNy/e4+nhdq87DycJiqWl7KywXPN/TXujlkw3x8fHIdbpXXHuTaRWQNN9qSS/fUrJ0qqPN2c8LiYU0Z1Nlij93WrVtN2gCZiLFp06Z/G3SnZEq5cuVw/fr1HMfOnTsXM2bMUCtf3I8EcgsWLMhRTZ60T8qdsz27t25YqyDWQiJNSZkTqWX3008/oXTp0uo1men/5ptv4p133tG6eUQFGtCtOBiKb7deRHhMsnqtjLcrFgxugqqli2jdPNIisHviiSdM2wBHR8OF1ZgkMt/9utTOk95BT8/7r08ngVxu58xLamqqeugZDyeTaaw7cR2XbiWiqLsT+jZh7gZpa/bs2bhw4QICAgLUQ1y9elVdO27evInvvvvOcOyhQ4c0bClRwQV0vkVcVFqMXJN5s23DgZ0Mn06ePBn29jlHcWNjYzF8+HA1yyw/zp8/rwqDurq6onnz5iqHT3+hNXbw4EE1I1dmrP2Xbdu2qZpUMqTStm1bfPjhh2roJS/yM9977718tZvyVxdJLiZiYPPy8HBhIWvSVteuXbVuAlGhSM3IxIoDYfh26wVci01RrzGgs252Ovmrmw8yRCqPn3/+GUFBQYZA6sUXX1S9ZLI0z4Nat26dKgwqhY5l2FWCq/DwcJWvV6RIzi5hKU0gP0fy++5n6dKlcHd3V2tBXrx4Ef/3f/+nevhkLVvpBXzQHjv5HSVY5QSQR7ftbCQGLdgPd2cH/DOhLYpxnUF6SPLZlDw4fjYLBt9f6wrolt8J6CS3WR/QSZmpPgzorPqzme+uk2PHjqlyAPXq1cPMmTNx7tw5tQyP5Kbkt9fLOFeuTp06aNq0qZqMsXz5cgwZMsSwLzk5GUuWLHmg3Bfj5YBq166tzitr20pQ2K5du1y/R4ZfmIdXcL7dlt1bJ3eHDOqIiAo4oNsfqq67+oBOJqy92roSejcux4DOBuQ7sJPhTQm8pCdMAjzJkZOet7yCpvyQ2bRSJ09yX4z9+uuvatkf6RXML+lVLFGihDqnKdpI+XPwSjT2XYpWtZGGtqqgdXOIiGwmoCvt5YpX21REr0YM6GzJQyU7ffXVV6qXrm/fvir3TeraSY9a3bp1H6kxMiwrw6cDBgzI8fr8+fPV+rQPs9xPWFgYoqKi4OfHpau0oM+t617fH37eblo3h4jI6lbzWX4ge1JERNy/Ad3INhXRkwGdTcp3HTspJSJDrosWLcLixYtx+PBhPP7446pY8fTp0/N1rjfeeAPbt29XNetkjdlu3bqpPDgJGPWkp23Hjh2qUnxupO6dzJbVB4YyJCwFk+WcmzdvRpcuXdSKGFJ8lArXmYg4bD4TqZaneeWJ7HxMIiIyTUC3aPdltJ6xDZP/OKmCOj9vV3zQpSa2j2+NAc3LM6izUfnuscvMzFR5djKTVbi5uanSAVK4WIKv8ePH56s3TYI46VGT3jipAi9BmXHP3A8//AB/f3906NAh13PIAt6STCgkKJS2SdApSwRJG+X7PvjgA+bQaWD2ndy6p2r5Iajk/UvUEBVmErIsJ5aWloYmTZo81EgAkZZ+PxSGaevP4EZc9qQ/CehebVMJvRr5w8WRwZyty/es2Pu5deuWymezdJwZ9uiuRiWh9adbkaUD1rzWErXKclF10v6zKSWTnnrqKbXetVz6ZPa95AyzRz8br33mb9OpGxj64wFDYWEJ6HoyoLN6cfn4bD7wUKyUMZHeurxIuZAtW7bkr6Vktb7bcVEFdbI8DYM6MhcTJkxQpZB27dql8oNlQtWoUaO0bhbRAwmNTsL/Vhw1VBnY+mZrvNAskEEdPVxgJ8WDZchUTyLGkJDsJaKEDH0a58aR7YqMT8GKg2FqW2omEZkLCeZk8pdcz+rXr69SPWTCFlebIUuY9TpyySHEJqejXrmieO+5mgzo6NECu7tHbHMbwTXhqC5ZsPm7LqnlaxoEFEXTCsW1bg6RQXR0tMrZNS6x5OHhkeOmlcgcfbz2NI6FxaplGb/p3wDOjvme+0g2wqRrO9nJ9EeyabFJ6fg5+IraloKY/DdB5kZWr4mIiMhxQ3r69GnEx8cbXpPC5kTm4s+j17DoznX1s151UbYoS0dR3rhoJ5nUj8GXkZiWiWqli6BtNV+tm0N0D8mru3t0QWb1y02IvC5f75dPTFSYQm4m4K3fjhlSW9pWK6V1k8iaAjvjO125AJ45c0bVjtPPiCXblpyWiQW7L6ttWWDa3p69dWReLl26pHUTiPJ1TX118SF1syxpLeOerKJ1k8jaAru773TlLlcY3+mS7Vq6/yqiE9MQUNwdT9fmSh9kfmQtaiJL8e7qEzgTEY8Sni74qm99ODowr45MGNjxTpfuRyZLzNuRPUv65ceDeAEis3b+/Hn88ccfaoUauSGVEihdu3ZVa0sTmYMVB0Kx/EAYZODjy7714OvlqnWTyNoCO97p0v38cSQc12JTULKIC55v+O+sQyJzM3XqVEyePBlZWVnw9fVVow03b97EW2+9hY8//lgtdUik9XKM7/xxQm2PbV8Fj1W0/ML/VHjYrUKPLCtLhznbs5cPG9KyAtcnJLO1detWTJo0CW+//bbKC75+/brKG9YHdvKQtamJtJKQmqHy6lLSs1SB95FtKmndJLIwDOzokf19KgIXbybCy9UR/ZsGaN0cojzNmTNHrWk9ZcoUFCtWzPB68eLF8f777+Oll15Sa1+bWvny5dWQ792PkSNHqv0pKSlq28fHB56enujRo4da9szY1atX8fTTT8Pd3V31NL755pvIyMjIccy2bdvQoEEDtTZ2pUqVsHDhQpP/LlRwpPd44u/HEXIzUa3/+kXvepyERvnGwI4e+UL07bbs3roXm5dHEVcnrZtEdN+lEQcMGJDnftm3Z88ek//c/fv3q95B/WPjxo3q9Z49e6qvY8eOxZ9//okVK1Zg+/btuHbtGrp37274fim/IkFdWloadu/ejUWLFqmgTYaUjfOg5Zg2bdqoNXHHjBmjgtgNGzaY/PehgvHzniuqZp2jvR2+7lcfxT2ctW4SWSId3SM2Nlam/qqvdH87z93UBU5Yo6s66S/drfgUrZtDVu5RP5tubm660NDQPPfLPldXV11BGz16tK5ixYq6rKwsXUxMjM7JyUm3YsUKw/7Tp0+r3zM4OFg9/+uvv3T29va6iIgIwzGzZ8/WeXl56VJTU9Xz8ePH62rWrJnj5/Tu3VvXsWPHB24Xr33aORp6W1f5//5S19N5Oy5q3RwyM/n5bD5Uj510/2/atAnfffedoVq73GHqa9qR7fh22wX1tU/jAPh4umjdHKL7kiFPZ+e8e0GcnJxUr1hBkvP//PPPathXhmNl/dr09HS0b9/ecEy1atUQEBCA4OBg9Vy+1q5dG6VK/VuctmPHjmqN25MnTxqOMT6H/hj9OXKTmpqqzmH8IG1W7JG8urTMLHSoUUrlKhMV2soTV65cQadOnVS+h1wUnnzySRQpUgTTpk1TzyWHhWzD4au3sftilBo2GPY4y0SQZfj+++9VHltujJcVKyirVq1CTEwMBg0apJ7L5A0JNmXdWmMSxOkLwstX46BOv1+/737HSLCWnJwMNze3XGcIv/feeyb+DSm/6Sz/W3EUYbeTVQ3QGT3rsiYsFW5gN3r0aDRq1AhHjx5Vib563bp1w7Bhwx6tNWRR9Ll1XeqV5dqFZBGkF2zevHn/eUxBmj9/Pjp37owyZcpAaxMnTsS4ceMMzyUILFeunKZtsjXzdoZg0+kbcHa0x7f9G8DbjXnKVMiB3c6dO1Xy7t3DGTLrKzw8/BGbQ5bi3I14bDx1A3JjOaI1e+vIMkhBYi3JiIeksfz++++G10qXLq2GZ6UXz7jXTmbFyj79MTLxw5h+1qzxMXfPpJXnXl5eufbWCZk9Kw/Sxv7L0Zi2/qzafvfZGqhV1lvrJpEVyHeOnRT1zG2B7LCwMDUkS7Zhzp3eOskHqeTL/+9ED2LBggWqVInMXtVr2LChyu3bvHmz4bWzZ8+qdJfmzZur5/L1+PHjiIyMNBwjM2slaKtRo4bhGONz6I/Rn4PMS1RCKkYtOYTMLB261CuDfk1YKoo06rHr0KEDvvjiC8ydO1c9l1wAmTTx7rvv4qmnnjJRs8ichUYn4Y+j19T2q61ZPJMsh+SaSfCjX+dahiIlN1jPwcEBH3zwAVxdTb98k9wUS2A3cOBAODr+e+n19vbGkCFD1JCo1NOTYO21115TAVmzZs0M110J4KQcy/Tp01U+nRRaltp3+h634cOH4+uvv8b48ePVxIwtW7Zg+fLlWLt2rcl/F3o0EsyNWXYEN+JSUbGkBz7uVpt5daRdYDdz5kw100ouMjLDrF+/fmrdxRIlSuCXX34xXcvIrHNC5MLUopIP6pbLmfBNZM6k/psEOvrATgKhmjVrGoYqz5w5o3LfpK6cqckQrPTCSdB1t88//xz29vaqMLEEmnKN/fbbb3MEnGvWrMGIESNUwOfh4aECRCmqrCfr3crvJm2fNWsW/P391UQROReZl6+3XMDO87fg5uSA2S80hIdLvv8UE+XJTmqe4CHKnSxbtkxNoJDeOql03r9//zzzOCyNJBDLXXRsbKy6e6Z/3YxPRctpW5CakYXFQ5uiRSWuYUiW89ls1aqV6tF69tln1XNJH5HrWFBQdp6olCH55ptv7lsixJrx2lfwdp2/hQE/7IX85f2sV110b8C1tcm0n80HyrGTwO327dtqW+4QJdFXAjkZEpC7Sqlubi1BHd3fgn8uqaCurr83Hqv476xoIktw4cIFVQ9OT4ZcpadMr0mTJjh16pRGrSNrdyMuBaOXHlZBXZ/G5RjUUYF4oMDu9OnTSExMVNtS84iFiG1TXEo6fgq+orZfbVOJOSFkcWTmqXFO3c2bN9WMfuM8OOP9RKaSkZmF15YcRlRiGqr7eWHKczW1bhJZqQca2K9Xrx4GDx6Mli1bqmKKn376aZ4FPo3XLiTrW8cwPjUDlX098WT1nIVQiSyB5J2dOHECVatWzXX/sWPH1DFEpvbp3+ew73I0PF0cVb06VycHrZtEthzYyWLTMutVknell2bdunU5ZnXpyT4GdtYpJT0TP+y6pLaHP1ER9vbsrSPLIzP35Rol5UbunvkqM2ZlRMK4FAmRKVyLScZ3O7JLRM14vg4qlPDQuklk64Gd3N0uXbpUbUs+ipQLkFpMZDtWHAjFrYQ0tcLEc/W0r5hP9DD+7//+T5UAkWvaqFGjUKVKFUPdOJkhKxPD5BgiU9pwMkLl1TUpXxyda/tp3RyycvmeYy05KGRb0jOzMGd7iNp++fEgODnku641kVmQtVNl5RwpG/LWW2+p1BL9aIOsey2Twe5eb5XoUa0/kb2eb6da2auEEGke2K1evVqtbSjV0WX7fp577jlTtY3MxJ9HryE8Jhk+Hs7o1YjrSJJlk3pv69evR3R0tJolKypVqqSKAxOZ2q2EVLV0mOjIwI7MJbDr2rWrqnQuw6+ynRe5681tuTGyXFlZOsy+s3zYSy0rwM2ZCb9kHSSQk/ImRAVJ1tTO0gF1/L1VKguRWQR2xsOvHIq1LVvOROJ8ZIKayfVCs0Ctm0NEZFE4DEuFzWTJUmFhYXj55ZdNdToyE3N3ZufW9W8aAG83J62bQ0RkMWKT07H74i213akmAzuysMAuKioK8+fPN9XpyAwcC4vBvkvRcLS3w6AW/xZxJSKi/7b1TCTSM3WoUsoTQSVzr/1KZGqc3kh5mrczu27dM3X84OfN3BAioocahmVvHRUiBnaUK5kF+9fx62p7aKvsBdKJiOjBJKdlYtu5SLXN2bBUmBjYUa4W7LqEzCwdHqvog1plvbVuDhGRRdl+LhIp6VkoV9wNNfy8tG4O2ZAHLlDcvXv3/1xcm6xDXEo6lu4PVdvD2FtHRPRIw7BSCozI7AI7b2/v/9z/4osvmqJNpLGl+64iITUDlXw98USVklo3h4jIoqRlZGHz6exhWJY5IbMN7BYsWFCwLSGzWT5swT+X1fawVhVgb887TSKi/JASJ/GpGfAt4oL65Ypp3RyyMcyxoxxkwsT12BSU8HRGl3pltW4OEZHF2XAyexi2Y83SvDmmQsfAjgxkQfS5O7ILEr/YvDxcnbh8GBFRfsiks79P3lDbHIYlmwvspkyZopJKjR/VqlUz7G/duvU9+4cPH/6fwcnkyZPh5+cHNzc3tG/fHufPny+E38byBYdE4eS1OLg62XP5MCKih3DgcjSiEtNQ1N0JTSoU17o5ZIM077GrWbMmrl+/bnjs2rUrx/5hw4bl2D99+vT7nk/2f/nll5gzZw727t0LDw8PdOzYESkpKQX8m1i+7+8UJH6+oT+Kezhr3RwiIouz7s5s2PbVS8HJQfM/sWSDHDVvgKMjSpfOu7va3d39vvvv7q374osvMGnSJHTp0kW99uOPP6JUqVJYtWoV+vTpY7J2W5sLkfHYciYSMit/SEuWOCEiyi/5G6TPr+NqE6QVzW8nZJi0TJkyCAoKQv/+/XH16tUc+xcvXowSJUqgVq1amDhxIpKSkvI816VLlxAREaGGX43LsDRt2hTBwcF5fl9qairi4uJyPGzN/F2XDHeZFUp4aN0cIiKLcywsVk0+c3d2QMvKJbRuDtkoTXvsJOBauHAhqlatqoZZ33vvPbRq1QonTpxAkSJF0K9fPwQGBqrA79ixY5gwYQLOnj2L33//PdfzSVAnpIfOmDzX78vN1KlT1c+2VTfjU/HboXC1zYLEREQPZ/2d3ro21Xw5+YxsM7Dr3LmzYbtOnToq0JNAbvny5RgyZAhefvllw/7atWurCRHt2rXDxYsXUbFiRZO1Q3oCx40bZ3guPXblypWDrfhpzxVVULOuvzcal2fNJSKihxmG1a820ZmzYcmWh2KNFS1aFFWqVMGFCxdy3S+Bn8hrvz4X78aN7KnmevL8fnl6Li4u8PLyyvGwFSnpmfh5zxW1PezxIC59Q0T0EM5HJuDSrUQ4O9qjdVVfrZtDNsysAruEhATVGyc9c7k5cuSI+prX/goVKqgAbvPmzTl632R2bPPmzQuo1Zbtt0NhiE5MQ9mibkz2JSJ6SPreuscrl4Cni+bzEsmGaRrYvfHGG9i+fTsuX76M3bt3o1u3bnBwcEDfvn1VgPfBBx/g4MGDav/q1avVWrSPP/64GrbVk7p3K1euVNvS2zRmzBh8+OGH6vjjx4+r75Ecva5du2r4m5qnrCwd5t8pcfJSywpw5NR8IqJHCuxktQkiLWl6WxEWFqaCuKioKJQsWRItW7bEnj171LbUndu0aZMqX5KYmKhy3nr06KFKmRiTyRSxsbGG5+PHj1fHS35eTEyMOuf69evh6uqqwW9o3jafiUTIrUQUcXVE78a2k1NIRGRKV6OScOp6HBzs7VRlASKbDeyWLl2a5z4J5KQ370ESVo1Jr93777+vHnR/83ZmLx/Wr2kAhw6IiB7S+pPX1ddmQcVRjMXdSWMce7NRx8JisO9SNBzt7TDosfJaN4eIyOKHYZmnTOaAgZ2Nmncnt+7ZumXg5+2mdXOIiCzSjbgUHLoao7Y7MLAjM8DAzgaF3U7CX8ezhw6GtqqgdXOIiCzW33eKEjcMLIZSXszlJu0xsLNBC/65jMwsHVpU8kHNMt5aN4eIyOJXm+AwLJkLBnY2Ji4lHcv2h6rtoVw+jIjood1OTMOekGi1zTInZC4Y2NmYpfuuIiE1A5V9PdG6Skmtm0NkE8LDw/HCCy/Ax8cHbm5uaonEAwcO5JjdP3nyZFV8Xfa3b98e58+fz3GO6Oho9O/fX62MI6v0yLKLUtTdmKypLettS3knqSwwffr0QvsdbdHG0zfU6EcNPy8E+Lhr3RwihYGdDUnPzFLDsPrcOi4fRlTwbt++jRYtWsDJyQnr1q3DqVOnMHPmTBQr9u+6zBKAffnll5gzZ45aKcfDwwMdO3ZU9Tz1JKg7efIkNm7ciDVr1mDHjh051tOWVXY6dOig1tuWwu4zZszAlClTMHfu3EL/nW3FBv1sWK4NS2aExctsyNpj13E9NgUlPF3QpV5ZrZtDZBOmTZumes8WLFiQY/lD4946KcQuxde7dOmiXvvxxx9RqlQprFq1Cn369MHp06dVofX9+/ejUaNG6pivvvoKTz31FD799FO1us7ixYuRlpaGH374Ac7OzqhZs6ZahvGzzz7LEQCSacjIx87zt9Q2AzsyJ+yxsxHyx0NfkHhg80C4Ojlo3SQimyDLG0ow1rNnT/j6+qJ+/fqYN2+eYf+lS5cQERGhhl/1vL290bRpUwQHB6vn8lWGX/VBnZDj7e3tVQ+f/hhZclGCOj3p9ZPVeaTXMDepqamqp8/4QQ9m65lIpGVmIaiEh0ptITIXDOxsRHBIFE5ei4Orkz1eaBaodXOIbEZISAhmz56NypUrY8OGDRgxYgRef/11LFq0SO2XoE5ID50xea7fJ18lKDTm6OiI4sWL5zgmt3MY/4y7TZ06VQWR+of0LFL+ZsN2rFWaaS1kVhjY2Yjv7xQkfr6hP5e8ISpEWVlZaNCgAT7++GPVWyfDosOGDVP5dFqbOHGiWmtb/wgNzZ4xT/eXkp6peuwEy5yQuWFgZwMuRMZjy5lIyE3lkJYscUJUmGSma40aNXK8Vr16dVy9elVtly6dHRjcuHEjxzHyXL9PvkZGZgcSehkZGWqmrPExuZ3D+GfczcXFRc2yNX7Qf9t1/haS0jJRxtsVdfxZC5TMCwM7G+qte7J6KVQo4aF1c4hsisyIlTw3Y+fOnVOzV/UTKSTw2rx5s2G/5LpJ7lzz5s3Vc/kaExOjZrvqbdmyRfUGSi6e/hiZKZuenm44RmbQVq1aNccMXHp06+7MhuUwLJkjBnZW7mZ8Kn4/HK62hz3O3jqiwjZ27Fjs2bNHDcVeuHABS5YsUSVIRo4cqfZLYDBmzBh8+OGHaqLF8ePH8eKLL6qZrl27djX08HXq1EkN4e7btw///PMPRo0apWbMynGiX79+auKE1LeTsijLli3DrFmzMG7cOE1/f2ssG7XpdHZPKIdhyRyx3ImV+2nPFaRlZKFuuaJoFMi7dqLC1rhxY6xcuVLls73//vuqh07Km0hdOr3x48cjMTFR5d9Jz1zLli1VeRMpNKwn5UwkmGvXrp2aDdujRw9V+05PJj/8/fffKmBs2LAhSpQooYoes9SJae0NiUZscjp8PJzRqHxxrZtDdA87ndTBoBxkGEQukpJMbMk5J8lpmWgxbQuiE9Pwdb/6eKZO9p09kaWyls+mueL7+98mrTqOn/dcRd8m5TC1ex2tm0M2Ii4fn00OxVqx3w6FqaDOv5gbhwyIiB5RVpYOG05mD8NybVgyVwzsrPgC9MOu7EkTL7WoAEcH/q8mInoUh0Nvq7zlIi6OeKxiCa2bQ5Qr/rW3UpvPRCLkViKKuDqiV2MWHSUielTr78yGbVfdF86O/PNJ5on/Mq2Ufvmwfk0D4OnCOTJERI9C0tH1ZU461fLTujlEeWJgZ4WOhcVg36VoONrbYfBj/y42TkRED0eWZAy7nayWZXyiSkmtm0OUJwZ2VlyQ+Nm6ZVDa+99yCURE9HA23FkbtnUVX7g5O2jdHKI8MbCzMtdikvHX8etqe0hL9tYREZkyv65TLc6GJfPGwM7KLAq+jIwsHZoFFUetslzDkIjoUV2ITMD5yAQ4OdihTTVfrZtDdF8M7KxIYmoGftmbvbD4kJZcPoyIyJTDsFLixNvNSevmEN0XAzsr8uvBMMSlZKC8jzva8a6SiMikgR2HYckSMLCzEplZOiz4505B4pYVYG9vp3WTiIgsXtjtJBwLi4VcUp+sUUrr5hD9JwZ2VmLz6Ru4HJUEL1dH9Gjgr3VziIisgn4Jscbli6OEp4vWzSH6TwzsrMT8O8uH9WsaCA8WJCYiMokNnA1LFoaBnRU4ER6LvXcKEg98LFDr5hARWQVZF3b/lWi13bEmAzuyDAzsrKi37uk6fvDzdtO6OUREVmHjqRvQ6YC6/t4oU5TXVrIMDOwsXERsCv48ek1tsyAxEZHprL8zG7Yjh2HJgjCws3A/3ilI3KR8cdTxL6p1c4iIrEJ0Yhp2X7iltjtxGJYsCAM7C5aclokl+64aSpwQEZFpfLP1grpprl3WG0ElPbVuDtEDY2BnwX47FIaYpHQEFHdnfSUiIhMJjU5SoyHijY5VtW4OUb4wsLNQWVk6/HBn0sTgFuXhwILEREQm8enfZ5GeqUOLSj54vHIJrZtDlC8M7CzUtnORCLmViCIujujZqJzWzSEispryUX8cyZ6QNrFzddjZ8aaZLAsDOwv1/c7s3rq+TQPgyYLERESPTKfTYeq602q7S70yqFXWW+smEeUbAzsLdOpaHHZfjFLDrwMfK691c4iIrMKO87fwz4UoODvY440OzK0jy8TAzgL98E92b13nWqVRlkUziYgeWWaWDp+sO6O2BzQPRLni7lo3icjyArspU6ao/AXjR7Vq1dS+6OhovPbaa6hatSrc3NwQEBCA119/HbGxsfc956BBg+45Z6dOnWAtIuNTsPpO/gcLEhMRmcaqw+E4fT0ORVwdMapNJa2bQ/TQNE/OqlmzJjZt2mR47uiY3aRr166px6effooaNWrgypUrGD58uHrt119/ve85JZBbsGCB4bmLiwusxc/BV5CWmYUGAUVRP6CY1s0hIrJ4KemZmPn3WbX9autKKObhrHWTiCw3sJNArnTpe6t616pVC7/99pvhecWKFfHRRx/hhRdeQEZGhiEAzI0Ecrmd0xouPj/vzS5IPLRVkNbNISKyCot2X8a12BT4ebuq8lFElkzzHLvz58+jTJkyCAoKQv/+/XH1anbgkhsZhvXy8rpvUCe2bdsGX19fNYw7YsQIREVF3ff41NRUxMXF5XiYo5WHw9UyN5JX14EFiYmIHllMUppaZUKMe7IKXJ0ctG4SkeUGdk2bNsXChQuxfv16zJ49G5cuXUKrVq0QHx9/z7G3bt3CBx98gJdffvk/h2F//PFHbN68GdOmTcP27dvRuXNnZGZm5vk9U6dOhbe3t+FRrlw5s5yGP9+oILGjg+YxORGRxft220XEpWSgWuki6N7AX+vmED0yO51EDGYiJiYGgYGB+OyzzzBkyBDD69KD9uSTT6J48eJYvXo1nJycHvicISEhahhX8vjatWuXZ4+dPIx/ngR3+h5Cc7DtbCQGLdivatYFT2yLIq4P/h4QWQv5bMrNlzl9Nq2Jrb2/YbeT0PbT7SpvecHgxmhT1VfrJhE98mfTrLp9ihYtiipVquDChexucSG9d9ILV6RIEaxcuTJfQZ2QId4SJUrkOGduOXnyRhk/zI2+t65343IM6oiITOCzv8+poK55kA9aVympdXOITMKsAruEhARcvHgRfn5+hgi1Q4cOcHZ2Vj11rq6u+T5nWFiYyrHTn9MSnY2Ix87ztyDLwQ5iQWIiokd28losVh4JV9sTn6rGpcPIamga2L3xxhsqB+7y5cvYvXs3unXrBgcHB/Tt29cQ1CUmJmL+/PnqeUREhHoY58tJ3TvpydMHhm+++Sb27Nmjzil5dl26dEGlSpXQsWNHWKof7vTWdaxZmkUziYhMQIoRSyLSs3XLoI5/Ua2bQ2Qd5U6kN02COOlRK1myJFq2bKmCMtmWma179+5Vx0lgZkwmWZQvn91zdfbsWUPRYgkKjx07hkWLFql8PZltK8GhTLqw1Fp2txJSDXeVQ1uxIDER0aPaef6mGgVxcrDDm1w6jKyMpoHd0qVL89zXunVrNRP0vxgfIytUbNiwAdbk5z1XkJaRhbrliqIBCxITET2SLKOlw15oFogAH46CkHUxqxw7yqUg8Z4rantoywrMASEiekSrj17DyWtxKOLiiNfaVta6OUQmx8DOjMmasLcS0lDG2xWda1nfShpEtuB+a2KLlJQUjBw5Ej4+PvD09ESPHj1w48aNHOeQwu1PP/003N3dVfF1ySWWFXiMSfpKgwYNVNqJpK9IjVDKKTUjEzM2ZC8dNrx1RRTn0mFkhRjYmSnjgsSDWJCYyKLJmtjXr183PHbt2mXYN3bsWPz5559YsWKFmkwm62F3797dsF8mi0lQl5aWpiaZSQ6xBG2TJ0/OkXcsx7Rp0wZHjhzBmDFjMHToUKtLTXlUPwVfQXhMMkp5ueClFsxZJuuk+VqxlLtdF27h7I14uDs7oHfjAK2bQ0QFsCa2TPySWf9LlixB27Zt1WsLFixA9erV1USyZs2a4e+//8apU6dUkfVSpUqhXr16akLYhAkTVG+glIOaM2cOKlSogJkzZ6pzyPdL8Pj555/ftyJAbsXZrVVsUjq+2vLv0mFuzlw6jKwTu4HMlL63rlejcvB2Y0FiIkuW15rYBw8eRHp6Otq3b284VoZpAwICEBwcrJ7L19q1a6ugTk+CNQnCTp48aTjG+Bz6Y/TnsOTlFE3l2+0XEJucjiqlPNGDS4eRFWNgZ4YuRMZj29mbkLkSsi4sEVmu+62JLXU5pcdNVt0xJkGc7BPy1Tio0+/X77vfMRL8JScn59m2iRMnql5D/SM0NBTW6FpMMhb8c1ltT+hUjaktZNU4FGuG5u/KvgA9Wb0UAn08tG4OET2Czp07G7br1KmjAj1ZE3v58uWqRJOWZKKFpdb4zI/PNp5TZaOaVCiOttW4HixZN962mJnoxDT8fihMbQ9tFaR1c4ioANfElrw7mRQhBdWNyaxYfU6efL17lqz++X8dI+teax08au309Tj8duea+n9PVWfZKLJ6DOzMzOI9V5CakYXaZb3RuDwLEhNZG+M1sRs2bAgnJye1/KGerKYjOXjNmzdXz+Xr8ePHERkZaThm48aNKmirUaOG4Rjjc+iP0Z/Dlk1bn7102NO1/VCvHJcOI+vHwM7Maiz9qC9I3IoFiYmswf3WxJYJC0OGDMG4ceOwdetWNZli8ODBKiCTGbFClkWUAG7AgAE4evSoKmEyadIkVftOP4w6fPhwhISEYPz48Thz5gy+/fZbNdQrpVRs2e4Lt1S+sqO9Hd7syKXDyDYwx86M/Hn0Om7Gp6K0lyuequ2ndXOIqIDXxBZSksTe3l4VJpbSIzKbVQIzPQkC16xZgxEjRqiAz8PDAwMHDsT7779vOEZKnaxdu1YFcrNmzYK/vz++//77+5Y6sYWlw6beWTqsf9MAlC/BfGWyDXa6B1mQ1cbITDK5k5ZZYjLcURjkf8NTX+5S+SDjO1XFq60rFcrPJbIkWnw2bYk1vb+ydNjrvxyGh7MDto9vgxKe1j9JhKxXfj6bHIo1E8EhUSqoc3NyQL8mLEhMRPRoS4dl99YNf6IigzqyKQzszMQv+7LrR3VvUBZF3bl+IRHRw1q85ypCo5PhW8QFQ1px6TCyLQzszGSpmw0nswuN9uHyYUREDy0uRZYOO6+2xz5ZBe7OTCUn28LAzgysPnZNFc+sVroIapW17LwWIiItzdl2EbeT0lGxpAd6NuTSYWR7GNiZgRUHsodhezYqxxInREQP6dyNePzwT/Y621w6jGwV/9Vr7GxEPI6Fxao6S13rldG6OUREFinkZgL6zduLlPQsNA/ywZM1cq6dS2QrGNiZSW9d++ql4MOZW0RE+XY1KkkFdbcSUlHdzwuzX2jA0Q+yWQzsNJSemYWVh8PVds9GzAUhIsqv8Jhk9J23BxFxKajs64mfhzRhZQGyaQzsNLTlTCSiEtNQsogLnqiSXYWeiIgezI24FPSft0cFdxVKeGDx0KYc+SCbx8BOQysOhKmv3euXZZIvEVE+yLBrv3l7cDkqCeWKu2HJsKbw9XLVullEmmM0oZHI+BRsPRuptjkMS0T04G4npuGF7/fi4s1ElPF2xZKhzeDn7aZ1s4jMAgM7jaw6HI7MLB3qBxRFJd8iWjeHiMgixCanY8APe3EmIl6tLLF4WDOUK+6udbOIzAYDOw3odDrDMGzPhuW0bg4RkUVISM3AoAX7cCI8Dj4eziqnTnLriOhfDOw0cCQ0BucjE+DqZI9n6vpp3RwiIrOXlJaBlxbsx+GrMSjq7oSfhzZF5VIc7SC6GwM7Daw4mN1b17mWH7xcnbRuDhGRWUtJz8SwHw9g3+VoFHFxxE8vNVX16ojoXgzsCllyWib+PHJNbXMdQyKi+0vNyMSInw/inwtR8HB2wMKXmqC2v7fWzSIyWwzsCtmGkxGIT82AfzE3NAvy0bo5RERmXcT9tSWHsfXsTZW68sOgxmgYWEzrZhGZNQZ2hWzFwewlxJ5v6A97ey55Q0SUG6kaMHbZEfx96gacHe3x/YuN0ZQ3w0T/iYFdIQqNTsLui1Fqu0cDDsMSEeUmK0uHN389ijXHrsPJwQ5zXmiAlpVLaN0sIovAwK4Q/XYoDDod0KKSD+suERHlUQ7q7VXH8fuhcDjY2+Grvg3QtloprZtFZDEY2BXiHeivd2bDsnYdEVHuQd17f57CL/tCIZkqn/euh061SmvdLCKLwsCukOy5FIWw28lqqn7HmrxQERHdHdR9su4MFu6+rJ5Pf74unqtbRutmEVkcBnaFRL/SxDN1y8DN2UHr5hARmZXPN53HdztC1PbH3WqrCWZElH8M7ApBXEo61p24rrZ7NeLFiojI2DdbL+DLzefV9rvP1kC/pgFaN4nIYjGwKwRrj11HSnoWKvl6ol65olo3h4jIbPxxJBwzNpxV2291robBLSpo3SQii8bArhAsPxBqWGnCzo6164iI9CWgJq08obaHP1FRPYjo0TCwK2AXIuPVotUybb9bg7JaN4eIyCxkZGZh9NLDaiUeWU3ijQ5VtG4SkVVgYFfAVtwpcdKmakn4FnHVujlERGbhyy0XcOhqjKoU8EXvenB04J8jIlPQ9JM0ZcoUNTRp/KhWrZphf0pKCkaOHAkfHx94enqiR48euHHjxn9OmZ88eTL8/Pzg5uaG9u3b4/z57KRcLe5IpcimeJ6164iIlH2XovH1luzr8kfda7NgO5EJaX6LVLNmTVy/ft3w2LVrl2Hf2LFj8eeff2LFihXYvn07rl27hu7du9/3fNOnT8eXX36JOXPmYO/evfDw8EDHjh1VkFjYtp+7iZvxqfDxcEbbar6F/vOJiMxNbFI6xiw9jCxd9tKKrFVHZFqOmjfA0RGlS99bsDc2Nhbz58/HkiVL0LZtW/XaggULUL16dezZswfNmjXLtbfuiy++wKRJk9ClSxf12o8//ohSpUph1apV6NOnD7SoXde1flm1iDURkS2Ta/T/rTqOa7EpCPRxx3tdamrdJCKro3m0IcOkZcqUQVBQEPr374+rV6+q1w8ePIj09HQ1lKonw7QBAQEIDg7O9VyXLl1CREREju/x9vZG06ZN8/wekZqairi4uByPRxWVkIpNp7OHjXuydh0Rkco5lvJPjvZ2mNWnPjxdNO9bILI6mgZ2EnAtXLgQ69evx+zZs1Vg1qpVK8THx6sAzdnZGUWL5qz7Jr1vsi83+tflmAf9HjF16lQVAOof5co9ej7cqiPXkJGlQx1/b1Qr7fXI5yMismQhNxMwZfVJtT2uQxXW9CQqIJreLnXu3NmwXadOHRXoBQYGYvny5WriQ2GZOHEixo0bZ3guPXaPEtzJcMMKo9p1RES2LC1DSpscQVJaJpoH+eCVx1mvjshqh2KNSe9clSpVcOHCBZV3l5aWhpiYmBzHyKzY3HLyhP71u2fO3u97hIuLC7y8vHI8HsWJ8DiciYhXeXXP1WXtOiKybTM3nsXx8FgUdXfCZ73rqrqeRGQDgV1CQgIuXryoSpU0bNgQTk5O2Lx5s2H/2bNnVQ5e8+bNc/3+ChUqqADO+Huk901mx+b1PQVhxcHs3roONUrB292p0H4uEZm/Tz75RJV2GjNmTL5KO8m17+mnn4a7uzt8fX3x5ptvIiMjI8cx27ZtQ4MGDdTNaqVKlVSqi9Z2nb+F77aHqO1PuteBn3fhjcYQ2SJNA7s33nhDlTG5fPkydu/ejW7dusHBwQF9+/ZVuW5DhgxRQ6Rbt25VkykGDx6sAjTjGbEyoWLlypVqW3+x/PDDD7F69WocP34cL774opqc0bVr10L5nVLSM/HHkWtqu1cj1q4jon/t378f3333nUo9MfZfpZ0yMzNVUCejGHKtXLRokQrapGannuQoyzFt2rTBkSNH1LVw6NCh2LBhA7QSnZiGccuPqO1+TQPQqVbeIydEZCI6DfXu3Vvn5+enc3Z21pUtW1Y9v3DhgmF/cnKy7tVXX9UVK1ZM5+7uruvWrZvu+vXrOc4hv8KCBQsMz7OysnTvvPOOrlSpUjoXFxddu3btdGfPns1Xu2JjY9V55Wt+rT4SrgucsEbX7ONNuozMrHx/PxEVzGdTa/Hx8brKlSvrNm7cqHviiSd0o0ePVq/HxMTonJycdCtWrDAce/r0afV7BgcHq+d//fWXzt7eXhcREWE4Zvbs2TovLy9damqqej5+/HhdzZo1c/xMuaZ27NhRk/dXrsVDFu5X18N2M7fpklIzHvmcRLYqNh+fTU177JYuXaruTKXcSFhYmHpeseK/SbWurq745ptvEB0djcTERPz+++/35MpJbDdo0CDDc+m1e//999UsWBne2LRpk8rbK+wlxKTwJvNIiEhPhlqlR824HNODlnaSr7Vr184x418Kr0uqycmTJw3H3H1uOaawSz3p/bz3qir55Oxgjy/71Iebs4PJzk1EeWMRIRO6FpOMnedvqu3nORuWiO6Qm9ZDhw6podi7PUhpJ/maWxkn/b77HSPBWnJycq6VBqTU03vvvQdTO3cjHh+uOaW23+pcDTXKsOQTkU1OnrB0vx8KgwwON6lQHOVLeGjdHCIyA6GhoRg9ejQWL16sRiHMiZR6klV+9A9pqynyjF//5TBSM7LQumpJDG5R3iRtJaIHw8DORGRI+Nc7w7CsXUdExkOtkZGRaraqLKEoD5kgIWtay7b0qv1XaSf5mlsZJ/2++x0j5Zvyqgtq6lJP4pN1Z1S5pxKezpjxfF2VHkNEhYeBnYnsv3wbl6OS4OHsgKdq+2ndHCIyE+3atVMz9GWmqv7RqFEjtYSifvu/SjvJVzmHBIh6GzduVIFYjRo1DMcYn0N/TGGWetpy5gYW7r6stj/tWRcli7gU2s8momzMsTOR5XdWmni6jh88uP4hEd1RpEgR1KpVK8drHh4eqmad/nV9aafixYurYO21117LUdqpQ4cOKoAbMGAApk+frvLpJk2apCZkSK+bGD58OL7++muMHz8eL730ErZs2aJW8Vm7dm2h/J6RcSl4Y8Uxtf1SiwpoXdW3UH4uEeXECMQEElMz8Nfx62q7J2vXEVE+ff7557C3t1eFiWWmqsxm/fbbbw37pb7nmjVrMGLECBXwSWA4cOBAVQHAuEC7BHFSE2/WrFnw9/fH999/r85V0LKydPjfiqOqbl11Py9M6Fy1wH8mEeXOTmqe5LHPZsksMimQLMnED5JzIr114389hgolPLDlf08wp4TITD6bVDjv7/c7Q/Dh2tNwdbLHn6NaonKpIgXaTiJbE5ePzyZz7ExgxZ1hWClxwqCOiGzJifBYTFt/Rm2/80wNBnVEGmNg94gu3UpUEyekFrEUJSYishVJaRl4felhpGfq1NrY/ZoEaN0kIpvHwO4R/Xowu7euVeWSKO1tXjWqiIgK0gdrTiHkZiJKeblgWo86HLEgMgMM7B5BZpYOvx0MV9u9OGmCiGzIuuPX8cu+UEgs93mveijm4ax1k4iIgd2jkeXDIuJSUNTdCe1rcGo/EdnO8olv/X5cbQ9/oiIeq1RC6yYR0R0M7B6BfqWJLnXLwMWRC1wTkW2YuyMEscnpqOvvjXFPVtG6OURkhHXsHsGU52qiXrmiKr+OiMhWvP10dXi5OaF7/bJwcmD/AJE5YWD3CEp4umBoqyCtm0FEVKgkmGNPHZF54q0WERERkZVgYEdERERkJRjYEREREVkJBnZEREREVoKBHREREZGVYGBHREREZCUY2BERERFZCQZ2RERERFaCgR0RERGRlWBgR0RERGQlGNgRERERWQkGdkRERERWgoEdERERkZVgYEdERERkJRjYEREREVkJR60bYI50Op36GhcXp3VTiMiI/jOp/4ySafHaR2T51z4GdrmIj49XX8uVK6d1U4goj8+ot7e31s2wOrz2EVn+tc9Ox1vfe2RlZeHatWsoUqQI7OzsYK7Ru1x8Q0ND4eXlpXVzzB7fL+t4z+RyJRe2MmXKwN6emSSmxmuf9eH7ZXvXPvbY5ULeNH9/f1gC+UdnLv/wLAHfL8t/z9hTV3B47bNefL9s59rHW14iIiIiK8HAjoiIiMhKMLCzUC4uLnj33XfVV/pvfL/yj+8ZmSP+u8wfvl+2955x8gQRERGRlWCPHREREZGVYGBHREREZCUY2BERERFZCQZ2RERERFaCgZ2GduzYgWeffVZVkpYq76tWrcqx/8aNGxg0aJDa7+7ujk6dOuH8+fP3nCc4OBht27aFh4eHKqb4+OOPIzk52bA/Ojoa/fv3V/uKFi2KIUOGICEhAbb4fkVERGDAgAEoXbq0er8aNGiA3377Lccx1vJ+TZ06FY0bN1arCPj6+qJr1644e/ZsjmNSUlIwcuRI+Pj4wNPTEz169FDvo7GrV6/i6aefVu+pnOfNN99ERkZGjmO2bdum3kuZRVapUiUsXLiwUH5Hsky89uUPr335M9XGr30M7DSUmJiIunXr4ptvvrlnn0xWln+MISEh+OOPP3D48GEEBgaiffv26vuML2zyIe7QoQP27duH/fv3Y9SoUTmWHJEP6smTJ7Fx40asWbNGXSRefvll2OL79eKLL6oP+OrVq3H8+HF0794dvXr1Usdb2/u1fft2deHas2eP+l3S09PVvxPj92Ps2LH4888/sWLFCnW8LCcl74leZmamurClpaVh9+7dWLRokbpwTZ482XDMpUuX1DFt2rTBkSNHMGbMGAwdOhQbNmwo9N+ZLAOvffnDa1/+bLf1a5+UOyHtyf+KlStXGp6fPXtWvXbixAnDa5mZmbqSJUvq5s2bZ3itadOmukmTJuV53lOnTqnz7N+/3/DaunXrdHZ2drrw8HCdrb1fHh4euh9//DHHuYoXL244xlrfLxEZGal+t+3bt6vnMTExOicnJ92KFSsMx5w+fVodExwcrJ7/9ddfOnt7e11ERIThmNmzZ+u8vLx0qamp6vn48eN1NWvWzPGzevfurevYsWMh/WZkyXjtyx9e+/Iv0saufeyxM1Opqanqq6urq+E1uROV7t5du3ap55GRkdi7d6/qIn7sscdQqlQpPPHEE4b9+rta6VJv1KiR4TW5k5Nzyffa0vsl5H1atmyZGnKQBc+XLl2quuRbt25t9e9XbGys+lq8eHH19eDBg+pOVn4/vWrVqiEgIEC9D0K+1q5dW/3b0uvYsaNaJFvu7PXHGJ9Df4z+HET5wWtf/vDa999ibezax8DOTOn/kU2cOBG3b99W3cHTpk1DWFgYrl+/ro6RrncxZcoUDBs2DOvXr1dj/e3atTPkV0hehVz8jDk6Oqp/4LLPlt4vsXz5cvWBlrwKufC98sorWLlypcqNsOb3Sy7kMkzQokUL1KpVS70mv4+zs7O6mBuTC5n+d5Wvxhc2/X79vvsdIxdA43wnogfBa1/+8Np3f1k2eO1jYGemnJyc8Pvvv+PcuXPqgyXJm1u3bkXnzp0NOSTyD1bIB3Tw4MGoX78+Pv/8c1StWhU//PADbMmDvF/inXfeQUxMDDZt2oQDBw5g3LhxKs9Eck6smeSbnDhxQt2lE5kzXvvyh9e++xtpg9c+R60bQHlr2LChSsiUbmS5CytZsiSaNm1q6Cr38/NTX2vUqJHj+6pXr65m8wiZASXDFsZkVo90x8s+W3q/Ll68iK+//lp9yGvWrKlek4TknTt3qqTkOXPmWOX7JQnl+kRof39/w+vy+8j7JBd74ztXmRmm/13lqySmG9PPHDM+5u7ZZPJcZta5ubkV6O9G1onXvvzhtS93o2z02sceOwvg7e2tPqgyxCB3Wl26dFGvly9fXk1vv3sat9y5yawo0bx5c/WPV3IK9LZs2aLueOWDb0vvV1JSkvpqfBcrHBwcDD0A1vR+SZ61XNhkuEV+hwoVKtzzx0Du9jdv3mx4Tf4tyR9GeR+EfJU7euMLvswykwuX/o+qHGN8Dv0x+nMQPSxe+/KH175sNn/t03Tqho2Lj4/XHT58WD3kf8Vnn32mtq9cuaL2L1++XLd161bdxYsXdatWrdIFBgbqunfvnuMcn3/+uZqlI7N7zp8/r2aJubq66i5cuGA4plOnTrr69evr9u7dq9u1a5eucuXKur59++ps7f1KS0vTVapUSdeqVSv1Xsh79Omnn6pZX2vXrrW692vEiBE6b29v3bZt23TXr183PJKSkgzHDB8+XBcQEKDbsmWL7sCBA7rmzZurh15GRoauVq1aug4dOuiOHDmiW79+vZptN3HiRMMxISEhOnd3d92bb76pZpZ98803OgcHB3UsUW547csfXvvyZ4SNX/sY2GlIPojyIb37MXDgQLV/1qxZOn9/fzUtW/4ByoVLP83a2NSpU9Vx8g9M/mHu3Lkzx/6oqCj14fT09FQXwsGDB6sLhS2+X+fOnVMXPF9fX/V+1alT554SANbyfuX2XsljwYIFhmOSk5N1r776qq5YsWLq/ejWrZu6ABq7fPmyrnPnzjo3NzddiRIldP/73/906enp9/y/qVevns7Z2VkXFBSU42cQ3Y3XvvzhtS9/YOPXPjv5j7Z9hkRERERkCsyxIyIiIrISDOyIiIiIrAQDOyIiIiIrwcCOiIiIyEowsCMiIiKyEgzsiIiIiKwEAzsiIiIiK8HAjoiIiMhKMLAjIiIishIM7MhiyCIp7du3R8eOHe/Z9+2336Jo0aIICwvTpG1ERAWF1z7KDwZ2ZDHs7OywYMEC7N27F999953h9UuXLmH8+PH46quv4O/vb9KfmZ6ebtLzERHlF699lB8M7MiilCtXDrNmzcIbb7yhLmpyJztkyBB06NAB9evXR+fOneHp6YlSpUphwIABuHXrluF7169fj5YtW6q7Wx8fHzzzzDO4ePGiYf/ly5fVBXTZsmV44okn4OrqisWLF2v0mxIR/YvXPnpQdjr510FkYbp27YrY2Fh0794dH3zwAU6ePImaNWti6NChePHFF5GcnIwJEyYgIyMDW7ZsUd/z22+/qYtXnTp1kJCQgMmTJ6sL2pEjR2Bvb6+2K1SogPLly2PmzJnqYikXOD8/P61/XSIihdc++i8M7MgiRUZGqotZdHS0umidOHECO3fuxIYNGwzHSM6J3OWePXsWVapUueccckdbsmRJHD9+HLVq1TJc3L744guMHj26kH8jIqL/xmsf/RcOxZJF8vX1xSuvvILq1aurO9ijR49i69ataihC/6hWrZo6Vj/kcP78efTt2xdBQUHw8vJSd6fi6tWrOc7dqFEjDX4jIqL/xmsf/RfH/zyCyEw5Ojqqh5DhhWeffRbTpk275zj9cILsDwwMxLx581CmTBlkZWWpu9W0tLQcx3t4eBTSb0BElH+89tH9MLAjq9CgQQM1LCF3ovoLnrGoqCg1LCEXtlatWqnXdu3apUFLiYhMh9c+uhuHYskqjBw5UuWcyHDD/v371RCE5JwMHjwYmZmZKFasmJoNNnfuXFy4cEElFY8bN07rZhMRPRJe++huDOzIKsjwwj///KMuZDL9v3bt2hgzZoya3i+zvuSxdOlSHDx4UA1BjB07FjNmzNC62UREj4TXProbZ8USERERWQn22BERERFZCQZ2RERERFaCgR0RERGRlWBgR0RERGQlGNgRERERWQkGdkRERERWgoEdERERkZVgYEdERERkJRjYEREREVkJBnZEREREVoKBHRERERGsw/8DxxGJgcaOWZcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 2)\n", "ax[0].plot(grouped['life_expectancy'])\n", "ax[0].set_xlabel('Year')\n", "ax[0].set_ylabel('Life Expectancy')\n", "ax[1].plot(grouped['gdpPercap'])\n", "ax[1].set_xlabel('Year')\n", "ax[1].set_ylabel('GDP per Cap')\n", "fig.tight_layout()" ] }, { "cell_type": "code", "execution_count": 91, "id": "54331f0a-389e-41c5-8a01-fc4a7443fb6e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAG2CAYAAACKxwc0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdd9JREFUeJztnQd4VGX2xg+kkU4SkpCE3ntnRcWKChawYMMuWBZ7xcW/vazi2huuDXQVFVZUFjsKriAIUkV6CSEkBEjvCcn8n/e7TjYgYOa7d2bunXl/zzNkMuXmy5D55txz3nPeZi6XyyWEEEIIIQ6lub8XQAghhBBiBgYzhBBCCHE0DGYIIYQQ4mgYzBBCCCHE0TCYIYQQQoijYTBDCCGEEEfDYIYQQgghjobBDCGEEEIcDYMZQgghhDgaBjOEEEIIcTQMZgghjqJDhw7SrFmzP1xuvPFGdX9VVZW6npSUJDExMTJ27FjJy8vz97IJIV6kGb2ZCCFOYu/evVJXV9fw/dq1a+XUU0+V+fPny4knnigTJ06Uzz//XKZPny7x8fFy0003SfPmzWXRokV+XTchJEAzMzzDIoR4SnJysrRu3brhMnfuXOncubOccMIJUlxcLG+99ZY8++yzcvLJJ8vgwYNl2rRp8tNPP8mSJUv8vXRCiJcIFT+ybNmyQ55hXXDBBer722+/XZ1hzZo1q+EM67zzzvPoDKu+vl5ycnIkNjZWBUqEEN+C5G9paamkp6erDImV1NTUyHvvvSd33HGHen8vX75camtr5ZRTTml4TI8ePaRdu3ayePFiGTZs2GGPVV1drS6N946CggJ1MsW9gxCb7x0uG3Hrrbe6Onfu7Kqvr3cVFRW5wsLCXLNmzWq4f/369SiJuRYvXtzkY+7cuVM9hxdeePHvBe9Fq/noo49cISEhrl27dqnv33//fVd4ePgfHjd06FDXpEmTjnisBx980O+vES+88CJae4dfMzPeOMM6+OzKLQnauXOnxMXF+eA3IYQ0pqSkRNq2bauyo1aDktLpp5+uztzMMnnyZLX/uEHJCvsN9w5C7L932CaY+fTTT6WoqEiuuuoq9f3u3bslPDxcWrZsecDjUlNT1X2H44knnpCHH374D7djM+KGRIj/sLpUs2PHDpk3b57Mnj274TZoaHBihL2k8d4BrR3uOxIRERHqcjDcOwix/95hm9Zsq86wcHaFMyr3BWdVhJDAA8LelJQUOfPMMxtug+A3LCxMvvvuu4bbNm7cKFlZWXL00Uf7aaWEEG9ji8yMlWdYhzu7IoQEDhDnIpi58sorJTT0f9sYGgUmTJigykWJiYkqo3LzzTerQOZI4l9CiLOxRWaGZ1iEEE/AyQ/2gvHjx//hvueee07OOussNcrh+OOPVyc/jU+UCCGBh9+H5uEMq2PHjjJu3Dh58sknD7gPw6+++OILNfzKfYYFMDPCEwERztZQcmLdmxDf49T3oFPXTUig4Ml7MNTuZ1joLccZFjqURo4cKa+++qpf1kkIIYQQe+L3zIy34dkVIf7Fqe9Bp66bkEDBk/egLTQzhBBCCCG6MJghhBBCiKNhMEMIIYQQR8NghhBCCCGOhsEMIYQQQhwNgxlCCCGEOBoGM4QQQghxNAxmCCHaVO+vlnpXvb+XQQhxEhhvV1Vl6SEZzBBCtCisLJQVuSskvyLf30shhDgpkNm8WWTNGksPy2CGEOIxRVVFsnr3askty2VmhhDSdLZvF1m/XqSyUqyEwQwhxONAZlXuKimpKZHmzbiFEEKaSFaWyG+/GdkZi+FORAjxOCODQCY9Jl2aSTN/L4kQ4gRyckR+/VUkKkokNtbywzOYIYQ0ieKqYhXIFFcXG4FMMwYyhJAmsGePEciEhoq0bCnegMEMIaRJgcyq3aukqLqIgQwhpOnk5xti3/p6kVatxFswmCGEHJGS6pKGQCYjJoOBDCGkaRQVGYEM2rBTUsSbMJghhBwxkFmZu1JpZRjIEEKaTGmpyOrVxtfWrcXbMJghhBw2kIFGRgUysQxkCCFNpKLC0MggM5OeLuKDvYPBDCHkD5RWl6pApqCygIEMIaTpoKSEQCYvz2eBDGAwQwj5QyADjQwCmfRYin0JIU2kpsaYI4M2bAQyzX0XYjCYIYQcMiODQIZD8QghTWL/fpF160R27DACGbRh+xDuVIQQRVlNmQpk8ivzGcgQQppOXZ1hUQCrgrQ0nwcygLsVIUQFMrAo2Fexj4EMIaTpYH4MjCO3bDHar8PDxR9wxyIkyHFnZBDIZMRlMJAhhDQNeCxt3SqycaMxEK9FC/EX3LUICWLKa8plTd4a2VO+h4EMIcQzMjON8hIsCuC55Ee4cxESxIHM6rzVKpBpE9eGgQwhpOns3Gl0LsE0MiZG/A13L0KCPCMDryUGMoSQJpOba8ySQVkpLk7sAHcwQoI0kNldtlsFMiHNQ/y9JEKIkxyw16wRCQkRSUgQu+D7/ilCiN+AyPe3Pb9JYVWhmuzLQIYQ0mQKCoyMDFqxU1PFTjCYISQIqHfVS1ZxlmzYt0Hq6uukTWwbTvYlhDSN2lqRXbuM9uvKSmMons1gMENIgFO9v1o25m+U7YXbJSY8RpKjkv29JEKIU2bI7NljtF/jK8S+GIpnQxjMEBLAwPF6/d71kluWK6nRqdIi1H9zIAghDqKw0Gi9RtcSJvpmZBg6GZvCYIaQAMTlcklOaY6s27tOKvZXqLIS9TGEkD+lokIkK8uwJoBxZHKySESE2B0GM4QEGLV1tbK1cKtszt8sESERKpAhhJA/NYp062KKi0WSkgx7AofAYIaQALMmQFlpZ8lOaRXZSqLDo/29JEKI3S0J9vyui8nLMwbgtWsn4rAGAQYzhAQIGIC3bs86KaouUm3Xoc359iaEHIGiIqOclJ0t0ry50aXkB8drK3DmqgkhDaDVOrMoU7VdN5NmbLsmhBwZtFdDFwOBb1WV300irYDBDCEOpmp/lQpiMgszJb5FvMRF2GO0OCHEprqYnByjpIRuJehiEMj4kn37RHbvFunQwdLDMpghxKEUVBaostLeir2q7Toi1P4dB4QQP+li9u79ny4GDtf+0MVg+N7NNxtr+cc/RE44wbJDM5ghxIFt19kl2bJu3zqp2V/jN8frVbtXSWRopM9/LiHEA0pLjSAG82IQvGDonb90MWFhIuPGiUydKhJtbXMCjSYJcRA1dTVqdsyK3BUSIiGSHus/x+v+qf1l/b71KrgihNjU3XrpUkPkm5jo30DGzZgxItOmWW6JwGCGEIdQWl0qK3NXKmuCpMgkSYhM8IvHkzt4gch4SPoQio0JsaM2ZtMmkeXLjdJO27b+E/jCEuGf/zRMKt14YS0sMxFicxA8wI4A82MwR8ZfbddYxz9++oe6fvcxd/stI0QI+ZMJvuvXG91KyMZgboy/wInPM8+IfPSRyHfficyY4bXMEIMZQmxuErmlYItsK9wm4SHhKpDxVybkt72/yb/X/VtdH9l5pAxoPcAv6yCEHIa9e0XWrTOyICgpQaPiT956ywhkwPjxXi1xMZghxMbdSmi73l22W1KiUiQyzL9i2z4pfeTRkx5V2SEGMoTYiPp6Y2bMxo3GdZSV/F3+nTVL5LXXjOt33SUyapRXfxyDGUJsOARvR9EO2VSwSfbX7/e7SSTKS+5s0Kgu3t2QCCEegqF3mzaJbNsmEhcnEh/v7xWJfP21yFNPGdevvVbk4ou9/iNZ9CbERpTXlMuavDXqEt48XNJi0vwayCzIXCC3fnWrVNRW+G0NhJDDgMF3K1YY5pBwt7ZDIPPTTyIPPGDoZS64QOS663zyY5mZIcQGIPuBchLKSkVVRdI6prXSyPgTBDCP/fiYWs+Haz+U8QPH+3U9hJDfQaAAh2voY5CZadNGJMR/Jz0NrFkjMmmSSF2dyMiRInff7bNyF4MZQmwwO2ZL/hbZWrhVwpqHSdu4trZod44Ki5IXRr0gs9fPliv6X+Hv5RBCAFqtN282sjGRkSIZGWILsJ7bbjOCq2OOEXnoIcO80kcwmCHEjxRWFqpsDFqvk6OSVQBhJ3on91YXQohNpvkiGwOX65QUw5bADuzaJXLTTSIlJSL9+olMmeLzTipqZgjxAxg+B5Hv0l1LlbcSRL52CGRyS3Plr3P/qr4SQmwEzBkxzRdTfVFWsksgk59vBDIwkOzcWeS554yMkY9hMEOIH7Qoq3evlpW7V6rhd5gd40+Rb2Me//Fx+SX3F/WVEGIDoD9BWemXX4wSEwIZf1sSHLw+ZGFgT/Dyy34TIdvoFSEk8FEi370bpKCqQHUq+VvkezAPnPCACmT+77j/8/dSCCGY5ovZMfBWSkry7zTfw4Fy1+uvi5SVGR1VfoLBDCE+oLauVgl8IfRFFqZdXDtbiHwPJiU6RYl+CSF+BmWb334zyjjIevh7mu/B3k+rVokMGWJ837KlcfEjLDMR4mXQ2rw8d7lyu46LiFMBg10CGQzlu+/7+2TV7lX+XgohxN12vXOnUVZCtgPTfO0UyNTXizz6qMjEiSIffyx2gZkZQrwo8s0uyVbdSpX7K/1mEHkk3l39rny19StZnL1Y5lw8R6LDo/29JEKCFwQKmOSLjiUIfP1YtjkiWBvarm20PnvtrIQE0OyYjfs2KoPI6LBo1a1kRy7pe4kykDy3x7kMZAjxd+kG+hiIfRMS7KmPAQhiMBjvnHNEuncXu8BghhCLKa4qlnX71qn25tToVGkR2kLsCtb29KlP26bsRUhQUl1tZGMg9E1NFWlhsz2jrk5kwQKRE04wOqmwX9gokAEMZgix0JIAw+/W7Vkn5bXlfjeIPBywJkAWZnS30ep7BjKE+JHycpG1a43Bc2lpIuH26nCUJUtEnn/emPCLyb5PP22/NTKYIcQ6Ie2Wgi2yOX+zarduE2fPslJOaY48s/gZcYlLOrbsKH1S+vh7SYQEL0VFIr/+anQswZbATvNjtm0TeeEFkUWLjO/hyI1gxk5i5EbY6JUjxLlO1+hU2lmyU1pFtrKd9gQZI3f2JT02XU7pdIqacUObAkL8yN69hjEjMjMIZHzoY/SnTtyYGzN7tlFegoHlhReKXHONPVy5DwODGUJMsKd8jyorFVUX2a5bCd1UX275UpWVpp45VWLCDUHhIyc+ImEh9jy7IiQoQEkJpSWIfjFDxg6l3upqkQ8/FHn7bSPAAiedJHLzzSLt2ondsc/OS4iDqKuvk8yiTNmYv1HEJUofYzftCYKZt1a+JVnFWTLzt5kyfuB4dTsDGUL8OEMGIl+IfaE7ad3aHmuaN0/kpZdEcnKM2yDuvf32/w3FcwAMZgjxkMraShXEZBZmSnyLeDUIz06aGJSQEFghS3THsDuUlufiPhf7e2mEBDdujyW0X0N/gou/Wb9e5B//MMpdAHNjbrxR5Iwz7FP2aiIMZgjxgILKAlVWgtM12q4jQiPELry09CV5b8178uSIJ+Wkjiep24a3G64uhBA/UlPzv9brVq3s43i9a5cRyKAV/MorRS67zC+O11bgrNCLED+KaFGuWZazTAqrClW3kp0CGYBMTJ2rTpbmLJVAZ9euXXLZZZdJUlKSREZGSt++feUXjH//nauuukplpxpfRo0a5dc1kyA2i1y9WmTrVmOGjD8DmfJyo3vKzYgRIjfcIPLJJyLXXuvYQMYWwQw3JeKEab7oVlqZu1JCJER1BDVv1tzvwdW3W79Vdgluruh3hbx6xqtyz7H3SCBTWFgoxx57rISFhcmXX34p69atk2eeeUYSMDW1EdgncnNzGy4ffPCB39ZMgpSSEpGVK0Wys0XatBGJiPBvq/W55xpaGHg+Aej8xo+3lS2BI8tM7k3ppJNOUptScnKybN68+ZCb0rRp0xq+j/DnHwQJKkqqS1QgAy1KSlSKRIbZ48zlhZ9fkPd+fU9GdBwhU06Zom5DS/hfMv4igc6UKVOkbdu2B+wJHTt2/MPjsE+0toPAkgQnmB2DLEhxsRHI+FuD0q6dodOB/9Pu3SJdukgg4ddghpsSsTOwI0AgU1ZTZru267O6nSWfbPhEuiR2OWCOTDAwZ84cGTlypFxwwQXyww8/SEZGhtxwww1yLdLkjViwYIGkpKSok6OTTz5ZHnvsMZUBPhzV1dXq4qYEZ9WE6JCbawQy0Mpghow/3p+lpSIzZohMmGAM48MFk3xR6rLp4DszNPf3pjRkyBC1KWHTGThwoLzxxht/eJx7U+revbtMnDhR8hHxEuLFab4wifwl5xd1HfoYfwYy1furlbh3xq8zGm5DEPPFJV/ItYOu9Wsgg0nCvmbbtm0ydepU6dq1q3z99ddqT7jlllvknXfeOSCb++6778p3332nTpoQ9Jx++ulSh46Sw/DEE09IfHx8wwUnWoR43Oa8Y4fIihXGddgT+OP9uWKFyLhxIvg8ffPN/92ODFEABjKgmQundX6ixe9mWnfccYcKaJYtWya33nqrvPbaa3IllNXwkfnwQ4mKilIZm61bt8q9994rMTExsnjxYgnBZMImnF1hUyouLpY4O7TCEduDQAYZmcTIxIZBc/7ks42fyaP/fVS5b88dN1diI2LFDhRVFUltfa0MazNMWrZoedjH4T2I4MCq92B4eLg6Cfrpp58abkMwg/0D+8LhAqDOnTvLvHnzZAREj4eAewcxBT5K0Xq9YYNIdLRIy8O/J7xGba3IP/8pgsAe60Hw8uijIn37iu1sHJApgnHlEfBk7/Br3ry+vl5tSn//+9/V98jMrF279oBg5uKL/zcfA+Lgfv36qU0J2ZpDbUo4u3r44Yd9+FuQQGJv+V41l8UugQyAIeTSXUvl1E6n2mZNKL1V1FZI/9b9jxjIeIO0tDTp1avXAbf17NlTPv7448M+p1OnTtKqVSvZsmXLYYMZlLOpxyPa5OWJbNpkjPyP8cP7NDNT5L77jGAKjBkjcuedRmBlN1B+s9is0q9lpsNtSllZWU3alA7F5MmTVRTnvuzcudPydZPABOUcZGWAP4OG3WW7lcAXU4YBOqceP/lxObHDibbQxlTtr1Lt6T1b9ZS2cb4vxaBpYCMGjzVi06ZN0r59+8M+Jzs7W5WnsecQ4pX2awQRqBb4OpBBBubf/xa59FJjDQimnnpK5IEH7BnIQMuDcm+nTpYe1q+ZGW9sSjy7Ijqg2oqMzJ6KPX75gG7cBj5hzgTJK8+ThBYJckX/K8ROYH1YW/ek7tIpsZNfgqvbb79djjnmGJXRvfDCC2Xp0qXy+uuvqwsoKytT2dmxY8eqxgGUpydNmiRdunRRwmFCLAXdQcjIwKDR1zqrggKjjPTjj8b3Rx0l8tBD9m21rqw0Skwoe0EYHSiZGWxKS5YsUZsSMi0zZsxQG9KNGKf8+6Z09913q8dkZmYqMd/ZZ5/NTYlYDj6gtxVuk+SoZL/OkAkPCZfrBl8nfVL6qEyMnYAYOrcsVzq27CjdW3X32+s0dOhQ+eSTT9TcmD59+sijjz4qzz//vFyKM1PByXGIrFmzRsaMGSPdunWTCRMmyODBg+XHH3/kiQ6xHsyQQYkHXUK+DO4XLoQOwwhkwsMhPjX8lewayEDPA6fwrl3RthxYAmAwd+5cVRrCfBmIfCEGdrdYVlZWyjnnnCMrV66UoqIiSU9Pl9NOO01tXqn4w2kCVosPSeAB7cfS7KVSub9SUqJTfP7z0TXVKqqVdGjZQX2PtyQm+dqpFRymlbtKdynfpwGtB3g0/dip70Gnrpv4EGQZli41yku+EvxWVYm88ILIrFnG9507izz+uL3nxqCshKAPQQyyMhD/NgHHCIDBWWedpS6HAhOB0XpJiDc/pDflb5KCqgJpF+d7m/s5G+eoTiVkOqaNmaYcrZVJZDO/vzUbQHCVU5YjSZFJKmNkNxsHQvyWaYBMAqUTdA35kmXLjK+XXGIYQ0bY+D2JfAncuCEN6dmzyYGMp9hnxyTED2Cy746iHco00h/6j6PbHK1ctyGmRTYmTMJsWYKLCYuRvql91ZRhQsjv9gAwarRY+3HYzAb2J0wRxkgTZGKg0Rk2TBwxQDAhQaRPH2PtXoLBDAlaSqtLVfdSZGiktAj13pvs4EwQZtggwwGSo5Nl5vkzJSnq8JNp/Ul+Rb4qd/VL7efzFmxCbMuePSLoqMVEaS9lGhqA9QA6k4YPF7ni94aA7t3FEezbZwQwKC3Fxga20SQh/gBtzygvwXsJM2V81dJ805c3qW4lBDRu7BrI4LVB9xICLwRdhJDfO3LWrzeu+6IN++efjYm+06f/zyDSCRQXi+zfb2RkEr2/xzIzQ4KSnSU7Jas4SwlafVVeigiJkLjwOJXpgNt1r+QDZyzZTRSNYKZvSl/JiPNBGp0Qp7RhY8ovWqJ9pZPB8DtoTqAt9ccwPt25O5gn06+foZXxAczMkKADY/g35m9UWhUIbr09KRfZDYCgafLwyfL+ee/LaZ1PEzsPD9xbsVeJkjsmWN9CSYhjgUZm+3aRlBTvuWAj63PddWjlMb7HydbEib6fYaMLLEFQXkIprIPRoekLGMyQoDSRRMnH2xqQ1XmrZdzH42TqL1MbbotvEd/Qgm3X12d3+W5lZNk1sastJg4TYgsQXKB7KSrKe0LWTz81XK5RVjqE6bLt2b/f0PigBRvzZHy4fzCYIUFFZmGmmpfSOrq1T3yeMGRufuZ8qaytFCfoiNDdhQnIPVr1kJDmfzRyJSQowYc0Apnycu/oP5DNQIfSY48ZvkXHHWdkZ5xWgsvNNbq70IJ9CCNob0LNDAka9lXsk80FmyWxRaJPBtKd0ukUeaz+MTmu3XESGRYpdgazZBB4pcakKsEvJhETQn4HE34x9C093fpjI5MxaZLIunVGJuOvfxW5+mrvlbG8BQIZdHdB8OuHuTcOe7UIMWciiTJKbIR3WgQzizJl0rxJSjzrZlSXUY6YzQJzS5TdIPi1e+BFiE+B/gPeS5iVYnUbNqYHX3aZEcjAIPLFF40yk9MCmT17DFNLtGD7ydySmRkS8CDrAN8lDH9rE9vGayWau769SwU0mJR7z7H3iJMyVpjqi4yMtwI9QhwJrAPgRI0SipVzUjAV9513RF591Th2jx6G07U3Mj++sHQAyMj4ytLhEDgs/CPEc/aU75GtBVulVWQrr+lAcNz7j79fhmUMk2sGXiNO6uzC5GFM97XrvBtC/AICDgzGgzliE70AmwRmxaCs9PLLRiAzerTIm286M5ApKzN0RL17W/saacDMDAloILzdsG+Dcni2utyDjAZEvj2Te6rv+6f2l5dOf8kxHUBoGy+vLVfGka1jvC+IJsRRYLYLLAusbMPG8e66SyQrSyQsTOTuu0XOPde3bttWZq1gqdCrly3axhnMkIAuL0HwW1BZIG3irC0vIdNz45c3qp+BuTFwvQZOCWTQmo7XBaUldC8RQg7KOKC8BCGrlW3YL71kBDLIYkyZYpRmnNrdlZdnOHXDtdsG+x7LTCRgQZvx9sLtkhKdojIzVpIemy7xEfHq4oS268ZgiB/0Q92SuknnxM6OCcAI8QkwdUQbNibYojvHSu6/X+T000Xee8+5gUx9vZG1QjYGWh8ft2AfDmZmSECCEgrKSzCQtMpEsrautmFiMDp+Xhj1gpoiHBUWJU4A68+vzFcdXR1bdlTBjNVBHiGOZ8cOI3uCMfxmA/38fJF580Quusj4HjNqHn1UHK0jyskxSm/QyYTbZ4QDgxkScMCZenP+ZuUtZFUJRbVdfztJrh10rZza+VR1m1N0Jo2DGMyRaR/fXmWrOBSPkIOA5xLasNEmDU2LGSCMhcs1yjHwVDrzTHF8xmrvXqOrC1klTEK2EQxmSMABE8cdxTtUsGFVCeWrLV/JtqJtMnX5VDmp40k+GbpndRADG4XkqGQGMYQcCkzeRXmptlYk2QKXeMxbgUkkMjPIYjg1E1NWZlg54DqCPPwu+Goz7L8jE+IBxVXFajheTFiMpVNsrxl0jdKaXNr3UtsHMgxiCNFsw8YUWzNu2OjwgdbGHQxde63I5ZfbLovRJNfr4mIjsENWCV5LKC1hcKCNSkuNsfeuTIgH4MN7U/4mNYHXbPcS2q4/3fCpTBg4QWV3EMDcctQtYvcgBuvG3Bh3EOMN8TMhAQcsBbZuNYIQXUEr7A7Qao3nY24MuqDQ0u2UQKaqysjAVFYaWSVohlq3NnQ+kfafCs5ghgQMO4p2qBITOo3MWh+M/2y85JTlKPHwZf0uEzuDjFF+Rb4KYlBaU5mY6GQGMYQ0VduC8hI0MrqBB45x001GQIMP/127jJZlJ7RYFxcbpSS0oWPtKCPhKzIyDoLBDAkIMMl2S8EW5S9ktgyE0f6X979cZv02S4a3Gy52D2LqpV5So38vJzGIIcSzNuPNm43hb2YGv8GKAIEMMhlvv22UZOws5C0tNS7IHKF0hMALbejQwjh0VAODGRIQ3UsYYodBcO7hdWY5v+f5MrrbaMvaur0VxCATg+4kBjGEaIA2Y7RiY4id7of4V1+JfP65ERg89pg9AxnXQUJedCRhRgzKavBTssmsGDMwmCGOB47PKC9BH6ILJvnOXDdTxnQbo2bIQCdjt0AGQQw0MS5xMYghxKryErQtKLHogHLSE08Y1+F2PWCA2C7ztG+foYdpLORFGcls67nNYDBDHA30LZgpExESYap76aPfPpKnFz8tn238TN49511bdSxB2OwW9qbFpEn7lu1VBopBDCEmy0vIVOiWl6A3ue8+Iyjq398IZuxEWZkxtA/Zl379jDKSldYMNsM+OzYhGmCeDNqQzQ7H65LYRbUvn939bNsEMiifwT8JdgnoTuqU0ImZGELsUl564w2RX381Mh4oL4XaY98QBFl79hilI5hAIhujm3lyEDZ59QnRE/1uK9wmiS0STX/AD0kfIjPPnykx4fZQ8GN6cWFVofrdeiX3krTYNNsEWYRIsJeXli83hL5g8mSjjdkOFBUZ2ab0dMME0mpvKRvD3ZE4WvSLMhMyKrog6wGNDIiNiLVwhfrr2VuxV6LDo6VfSj9pE9/GdtodQoK6vITnPvCAIaQdPVpk5EjxO9XVRjYG82EGDjQG/9klU+QjmK8mQSv6nbdtnoydNVZ+yflF7DDwblfpLimuLlYlr6PbHC1dkrowkCHESjDh10x5CQEMSkrwW2rXzhiS5+/gDH5Je/eKtG8vMmyYSIcOQRfIgOD7jYnjsUL0i+6l9399X/aU75Gfd/2sykz+oK6+Tml+0KmEYX/QxSRGJlrmKUUIaVRe2rDBXHkJx0BAhGABQY0/p/tiLehUQimpXz9jxg3aw4MUBjMkKEW/CBZePeNV+WDtB3JF/yvE1yCYguanpKZEUqJSpFNiJ9VuTXEvITYtLwGIfaGVWbPGENf6S+CLTAxOeDArBgLfSPvbDXgbBjMkaEW/0MqMHzhefE1ZTZkKxuIj4mVQ2iDJiM2QsJDAmvlAiK2worzkfh7mswweLH4B1gMQ+UJwDIGvFe7eAQKDGRJUot+VuSuloKpARnQcIb4GE4oxLwZ2CehQahffTqLCHGJCR0gwl5defNEoLV1/vX/0KDU1hsAXvwNm2kCvE2BD78zCYIYEjegX7c73zb9P8srz5KETHpKzup0lvhp6t7d8r5rci4F38FCChxQhxAHlpS1bRP71L+P6UUeJDPGhvg4ZIQy+wwRfdCghGwP/JPIHGMyQoBH9RoZGyqguo2RB5gI5uePJ4gvgoVSxv0LpYdTQu6hkinsJcUp5CSCAePJJYzaNLwOZykojGwPvJDhZY3ZMEAt8/wwGMyRoRL/Qpdz8l5vl2kHXer3lGSWx3LJciQqNksFpg1WnUkhz55u5ERJU5SU3p5xiXHzlag2BL7JKXbsajtb+7JpyCAxmSMCLfouriiUuIq4hI+LtQAZlpZzSHJWF6Z3SWxIiE7z68wghXigvLVgg0qePSKtW4jNKS0UKCgwzSAQy+MpMbpNgzoo4RvSrM6EXotvr5l4nk+ZNUpoZb4Ofh+F3beLayKD0QQxkCHFieWnTJsOm4JJLjGP5ot06O9vQxvTtK/KXv5grjQUhzMyQgBb9rslbo0pUyO5gyq43Ka0ulaLqIumW2E26t+rOdmtCnOi9hIDi//5PpLbWyMxgGJ03Bb5otYbDdUaGoc9J4AmQDgxmSECLfv+S8ReZNmaalNeWS1KU90zX0HKN8lLflL7SMaEjh98R4s/yEuax6JaXnn1WZPt2o7wEDyZvZUcQNEHgGxsrMmiQEczA6ZpowWCGBLToF/RM7ineLIMhewQdzsC0gUroSwjxc3lJV2syf77I7NnGcx95xOgk8kbABRsCZH4wvRfZGEwWJqbg6SMJONEv/I5e+PkFySvLE2+CTAxKYJgZMzjd6FgihNigvISLp8A8En5L4PLLDd2K1aCctHOn0Z00dKgxAI+BjCUwmCEBJ/p9d8278q81/5Jr/nON13QyBwh90wYpc0hCiA3KSzBe1GmHRkkJz4fn0sSJ1gt8kTVCwIXjY/geLAko8LUMlplIwIl+T+5wsny3/TsZ12ecV0S4EPoWVhVK18SuSuirq+chhNikvPTOOyLLlxuGjcjOWGkVAIEvWsQhJEa7tS9bvYMIBjMk4ES/sAyYfvZ0CW0e6pWJvjV1NUroC6drCn0JcXh5ae1akX/+07h+zz2G75FVfkooXaGk5PZT8oevU5DAV5bYisyiTC3Rr8vlkj3leyQ1JlV9b3Ugg+Njoi9MIiH0zYjLsPT4hBA/dC9Bw4I2bJSZTjtN5MwzrfVTat/emOAbF2f+uOSI8LSS2Er0u71ou5bo97ONn8nYWWNlzsY5lq9LCX1Ls9UU4SHpQxjIEBIo5aVXXhHZtcvQr2BInlkNC/yUIPANDzd8nJCRYSDjE5iZIbYT/cIGwNOsCTQyEOVCy2IlOCZctjNiM6RPSh+JDo+29PiEED+Vl9weSADiX8x7MUN1tdFy3a2b0XJNPyWfwmCGOF70C8+lF0a9oNywT+xwomVrKqspk8LKQumS2EV6tOpBoS8hdgGlHLPD8TCg7umnRdavF+nZ0/x6oI9BEINj0d3a5zCYIQEh+kVZ6uSOJ1u2poLKApWVgVFkp4ROdLwmJJDKS40xG8gAaGTi441uJQYyfoGvOrGN6NdTu4GK2gr5ZMMnakie1dYEKHtB6IusDAMZQmxERYVhBKlbXkJp6fHHRQotKklD6IsSU48eItEsQzsqmOnQoYM88sgjkpWVZf2KSFBhRvT7+vLX5fEfH5d7v7/XsvUgQKquq5a+qX3VQDyUsIh1cO8gpss5W7eKFBToDcdzey998onIgw9a003lLi9BREycFczcdtttMnv2bOnUqZOceuqp8uGHH0o1IlNCPAAZFTOTftvFt5OY8BgZ3W20ZevZW7FXuiR0kbQYbkzegHsHMQUCh8xMkdRU/fLSJZcYpaUbbzS/HmR5EFTBX4knPn6lmQutIJqsWLFCpk+fLh988IHU1dXJJZdcIuPHj5dBcAC1CSUlJRIfHy/FxcUSxxY5W7GjaIesyF2hAgfdSb2YxqsTCB0K2BOgkwo+SxT7evc9yL2DaJVzfv7ZKDNBK2MGfOyZDT6wDgiQ4bGE4Ir49T1oSjODjefFF1+UnJwcefDBB+XNN9+UoUOHyoABA+Ttt99WLbOEHIqS6hLZlL9JYsNjTVkOWBXIoNwFATK7lnwD9w7iEfh72LbNENrq2gFgQJ4bs4GMu627UyfzgRWxBFPBTG1trcycOVPGjBkjd955pwwZMkRtSmPHjpV7771XLr30UmtWSQIKlHPQvVReUy4JkQkei3Nv+uImFQhZBewJSmtKlc+Sp+shenDvIB6BwAHBTHKyXrcQSlOY7vv660YgYpY9e4wgBtN9WV5ybms2UsTTpk1TKeLmzZvLFVdcIc8995z0gJr7d84991x1pkXIoco5O0t2NlgPeMIry16RJbuWSPnCcnl7zNumBbrIAGDGTYeWHZQGh3gX7h3EY6CpQvcS3us6g+iQ1XnySWPI3rp15lunkeHBWrp3F4mIMHcs4t9gBhsNxHtTp06Vc845R8IO4TDasWNHufjii61YIwkgoHHZtG+TRIdFa5VzJg6ZqOa/XNn/Sks6jSD4TYxMVFkZmkZ6H+4dRCurgkxImzZ6z//yS5FffjECj7vvNpdJ2b/fKHX17m1kiYizBcA7duyQ9jDQcgAU8dkHzG5ZvXu1mitjhywIJvwiuBqaMVQrS0Q8fw8WFhZy7yBNB/YAS5ca81tiYjx/fkmJyNixxkwZdC9dfbW59eTkGJod+C4dIhAnDhMA79mzR36GqvwgcNsviIAJOQS7SnZJVnGWtI5prSXQtdo8EoP6uiZ1ZSDjQ7h3kCZTW2tYFkDjohPIgJdfNgIZzIG57DJz60FghAAG5SUGMrZDK5i58cYbZSecQQ9i165d6j5CDpUFgWg3MjTS4/LS9sLtctYHZ8lLS19SQYgVQCcD80hYFRDfwb2DNBnYFcC2QLft+ddfRWbPNq7DEdtMAILyUlGRYVeQmKh/HGKvYGbdunWHnAcxcOBAdR8hB5eX0L2EdmzoUzxl3vZ5SiezrXCbhDQLscR3KSosSrVhm2kLJ57DvYM0CUz43bLFCBxgCKkTfDzxhHH9rLMwC8DcenbvNjQ7DimRBiNaAuCIiAjJy8tTUzwbk5ubK6Gh9K4kB5JTmqPKS6nRqVqi3WsHXSvdk7ornySzol8ERbAsGJQ2SOJbxJs6FvEc7h2kSYEIyks1Nfoi248+MjqgoLO49VZz60FGJjJSpFs3Ef6NBlZm5rTTTpPJkycrUY6boqIiNR8CnQqEuMEsmY37NkqL0BYSEarfxnh8++MlPTbddIZoT/ke6ZjQUTLiMkwdi+jBvYP8KfDtgtBWt7yELMprrxnXb7lFJMHE7CgEVNDKQCcDV2xiW7TCzKefflqOP/541ZWA9DBYtWqVpKamyr/+9S+r10icXF4qMMpLbePaevz877d/L8e0PUYFQlaAQKZVVCvpmtiVbdh+gnsHOSIIcpGVQeCgmwV55hmRykqRfv1ExozRXwsafREYtWun3xZOfIbWX0tGRoasWbNG3n//fVm9erVERkbK1VdfLePGjTvk3AgSnOSW5ir/pZToFI/LQ/BsmjRvkgqCZpw3QyLDIk2tBS3YWAN0MmaPRfTh3kEOC7qWUBqCB5OuZcHChSLz5xs6m3vvNTcgD7odlKlQXtLR7RCfol0AjI6Oluuuu87a1ZCAAboUdC8hq6KTWYHFAIKgIelDTAcf6IAqrCqUvil9JTmag678jRV7B7qf7rnnHvnyyy+loqJCunTpoiYLwxYBYHwWPJ/eeOMNVcY69thj1aC+ruhGIfYkOxv/sSKtPR/d0ACCD7RhDx9uOFnrgoAK2Z3Bg0VirfF/IzYNZjZv3izz589XcyPq6+sPuO+BBx5o8nG4KQUe+D9D9xJmw+iUl8CwNsNk1vmzxCUu02tBhqhNXBvpkNDB1LGINZjdOzB4D/vASSedpPaN5ORkdcyERtqIp556ShlZvvPOO2qi8P333y8jR45UHVMtWlhTtiQWUlpqZGUwT8ZMhg6lpRkzzPkvobyEicMIitLN6fSIzYMZBBYTJ06UVq1aSevWrQ8oIeB6U4MZbkqBSW5Zruwo1isvNSY6PNr0WjAYD87aKC+FNmcngr+xYu+YMmWKtG3bVp30uMHe0DiAff755+W+++6Ts88+W9327rvvKl3Op59+SqsEu4GAFm3Y8E5q21Y/AHH/LSEYMhMQYeowPoNQXjLr40TsbWcA8d4NN9ygMipm+Nvf/iaLFi2SH3/88ZD3Y2np6enKVfeuu+5St6ELApvS9OnTm7QpcSS578tLS7OXqhZoT0s6+P9+ctGTcnLHk+WojKNMr6WytlIKqgpkcNpgdi/5kcbvwb59+5reO3r16qVOaLKzs+WHH35QOhwc89prr1X3b9u2TTp37iwrV66UAQMGNDzvhBNOUN+/8MILhzxudXW1ujReN4Im7h1eBkMUV6wwXKjDw/UCGbRfY5YMpvyaaZ9GaQkTg1EZSEvTPw5xhp0BMioXXHCBmGXOnDmqnIRjpaSkqO4GnLm52b59u+zevVtOOeWUhtvwix111FGyePHiQx4TmxFegMYX4hsQjGwt2KoCCHQNecp327+Tj9d/LLd/fbvsq9hnai119XWyp2KPdE7obLqlm1iHFXsHghV3qfnrr79WmZ5bbrlFZW8B9gyAk57G4Hv3fYfiiSeeUPuL+4JAhngZOFCjvIQ5LjqBjFv0+9NPIm++aWRVzGSIUF7q0MGcbof4Ba1gBpvRN998Y/qHe2NT4obkP2ARsL1ou/ZwPOhkLup9kUwYOEErGGoMAhmsw4pBe8Q6rNg7oLPBFOG///3v6gQIYmJkZV5zzxbRxD3/xn05lO0C8UJ5CSecZiwCIPZ96CGR224zF4QgkElKMiwLuGc4Dq18HES60K4sWbJEpY0PbqlEQNLUTQmZGWxKABvT2rVr1aZ05ZVXam9Id9xxxx9SxcS7oKSD7qWw5mHac2FiwmPk7mPuNr2W4qpipY+BTsbMoD5iPVbsHWlpaarU1JiePXvKxx9/rK5DiwMwaRiPdYPvG5edDjWdGBfiI+C7BP8llJfMBA94LiwLzAC9DspVPXqIUIsZPMHM66+/LjExMapejUtjcBbc1GDGG5sSNyT/lJe2FGxRYtt2ce08fj70NVYNxkNLN4b09UvtJ0lRSZYck1iHFXsHmgY2btx4wG2bNm1SWj63GBh7x3fffdewT+CkBs7cyP4SG1BRYQzHQ+CgGzwgEEImRddR2w06n1CewmeR7tRh4sxgBloWK+CmFBjkleep8lJKlOfdS5gBM2HOBDWV97Zht0nLFi1NBVUodXVo2UHat6QhnB2xYu+4/fbb5ZhjjlEZ3QsvvFCWLl2qgiRcAP4Gb7vtNnnsscdUCdvdBYlmgnPOOceC34KYAhmQrVuNoXSYrqvr3wQROXyTnn5apE8f/fXs3WsEMY064ojz8GuvKjcl54OsCryXQpuFag23w6RflKfQzn3rUeYM4SAaTmiRIN2SuklIc07sDFSGDh0qn3zyiSopP/LII2pfQCv2pZde2vCYSZMmSXl5udLTYD7V8OHD5auvvuI4BzuQl4eo1gggdMtLH3xg6G1ge2DGagDD8ZCZwYA9ZvSDrzUboC0S3UhZWVlSAzOuRjz77LNNPs7cuXPVpoT5MtiUoHdxt1g2HpqHAMe9Kb366qvSDTMAmgBbs70H/m/W7V0nG/M3quF4un5Hv+b9qkpUJ3Y40ZRmB1N+MTE4LZYtlXbi4PegVXuHt+He4QUQPPz8s1FmglZGV2tz4YVGGzXmEpnxX8LUYWSHkPmn6Nd2ePIe1MrMoOwzZswY6dSpk2zYsEH69OkjmZmZ6sMNXQaecNZZZ6nL4UB2BmdfuBB7AePGbYXbJDkq2ZRxY9/UvqbWgb+7vRV7VedS6xi2VNoZK/cO4tDyUn6+ueF4U6YYgQyMSs0If9EWjmwMyksMZByP1icQMikYYvfrr7+qtC0Eu2hjxFAqK+bPEGeUl1AeQhATFRbl8fPX7lmr7A6soKCyQOIi4qRzYme2Ydsc7h1BDLQpKC8lJ+tP1v3uO2OuDAbjmTGSRFCEoAozZVrq6/SIfdD6S1i/fr1cccUV6npoaKhUVlaqDgVkTzBqnAQ+2wq2qWwILAt0HKzv+vYuOX/W+apEZYbaulqp2F+hdDI6QRXxLdw7ghRMVsZwPJxsREXp+zf94x/G9auvNifYxZRf6G10BcgkMIIZuN66a91omd6K1OHv7DMzgZEERXkJ+pj4iHiVTekQb878Ma8iTzJiMzjl1yFw7whSkJHBUDpkZXR5+WUjm4JuVwQzukDwixITRL+6gRWxHVqamWHDhsnChQvVTJgzzjhDeSchbTx79mx1Hwn87iWUc3QzIWidfu/c91RQZGaoHTI8ESERSivD7iVnwL0jCEGQum2bMRMmRPN9umqVyO/zx1R5Sdf6wL0eiI/piB1QaAUz6DgoQ2QrIg8//LC6/tFHH6n2aTt1IxDveC+hvITuJTOEhYSZMn+E9xI8oPqm9JWEyP+5rBN7w70jyKitNYbjIRuiO9wOx/h9SrzqXBo8WH89yArieJ07m3PWJoERzKAToXHa2KwnCnHOcDwz5aUP1n6ghuKN6jzKtFBX6XWiUjgcz2Fw7wgyMKUXrdRmZsG8+66R2UlIMNyxzYBSF9ai2xZOAkszgw0pH7XLg8AcmMabFQkcMMdFDcdrHqpVXtpRtENe/PlFuX/+/bIsZ5npUle9q166JnWV8BAT6Wbic7h3BBGY8IvBdjCR1C0v5eSIvPWWcR2eexDtmvFfQjYGwmHdLigSWJkZzIWoQ9rwIKqrq2XXrl1WrIvY1HtJt7wEge41g66RDfs2yND0oabWAq0N2rB1OqmIf+HeESTAbgDlJZR1zIh+4c93110iy5aJjBqlfxy0YkMr0727OYduEhjBDKZ2uvn666/VZD432KAwEKsD+vZJQAG/I3gvpUanag/Hg0ZmwsAJKhgxU2LClF81UyaBM2WcxhdffKG+cu8IArKyjKyKWZEtMijnnWdczFBcLIIJsvwbC1g8Cmbcfkj4ELnyyisPuC8sLExtRs8884y1KyR+paK2QpWXwpuHazlboySEjiN34GEmAIEpZXlNuQxKHyTR4dHaxyH+4ZJLLuHeEQwgcEBWBgErhtvpzpRBacqK1mlkAktKRPr3h1DL/PGILfHoL62+vl59hYfSsmXLpFWrVt5aF7EByKJszt+ssiG65aWHf3hYymrKZPLwyaZnwUCAjA4ozJUhzgO6mP79+3PvCGQQOGA4HjyYzPwfI7D95ReRhx4SGTLE3Jqg0cJazIiQie3RCpu3YwASCXhySnMksyhTaVN0MirZJdnyw44fVBt1SXWJqWAGAVFY8zDOlHE43DsCHBg3QvsErYsuaN1fudJw1zbrco42bOh20IptZjYNsT1aAohbbrlFXnzxxT/c/vLLL8ttt91mxbqIn0E5B2JdlJZ0ykugTVwb+eC8D1RWpkerHtprQecSxMedEjpxpozD4d4RwKA0hKwM5smYmeGC53/4oWFd0KeP+VZs6HbMBFckcIMZmMMde+yxf7j9mGOOkX//+99WrIv4EQQPmws2q2xKUmSSqWNhDsw5PQytlS57y/eq2TaYHEycDfeOAAUSBLRho/0Z82DMEhkpcuKJ5o5RUWHobtDyz1bsgEfrfxhzIhp3I7iJi4ujv0oAsKtkl5oLg+4lnfIS2rhxDCuAgLjOVadmypixPiD2gHtHgILSEjqYUlP1jwGfLgS0v2szTYO/JxhJwkaBBDxawUyXLl3kq6+++sPtX375JQdfORxoUzblb5LI0Eit4AEdRw/Mf0Au/PeFsjBroen1YKZM2/i2KrAizod7RwACjQvKS8im6OpSEMA8/rjIk0+KvPKKNR1V6Fwy46xNAl8AfMcdd8hNN90ke/fulZNPPlndhjkRaK18/vnnrV4j8WV5KX+zlNaUSpvYNtrmj7ERsUpn0zu5t6n1FFYWSmx4rBL9cqZMYMC9I0DLS2h9bmvCr+2TT0TWrDECogsuML+moiKRfv30/aBIcAQz48ePVxM7H3/8cXn00UfVbZgTMXXqVLniiiusXiPxEeg+2lGsX14CEOi+duZr6lhmxLrI8CCoGpQ2SGLCuSEFCtw7Agz4LsF/CV5HuiccKAe99JJxfeJE82Jd2CigtGQmuCKOo5kLw0RMgDOsyMhIibFpBFxSUqJq9MXFxaouTw4NxL4/Z/8szaSZLTqG0BaOlvDB6YOVHxRxLod7D3LvcDgQ2C5dCi8KczNlJk8W+fZbkV69RKZN0/dxctsoIMDCbBrOlXE8nrwHtSXe+/fvl3nz5sns2bPVcDWQk5MjZaifEkeBOTAoL2Har24g8/XWr+W9Ne+pjIoVuh3MkoHol4FM4MG9IwDA/xsEu+4siC4LFxqBDAKYe+81F8i4W7HT0owLCSq0Pil27Ngho0aNkqysLJUyPvXUUyU2NlamTJmivn/ttdesXynxGjtLdsrO4p3SOkYvvVtcVSxPLXpKiquLlc3AuT3ONT1TpldyL0mMpCFcoMG9I0DAQDsMQET3km55qbJSZMoU4/q4cSI99GdRKTB1GGuBkNxsUEQch1Zm5tZbb5UhQ4ZIYWGhShO7Offcc5WYjzgHBCLoXoJoF2aQOsD48ZajblH6ltHdRptaz76KfWq2DWfKBCbcOwIABA0bNxqD8cxM6P3nP42SELIo119vfl179xo6GVplBCVamZkff/xRfvrpJwk/qA0PQr5dmDdAHAFKQghkKmsr1bReXSAWPrv72TKm2xhTXUeYKVNbXyvdkrppTx0m9oZ7RwCUl7ZtM/yOzAhsN2wQmTHDuH7PPUYXkxnQTYVjoBWbnY9BiVZmBoaTdTAUO4js7GyVMibOIKsoS5WYdMtLNXU1B2hkzLZP763YK+3i22mvh9gf7h0OB9kPBDPJyfpTdSHSxUwZtFCfeqrI8OHmA6zCQiOQoVA7aNH6azzttNMOmAmBDzGI9x588EE544wzrFwf8RKY4QLLgpYRLbVFtv9c/k+56rOrlIeTWYqqiiQ6LFo6J3TmTJkAhnuHg0HXEobj4f0ZFaV/nJkzRdavN2bA3Hmn+XVBhJyYaEz7JUGL1qcYBlyNHDlSevXqJVVVVXLJJZfI5s2bpVWrVvLBBx9Yv0piKcimbMzfKFV1VdIqqpW2EeWcjXOksKpQTek1YySJ9UA8DM0NtDskcOHe4WAyM41uITMtz8jKzZ5tXL/5ZvP6FmR50CLes6d5h20SnHNm0F754Ycfypo1a9SZ1aBBg+TSSy89QNRnBzgr4o9syd8ia/askYzYDFOtz/kV+fLNtm9kXJ9xpmfKJEcny5D0IWzFDkAOfg9y73AgGGyHmTKwCDA7Fwgt+J9+KnLJJeYNIHfvNrIyQ4eKhHLvCDQ8eQ9q/++HhobKZZddpvt04icKKgtUeSmxRaLpwCEpKsl0IIMMT/NmzaVrImfKBAvcOxxGba3I5s1GVsWKAYc4hhX//+iqwprQis1AJujR/gvYuHGjvPTSS7IetU9Blq+n8lzpYXZWAPEatXW1snHfRlXW0S3n7C7brfQtZspKjWfK7KvcJz1b9VSBEQkOuHc4jJ07jQxIRob+McrLRX74QeT0063rNnK7YsNKgQQ9Wjm+jz/+WPr06SPLly+X/v37q8uKFSukb9++6j5iT7YXbZfcslxlE6DL0z89LVd8eoV8vP5jS7JEmCnTMYHOtsEC9w6HgSAE3UtI8ZsZRIdhiA88IPLQQ9asC63Y0MiwFZuYycxMmjRJJk+eLI888sgBt6MjAfeNHTtW57DEiyCbsq1wm6nyElqxMVgP/k0DUgeYWg+OhbkyfVL6cKZMEMG9w2HARBKBg9lOIUwKRvAxapT5NUH063bFbtnS/PFI8AqAo6KilHivS5cuB9yOrgScaVVAXW4TKOIzyjkrc1cqJ2szw/HcwPqgbbw5R1qsBccY0HqA0syQwKXxe7B169bcO5wCZrcsWWK0YVuhlUEAYkXwkZ1tOGsPHkytTIBT4m2jyRNPPFFN8jyYhQsXynHHHadzSOJF8sryVPCQHJVsyfHMBjKwUGgR1kLNlGEgE1xw73AIOMdFK3ZNjTWBDLAikCkuNjI83bszkCEHoPXXMGbMGLnnnntU3XvYsGHqtiVLlsisWbPk4Ycfljlz5hzwWOI/UM7ZUrBFwpqHSURohNYx4Kj9xZYv5LpB10lkWKRph+6i6iLpn9pf4lvEmzoWcR7cOxwC5skgA4JJv2aG2d19t8jEiSJDhlhTXkIw078/y0vEmjJT8ybOBsB0z0ONLvclwZ4q3lawTVblrZI2sW0kpLnnAj78eUyYM0HNpRnbc6xMHj7Z1HrQDdWyRUsZmjFUwkMO9OchgUnj92DLJn4Ice/wIwgali0zghGUc3R58EGRzz833LDffdf8TBkEV+npIoMG0RU7SCjxdpkJ/ipNufh7Mwp2ymrKZGvhVomPiNcKZNwfKuMHjpcuiV1k/IDxptYDwS/0OzgWA5nghHuHA4CTNVqxzUzn/eUXI5BBp9Hf/mY+kIHeBkMVu3VjIEMOieVFRwj4IBAm/gUZle2F21VAA/NGMwxvN1yObXusKc8krAe2B50TO5tqDSeBC/cOG4BBdFu3GqJfXU0KhuxNmWJcP+88kT59zK0Jx0NHFTIy8SxNk0OjFS6PGDFCdu3a9Yfbf/75ZxkwwFzLLrGG/Mp8ySrOMiX6tdIRGx5OcRFxNJIMcrh3OGBAntu4UZf33hPZvt04xo03ml8TskRoDTfjCUUCHq1gpkWLFtKvXz/56KOP1PdICz/00EOqG4HOt/4HIluIflHS0RXsLtu1TMbOHCuLdi4yvR4ERbAt6JrUVaLDo00fjzgX7h02prTUGJCXkKBfFkKg+uabxvXbbjOG7ZkBgRW6qVheIn+CVh7x888/l1deeUXGjx8vn332mWRmZsqOHTtk7ty5ctppp+kcklgIjBtzS3MlPTZd+xjTVk2TXaW7ZGHWQlViMkNeeZ6kxaYpY0sS3HDvsHkrNub86GplcIx//EOkutroXoJ1gRnQFo71DBwoEqtnv0KCB23NzI033ijZ2dkyZcoUZRy3YMECOeaYY6xdHfGYytpKlZWJCosyZdz49GlPyzur35HL+pozhINmB+tAVkZXhEwCC+4dNgQZkKwsc63YCxZgYJChtYHo10w5GYFRXp5I+/YsL5EmoZVLLCwsVGPHp06dKv/85z/lwgsvVGdVr776qs7hiIVAJwN9CjyPzIBgaOKQidqGlABlLmh3OiV0ksRIEzV4EjBw77Ah9fVGeQlf0TGkAzIoTz9tXL/8cpEOHcwHV8jGdO1qvhOKBAVafyUwisvLy5OVK1fKtddeK++995689dZbcv/998uZZ55p/SpJk/2XYCaJQEZHZIuOo7V71lq2nvyKfLWWDi1NbmwkYODeYUMgsM3JMZeVeeMNI5MCZ+0JE8ytB2Wqykpjyq9V04dJwKMVzPz1r3+V//73v9IRjqW/c9FFF8nq1aulBnVO4nOQBUErdvX+aokJ19sAvt76tVz12VXy8A8Pq8DGDFhHdV21Ki/RSJK44d5hM9D2jFbs8HCRsDC9Y2zeLDJjhnEdE39hN2BFeQkD8gjxZjCDsyj3FOAqzCX4nTZt2si3336rc0higf+S2VbsnSU7lVcShLpm26cxUwbzbVrHmJggSgIO7h02A91He/eKJJkoS2/aZHQanXSSyPDh5taTn29YFbC8RDxEewLwo48+KhkZGRITEyPbUG/9faNCypj43n9pa8FWU/5L4NpB18q757wrV/S/wrSRZGR4pBqQRyNJ0hjuHTYCOhdkZdA+babtGeXBmTONrIwZENyixITyUjRHOBDP0Pqkeeyxx2T69Ony1FNPSTjSk43q4W+6ZwwQn5FdnC17KvZIqygT48d/p0erHqasBtxGkl0SuqgheYQ0hnuHjUD3EowbrTBtRMdRSor58hKEw2lp5tdDgg6tYObdd9+V119/XS699FIJaRTR9+/fXzZs2GDl+oiX/Zcw0O7VZa9KQWWBJevZW7FXlZbMWiiQwIR7h02A1xHmyqC8pFtSRiZtzRpr1uMudaG8xAnhxFfBDMaRd+nS5ZAp5FoIyojP/ZfgRK3DR799JG+vels5YyOrYnbGDdYEI8mwEE0xIQlouHfYaEAeSjq63UIrV4pMnSpyzTWGm7UZ0LmE/3tM+dVtDSdBj1Yw06tXL/nxxx//cPu///1vGYhpjcQx/kv9U/tLt6RucmX/K00NtUMQg6xM+5btTa2HBDbcO2wAsiDwYDLjio1utNGjRc4+29xQO8y22bNHpFMnkdZsFiD6aI2IfeCBB+TKK69UZ1k4o5o9e7Zs3LhRpZAxlpx4H2RRIPo1478E+qT0UaJfs0Jdt5EkBuTRSJIcDu4dfqauzhiQh/eomRZq6GwefNAIRqwoLyFbx32DmEDrE+zss8+W//znPzJv3jyJjo5WG9T69evVbaeeeqqZ9RAP/JdwSYnWE901niMDuwEzwQyNJElT4d7hZ3JzjSF5ugPy0HHUeAaVmfZpdFMhGOrRw1xgRYgZbya43P7ZXIgPPvhAxowZozYtYh1V+6tUVkbXfwnaluvmXicX9r5Qzup6lulMCowk0+PSaSRJmgT3Dj8BjQxasaFLgX+SDvfeawQg99xjrusIx0BWBoGMmS4oQn7Hq0NArr/+ejW6nFjLjqIdUlBVoO2/NGvdLFm/b728vvx1NaXXDBAfY74NRL80kiRWwb3DC0Coi6F0iYn6RpL//a/I4sVGVsUM0MkgiOncmeUlYgn6tspNwOxIfGK9/xK4pO8l6iv0LWasBtxGkr2Se9FIklgK9w6LKSsztDLQuuiUhtBx5DaSvOwyIwgxsxaA7qUI/SGfhPgsmCHe818y0zGE0pTZKb+ARpKEOIQdO0RKSw3PI10jSWhtUFpCO7YZATKyQ716sbxELIWz5h0E/I7gn6QbyGSXZFt2xksjSUIcQkGBMVdGV/S7ZYvI++8b12FZYGYWDMpLqalGKzYhFsJgxiHU1tXKlvwtEtosVMt/qbCyUK749Aq54Ysb1HWz0EiSEAcAoe327SL794tERek9/8knjYzKCSeIHH+8/lqgs0FpHOWlRlYWhFgBgxmHsLN4pyn/pbV71qpsSnF1scRGxJo2kowKj6KRJCF2B5kQCH91SzpffCGyapXROm3GSBIZYXQvwXtJN0NEiL80M+3bt5ewMI61Nws6hrYVbtP2XwLHtT9OPjr/I9XWrdPOfbCRJCYH00iSeAvuHRYAiwC0YuN11MmElJeLvPSScR06GTMTelHqio83JgcT4gW0T6uLioqUy+3kyZOlAH+oIrJixQo12dPN2rVrpW3bttasNIiB6Le0plTbf8lNm7g2qoXaDDSSJGbh3uEjcnIMJ2pM2NU1koRYF/8PlxgdkFqgxIXACOUlnVIXIU1A6xR9zZo1csopp0h8fLxkZmbKtddeK4mJiWo0eVZWlhpNTqxhX8U+5b+kW15avHOxtI1vqwIZs9BIkpiFe4ePQCs1hLuxsXoD8rKyRGbMMK7fcYc5jQsCqowMkfR0/WMQ4o3MzB133CFXXXWVbN68WVo0GkN9xhlnyH8xVIlYAmwCthRsUS3ZmParo225b/59cuG/L5Q1eWtMrYVGksQKuHf4sBW7uFgkIUHv+c8+a2RUjjlGZPhwczNlEEzBeymEQzWJzYKZZcuWqQmdB5ORkSG7MYuAWAK8l3JLc7X9lyr3V0qPVj1UVgaD7cxAI0liBdw7fEBRkdHBhPKSznu1psYoByEIQVZG9/0O0e++fUYbtu7UYUK8WWaKiIiQkpKSP9y+adMmSaZS3RIqaitkc/5miQmP0RbsQtvy8ukvqw4mM6JfZIggQh6cPphGksQU3Du8DFqpIfpFQKLbwYSS0t//bphSmvFfgt4GAZXuoD5CvJ2ZgQHcI488IrVQywsC92aq3n3PPffI2LFjm3ychx56SD238aUHjMd+58QTT/zD/X/9618lWES/CEISWmimiX8Hr5lZ4TCMJDPiMmgkSUxjxd7BfaMJrdhWBIZmAhkEU3DYRnnJzJA9QrwZzDzzzDNSVlYmKSkpUllZKSeccIJ06dJFYmNj5fHHH/foWL1795bc3NyGy8KFCw+4HwLBxvc/9dRTEgyi38yiTKVN0SnpfLf9O5m+arrU1NWYXguNJImVWLV3cN84BAgQIfpFK7aO5xFKQg89ZNgWWBFUtWlD0S/xGVq1B3QifPvtt7Jo0SJZvXq12pwGDRqkuhQ8XkBoqLQ+wvyCqKioI94faJgV/aLj6JnFz6gJvZgUPK7POO210EiSWI1Vewf3jUOwc+f/gggdXn5ZZO5cI5h57TX9dcADCsEUtDI6ppaEaNDkvzS0T+5D5C4i48ePl9LSUjn22GPlhhtukEmTJmkFMgBdDenp6dKpUye59NJLVcq5Me+//760atVK+vTpo+ZSVJi1nrc5u0p2mRL9IoC5YcgN0i+1n5zX4zxTa6GRJLFqAJ4bq/YOb+wb1dXVSs/T+OIYMMcFrtgYTKfbNTRunMigQSI33WROs4PZQRiOp9tJRYgGzVxNdB6MiYlRMyKweYSEhKjOA7OCvS+//FKdmXXv3l2lgh9++GE1OAsDs5B2fv3119VGiE0LPxt19b/85S9qJsWRNiRc3GBDwvCt4uJiiYuz98Ta8ppyWZK9RLVBJ0Sa2whwDDNdR7A+QCv20Iyhkh7LVDHRB3tHeXm5eg8mJCSY3ju8sW+4tTg41sE4Ye+Q336DitoYcOfPbkNkhtAJNWyYXqmLkEbg8xvZ3Ka8B5sczJx66qmSl5cngwcPlnfeeUcuuugiiTyMsOvtt98W3cmg2ISeffZZmTBhwh/u//7772XEiBGyZcsW6dy5c0BtSPhvgH8SSkxt49pqBSIoC1nllQQvKMyU6d+6P/2XiClOOukkWbBggcqgzJgxw/K9w4p9w9EnQugaWrJEBGvUmbALoW6jmT/a4LWD/9LQodTKEJ8HM03+lHrvvffUYCucEeGDFgcvLCw85EWXli1bSrdu3dSmcyiOOuoo9fVw9wOklLE292Un6sgOEf3uKNqhLfpdmLVQLpt9mazavcr0WmgkSazkjTfeUF+9tXdYsW+428axYTa+2B64WaO8hK86gQyG2p13njEkD1ODzWZl2rUz5+FEiLcFwKmpqfIkrOAF5dCO8q9//UuSdD0/DgM2u61bt8rll19+yPtXwb1VdQymHXFDwsWJol8QGabXxvjGijdkU8Em+WHHDzKg9QDttdBIklgNOpcArAr69+9v+d5hxb7hWCDWhQdTaqre8xFoIghZtEjk5pv11wF9EbJtFP0SJ3Uzbcd0SQu46667ZPTo0SpFnJOTIw8++KDS44wbN05tTkhJIxuEjQ+179tvv12OP/546devnwQS2SXZsrtstyltygujXpBpq6bJhIF/TLN7Ao0kiTexYu/gvtGorINsE07edBzG8X/x4YfG9Tvv1DsGQFYIWTW8vhAgE2LnYObFF1+U6667Tvmp4PqRuOWWW5p0zOzsbLUB5efnK0Hg8OHDZcmSJep6VVWVzJs3T55//nklHkTtGkO17rvvPgkkMMdlS/4WlQUxM6UXg/FuH3a7qbXQSJJ4g9catflasXdw3/gdlNDdrtaeAqnkM88YgchxxxkeTLqgyxXZN5SYCPETTRYAo7T0yy+/qLMdXD/sAZs1k22o4TpQQORr8NL/uudX2VqwVTsTgjbutNg0S9ays2SnCmT6pPSh/xKxDGRQ0DqN9yDKTIeDe4eHZZ3Fi41sik42ZMECpLiM58+cqRcQucXDaMWG6JdaGeLH92CoTnrYqjJTsIOSDkS/ujNlVuaulOs/v17Nk7nn2HtMBSA0kiTe4tdff1UbEuDeYQE4/8TrCMFuq1Z65annnjOuX3aZfiAD0L3UoYO+ZocQi2hyMHMH3FObAD4IMbKcHJnaulol+kW3UItQvbbIpTlLVTt2navOVAACATJm3AxKH0QjSWI59957b8PXcJgYHgbuHR6UdTAkUHdWz/vvi+zaZTz/6qvNuXNHR4ug3Z0nQMQpwczKlSub9Die1Td9jgtEv21iNUePi8j1g6+XoelDpWPLw5f9mmokiVIVjSSJN4AI1/0VQt3Dwb2jCezfb4h+8VrpzIbJy8MwH+M69Ek67dzudRQXiwwYIBIbq3cMQvwRzMyfP9/KnxvUlFaXytbCrRIfEW/avHFQ2iDTAmQIj7smdaWRJPEKc+fOVWUmfLWd9sRpoA0bAYlum/lLLxk6F3QejRplLjsEjYyZEhUhFsKBAD4GQlsEMuW15aoDSYfvt3+vghCzuI0koZOhkSQhNgcaGWRlkE0J1eh8xLydr74ysjqTJumXhrAO6Ha6dNFv5ybEYhjM+Bi4WWcVZ6lJvzps2LdB7pl3j4ydOVaKqopMrYVGkoQ4iB07jHkuiRonHmjBfuop4/o554j06KG3BgQxEP3CPNSkNx8hVqI/2IR4TE1djWzO3ywhzUK0Rb9V+6ukTVwb6ZncUzuz4zaSrK6rln6t+2mvhRDiIyC2zcw0upd0MioIgqBXiokRueEGc+uARgaTfqlxIjaCwYyPRb9oxzYjtIVVwUfnf6QG3JnNEMFIEtN+CSE2pr7eaMVGS7VuNgRB0DvvGAFRQoK+6Le0VGTQIKOLiRAbwWDGR5RUl1gm+g0PCVcXM0aSkeGRSitDI0lCbA68kzDt12xZB55JyKiYWQeExxnseiT2g59kPhL9bivcpma5xLfQ8y55/9f3ZUHmAnUsM8BIsri6WLokdNFeCyHER9TWGqJflIh0DHTxXNhJoIPJDBUVRjAE0a+O+JgQL8O/Sh+AOS4Q/epO+sVzX1r6khpu9+boN025YqPMhXW0jWdLJSG2B8PtkBFp00bff2nZMsPD6f/+T28NOA5asbt105s4TIgPYDDjA9EvjCRDm4VqC23R+XR5v8slsyhT+qce3tvmz4DOBu3Y8F8yU6YihPiA8nIjs4LZPEcYNnhEzj/f6D666ir9dUA8jDUcwZOPEH/DYMbLZBVlyZ6KPaYm/UaGRcqNQ29UJSbdKal4LrIynRM7a2eICCE+BGJdGErqulFjrxgxQuSkk4wSkQ5o6S4rM0S/utOCCfEB1Mx4EQhttxZtlZYRLbVEvwfrY6wwkuyc0Jlj4wmxO3CiNtOKjc4jN7qBDEB5CsLj9HT9YxDiAxjMeAmUcyD6rayp1BbaTls1Te7+9m7JKc0xbWqJicGwLKCRJCEOaMXeutXIiui0QO/eLXL22SIff2wcy4z4GO3g6IDipF9icxjMeIm8MnOi34raCnln9TsyP3O+rNq9ytxaKvLUoD0aSRLiABCMwIMpRbMc/OKLhn+T27pAF2ht0Iqdmqp/DEJ8BDUz3hL9FmxRItuIUI12ShGJCouSt8a8JZ9t/ExO73K6KVPLiJAIJfqlkSQhNgeZkM2bjTZsnWwI/Je++cYIYu68Uz+YcbdyIyujKz4mxIcwM+MFcktzldi2VZS5NkYEIHcefae2xgWlroKqAunYsqMkRGpO/SSE+I7sbEOnkpTk+XNRUkIrNkCZSdd/CaAVG+3gbMUmDoHBjBeyMmihjg6L1pquiwCksLLQkrXsLd+r2rppJEmIA8BgOtgWxMfriXbnzhVZv97Q2UycaK4lPDxcpEMH+i8Rx8BgxgtamYLKAklooZcJ+Xzz53LOR+fIv9f929Q6YEhZ56pTol/dUhchxIfAsgCt2AhmPAXt06+8YlyfMEEvs+MGmSG0g+t6OBHiBxjMWAgm9CIrExkaqa1P+X7791JeW64EwLqgpdttJJkaTfEeIbYHwciOHUYAoZMNmTbNCELathW5+GL9dRQXG5md9u31j0GIH6AA2OKszL6KfZIeqz+T4ZnTnpFvtn4jJ3c8WfsYRVVFaqYMjCQ5U4YQB5CVZZR3dAbkQWczY4Zx/bbbjBKRDphrhWm//fuLxMToHYMQP8HMjMVZGVgWhDbXjxGhsxnVZZS23QDWgZkyEA/HhHNDIsT2oLSEElNiot7zX3jBmAnzl7+IHH+8/joQyCAzpOMDRYifYTBjERDbIiuTGKm3IS3euViJf60wtUyLTVNzZQghDgDlpcpKvWwITCTnzzfap++4Q1+w67Yt6NxZpIWehxwh/oTBjAXU1ddJZnGmysjoZGWWZC+Rm7+6WSbMmaAyK7ogIxPWPEyJfjlThhAHUFRklIl0sjKwLHC3Yp93nkiXLvrroG0BcTgMZiwAM2X2lO2RpEi9DgJ0P6GVu09KH+0SFbI6+ZX5Siejmx0ihPgQaFTgv1RTo2dbgCDI7Wh9/fX660CJCmugbQFxMBQAmwRBxI6iHRLSLETCQvQ2gjO6niHD2gzT1skAzpQhxIFmkrt26bdRYw7M7NkiW7aItGxpzragdWvaFhBHw2DGJNDJoA3a7LRfM9kUzJTZ79rPmTKEOCkrgw4mlIoiI/WPg4wOuo90oW0BCRBYZjIB5rnATBLoZFU++u0j2Zy/2fQ6EEy1i2/HmTKEOAXYBaBMpGMXgNLUl18aAZEV66BtAQkAmJkxATQq8GHS0cpsyt8kzyx+RppJM/n4wo+1u49gfRAbHqtasTlThhAHAA8lBCRAp3PouedEFi0yDClvuUV/HbQtIAEEgxkTWZmdxTvFJS6t0g6G2p3c4WQVgOgGMuh8Kq0plUFpgzhThhCnAI1Kbq7RPaQTCA0YIPLrr4aZpBnQwdStG20LSEDAYEaTwqpCySnN0e5gah3TWp485UlTrdiYKYNpwxlxGdrHIIT4EMxzgZkkjCR1JvXieVdfbVgWmNHa0LaABBjUzGgCrQwCEUz8NYNuKzZmyuC5EP2amThMCPEhe/aI5OWZ16iYCWTctgUQ/dK2gAQIDGY0dSq6WZl3Vr8jryx7xZSRJGfKEOJA0LmErExoqOfzXDBc77rrjIm/ZqFtAQlAGMxokF2SLTX7ayQyzLOzo/yKfHl9+esybdU0+WnnT6bawRFIdWzZUfsYhBAfg4wMMjM6WZnXXhNZscIQ/0I3owttC0iAwvqEhxRXFatgRicjguc8fvLj8v3272VExxHaM2Vq62ulW1I3zpQhxClgyu62bUYAgcyMJ6BrCcPxwJ13GroZXWhbQAIUBjMegkCmuq5aUqJTPH4uOpdO7HCiupixTsCUXwiICSEOYfduY6ZLRobn+pZnnzWyMSNGiAwerL8G2haQAIZlJg8orS5VwUxCiwSPNS41dTWmf35RVZHycOqc0JkzZQhxCgggkJWJivJ8yu4PPxg6GXQ+3XqruXXQtoAEMAxmPGBX6S4l3PV0psucjXPkon9fJIt2LtL+2eicKqkuUd1LsRGx2schhPiYnByjvOOpMzaCIGhkwGWXmSsN0baABDgMZjxohUY7tqdZGQzXm/nbTNlZslO2F243ZVmQFpumPWCPEOIHEEQgKxMb67nWZcYMw4gSguGrrjK3DtoWkACHmpkmglbs8ppySYr3rB0b5aA3Rr8hs9bNkot6X6QdSIU0D5GuiZwpQ4ijQDCCtup27TwPPt5+27h+001GiUoX2haQIICZmSaA0lJWUZbER8RrPT86PFquGnCVhIWEmZopkxSlN22YEOIHKioMD6b4eM+DiFdeMZ7fu7fIGWeYWwdKXAimaFtAAhgGM00gpyRHSmpKlJ+SJ1jhiI3ZNJgpgw4mQojDsjKwDUAw4wnr14vMnWtcv+suc63YtC0gQQKDmT+hsrZSdhTvUFkZTzqIFmYtlHGzx8n98+9Xuhld0S/awOGIbdY2gRDiQzCYDtN+W7b0LCuDveLpp42vp58u0rev/hpwDJS4aFtAggAGM39CbmmuFFcXe1xi2pi/UZpJM5VV0W2jxqTflJgUzpQhxGlkZxsBjadZma1bRdatM4br3XyzedsCBFO0LSBBANWkR6B6f7VkFmdKXHicxwHJhIETZHi74ZIRq+dojbk0da466dSykxL/EkIcQkmJyI4dIkkaGrcuXURmzRLZuFEkxfPBnH+wLRg0iLYFJChgMHMEdpftVvYFuu3Q3ZO6m5r0i0AoOTpZ+xiEED+wc6ch3tVtg0YmxWw2hbYFJMhgmekImZHMokw1cbd5s6a/TEuyl6hJvWaA/1JzaS7tW7b36GcTQvwMNCpZWZ5nZZBFgQeTFdC2gAQh/KQ8DHlleVJQWSAJkU1vZ0QQc8+8e2TMh2NMDciDVqZNfBultyGEOAiUl6qrjQ4iT5g5U2TcOJHnnze/BtgWICMD6wJCggSWmQ5BbV2tbCvcJlFhUR5lRtBGnRGXIeIS7VZqDOYLDwlXz6f/EiEOoqDAEP7qlJf27DG6nrrrl6YbJg7jOB07mmvpJsRhMJg5BHnleVJYWSjpsZ7Vmzsndpb3z31fZXR0AxEMyOuW1E1atmip9XxCiB9AGzSyMvv3i0RGev78v/1N5OKLRdq2NZ+VQSCjIz4mxMEwmDnEbJfMwkw110WniwhBjO6kXhhJRoVHSbt4D0efE0L8CwS3bh8lXWA3YIbSUiOQom0BCUKYhzyEoeO+yn0eaWVKq0vlqy1fSV19nfbPxWC9wqpC6RDfga7YhDiJ+nrDtgDZGU/boBcvNkpTZsHPRpkLk349nW1DSADAYKYRCEZ2FO2Q8ObhHhk6zlg7Q+6bf5/87bu/af9s92C+tvEm08yEEN/PlcnL87y0A33Lgw+KjB0rsmKF+S4qBDGeGloSEiAwmDlotgsyM56WieDZhEBkZOeRWj8XZpIIZjq27KhEx4QQh2VmoJXxtA169mwjm4Kuo379zA3IQ0DVubM5d21CHAw1MwcZSoY0C/EoKwPG9Rkno7uN1g5EIBhObJFodEIRQgIfZGXeece4fvXVIqEmtmIERByQR4IcZmYaUVtfK2EhekOmYsJjtAbcobRVUVshnRI7SURohNbPJoQ4jE8/NUTDyMqceaa5AXmYa4MBeeHhVq6QEEfBYMYE87bNU4aSZkArdnJUsqTFpFm2LkKIjUHw0TgrY2ZKL1qxERBxQB4JchjMaFJWUyaP//i4XDr7UlmRu0K7DRy2CcjK6GaECCEOY84cIwhJTRUZPdpcqQogKxNCM1oS3DCYMeGfdHTbo6VzQmfpn9pf6xh7y/dKakyqpEanWr4+QogNgWfS9OnG9SuvNFcaQkCEIXtmZtsQEiBQAKxJq6hW8veT/y7V+6u1huvhefVSrzqYdJ5PCHEg//mP0cYNwe7ZZ+sfB8aUmGnDAXmEKJiZMYmuaBeD+TJiMyQ5OtnyNRFCbAjEutOm/S8rExFhfkBeS9qeEAIYzGhoZd5c8aayHjBTokILOMwkdTqgCCEO5PPPRXbvNobrnXOO/nGKi0ViYzkgj5BG8JPUQ2b+NlNeW/6a3PzlzdrHgFYGM2USIxMtXRshxKZgqJ47K3PFFZ7bHjQe0IdgBqLf6GhLl0iIk6FmxkO6JnaVLold5OI+F2tndlCaQlZG11mbEOIw9u0z7AYqKw37Al0wmwaZnTZtrFwdIY6HwYyHHNf+ODm23bHaz8e0325J3aRlC9a6CQkaMAcGs2VQZtLNyiC7g3bsPn04II8QO5WZHnroIZWdaHzp0aNHw/1VVVVy4403SlJSksTExMjYsWMlD50AfgY6Fx2tC3Q20eHR0r5le6+si5BgwKn7huo6SkszPyDPzDEICVD8rpnp3bu35ObmNlwWLlzYcN/tt98u//nPf2TWrFnyww8/SE5Ojpx33nl+WefcTXPVxF+YQurgcrmksKpQlZdgfUAICfx9Q5lAfvih0UptBmRkoJfhgDxC7FlmCg0NldaHGMVdXFwsb731lsyYMUNOPvlkddu0adOkZ8+esmTJEhk2bJjP1gjvpOeWPKecrZ8c8aSc0ukUj49RVFWknLXbxrX1yhoJCSacsG8ovvlG5OmnjYAGLtnNm+trbtC9hPk0hBD7ZWY2b94s6enp0qlTJ7n00kslKytL3b58+XKpra2VU075X+CAVHK7du1k8eLFhz1edXW1lJSUHHCxgot6XyS9knvJiR1O9Pi5yOaU1JSoAXmRYZGWrIeQYMbqfcNrewdaqDt2NGwLdAMZZHWgkeGAPELsGcwcddRRMn36dPnqq69k6tSpsn37djnuuOOktLRUdu/eLeHh4dLyoKFQqamp6r7D8cQTT0h8fHzDpS3GfZskKixKrht8nbxz9jsS2jxUS/SbFJmk2rEJIfbbN7y1d8jw4UZW5vLL9QfkoYMJA/ISEsyvh5AAxa9lptNPP73her9+/dQm1b59e5k5c6ZERuplMCZPnix33HFHw/c4u7JkU1L6vWZaZpIoUyGrozstmBDi3X3Dq3sHNC66Ohf3gDwEM4QQ+5aZGoOzqW7dusmWLVtUPbympkaKiooOeAy6Eg5VK3cTEREhcXFxB1x0qaytlEf/+6hsKdiifYz8inxJjkqW1jGHXzMhxL/7htV7h0CQjIyM29laBw7II8SZwUxZWZls3bpV0tLSZPDgwRIWFibfffddw/0bN25UtfGjjz7aJ+v5eP3H8tnGz+Tub+/W6mKqrauV2vpa6ZTYScJCwryyRkKCHbvtGyoIeeUVQ/g7Y4b+ceC/xAF5hNi/zHTXXXfJ6NGjVYoY7ZMPPvighISEyLhx41TNesKECSrtm5iYqM6Sbr75ZrUh+aojYVibYTJizwg5tu2xWnNl9lXsk9SYVEmNTvXK+ggJRuy+b8gPP0ChbGRTzj9ff0BeRYVIr176hpSEBBF+DWays7PVBpSfny/JyckyfPhw1T6J6+C5556T5s2bq6FX6DQYOXKkvPrqqz5bH2wLppwyReu51furpV7qpVNCJwlpzrkQhATFvgHB7htvGNcvukhEt1SFVmwOyCOkyTRzYZpbAAMRH87WMH/iz2rgP2f/rObBtIpqZfrnZpdmS5vYNjIobRA9mEhQ48l70JHrRjnoxx9F0tONr3feKRIVJTJnDgQ9nv/g6mojmDnqKLRhmfodCAmWvcNWmhm78OmGT+XNFW8qU0hd4XBos1CaSRISTOC88M03jesXXqgXyLhtC6CTSUmxdHmEBDJ+nwBsN1AemvrLVMmvzFcZmnN6nOPxMfBc+C8lRiZ6ZY2EEBuyaJHI+vUiaA+/7DK9Y5SXi4SFcUAeIR7CzMxBYCjeHUffIce0OUbO7Hqmx8+v2l+ljtEuvh2zMoQEU1bmrbeM6xD96mZl3APyEnkiRIgnMDNzEBDrjuw8Ul10QAcTsjIJLTitk5CgYeVKkd9+MzqPdKf9lpYaWht4MBFCPIKZGQtxZ2VgJsmsDCFBlJX56KP/ZWV0sio4RmGhkZXBxF9CiEcwmGkUiNz29W2yaOcirQF5YF/lPkmPTadWhpBgYsECTOYzl5WBqWVMjIhF1iuEBBsMZn7nrRVvyZLsJfLaL68pPyWdYChEQqiVISSYQEblH/8wrp97rkirVnrHgP0CRL+0LSBEC2pmfmdc33GyPHe50rqEh4RrZWXaxbVjVoaQYKKuTuSUU0S2bNHPysB/KT5eJCPD6tUREjQwmPkdBCHXD75eDc3Tzcq0jadWhpCgIjRUBE7bgwaJ/D6B2OOsDIKZ/v0N8S8hRAuWmSwAc2XSYtMkKTLJ30shhPiDEE3LEoh+0cbNrAwhpmAwYxJkZZpJM9WOzawMIcQjd220Y3fqJNKihb9XQ4ijYTBjQVYGHUzMyhBCPAKeTklJNJMkxAIYzJi0PkBWhh1MhBCPhcOwLujY0WjpJoSYgsGMBVkZK1y2CSFBlpWBYJhZGUIsgcGMiayMS1zMyhBCPGP/fpHKSiMrA1NJQohpGMxoAg+mtJg0ZmUIIZ6bSaakiLRu7e+VEBIwMJjRzMpIM2EHEyHE86xMba2RlcGMGkKIJTCY0Z0rw6wMIcRT9u0zsjKpqf5eCSEBBYMZD6mpq1FaGWRlmjfjy0cIaSLIyCAzg6yM7pA9Qsgh4aexhlamdUxrZmUIIZ6xd6/RvYTMDCHEUhjM6GRl4pmVIYR4QHW14cMEZ+zm3DsIsRq+qzwgvyJfUqNTJTlaw1COEBLcWhn4L+mYURJC/hQGM02ktq5W6lx10qFlB2ZlCCFNp6rKyMa0by/C7kdCvAI/lT3UyjArQwjRysrAh4kQ4hUYzHiQlWEHEyHEIzDpF/NkmJUhxKvwk7mJc2VSY1IlJZpdCIQQD7MybduKJCb6eyWEBDQMZpqQldlfv59aGUKIZ8AVG47Y7dr5eyWEBDz8dG5iViY5iloZQoiHHkwIZFq29PdKCAl4GMwcAWRkcMFcmZDmnNhJCGkiZWUiUVFGiYkQ4nUYzPxJBxN0MtTKEEK0sjJxcf5eCSFBAYOZP8nKQCvDrAwhpMmUlIjExDArQ4gPYTBzGJiVIYR4DCwLCguNVmwENIQQn8Bg5khamZbUyhBCPKC42CgtMStDiE9hMHMYDyZM+oUPEyGENDkrg2AGZpIQ/xJCfEao736UM6BWhhCiRVGRSHy8YV1ACPEpzMwcRFFVkcrKUCtDCPGI0lKRjh1FIiP9vRJCgg4GMwcRGRap5sqENmfSihDiATCSZFaGEL/AYOYgUqJS1MRfQghpMi1aGFkZ2BcQQnwO0w+NiA6PlsTIRGZlCCFNB67YyckiaWn+XgkhQQs/tRvRO7m3NGvWzN/LIIQ4CbRiDxgg0pyJbkL8Bd99jWAgQwjRgoEMIX6F70BCCCGEOBoGM4QQQghxNAxmCCGEEOJoGMwQQgghxNEwmCGEEEKIo2EwQwghhBBHw2CGEEIIIY6GwQwhhBBCHA2DGUIIIYQ4GgYzhBBCCHE0DGYIIYQQ4mgYzBBCCCHE0TCYIYQQQoijCZUAx+Vyqa8lJSX+XgohQYn7ved+LzoF7h2EOGfvCPhgprS0VH1t27atv5dCSFCD92J8fLw4Be4dhDhn72jmctrpkofU19dLTk6OxMbGSrNmzcSOkSc2y507d0pcXJy/l2Nr+Fo583XCFoPNKD09XZo3d05lm3tHYMDXKTj2joDPzOAFaNOmjdgd/OHY4Y/HCfC1ct7r5KSMjBvuHYEFX6fA3jucc5pECCGEEHIIGMwQQgghxNEwmPEzERER8uCDD6qv5MjwtWoafJ2CA/4/Nw2+TsHxWgW8AJgQQgghgQ0zM4QQQghxNAxmCCGEEOJoGMwQQgghxNEwmCGEEEKIo2EwYwH//e9/ZfTo0WpKISaFfvrppwfcn5eXJ1dddZW6PyoqSkaNGiWbN2/+w3EWL14sJ598skRHR6uBRccff7xUVlY23F9QUCCXXnqpuq9ly5YyYcIEKSsrk2B7rXbv3i2XX365tG7dWr1WgwYNko8//viAxzj9tXriiSdk6NChavpsSkqKnHPOObJx48YDHlNVVSU33nijJCUlSUxMjIwdO1a9fo3JysqSM888U72WOM7dd98t+/fvP+AxCxYsUK8hOhi6dOki06dP98nvSLh3NBXuG03jiSDeNxjMWEB5ebn0799fXnnllT/ch2Yx/EFt27ZNPvvsM1m5cqW0b99eTjnlFPW8xpsR3oCnnXaaLF26VJYtWyY33XTTASOc8Sb77bff5Ntvv5W5c+eqN/h1110nwfZaXXHFFeoNOmfOHPn111/lvPPOkwsvvFA9PlBeqx9++EFtOEuWLFG/Q21trfrbaPw63H777fKf//xHZs2apR6P0ft4LdzU1dWpDammpkZ++ukneeedd9SG88ADDzQ8Zvv27eoxJ510kqxatUpuu+02ueaaa+Trr7/2+e8cjHDvaBrcN5rGD8G8b6A1m1gHXtJPPvmk4fuNGzeq29auXdtwW11dnSs5Odn1xhtvNNx21FFHue67777DHnfdunXqOMuWLWu47csvv3Q1a9bMtWvXLlcwvVbR0dGud99994BjJSYmNjwmEF+rPXv2qN/phx9+UN8XFRW5wsLCXLNmzWp4zPr169VjFi9erL7/4osvXM2bN3ft3r274TFTp051xcXFuaqrq9X3kyZNcvXu3fuAn3XRRRe5Ro4c6aPfjLjh3tE0uG80nT1BtG8wM+Nlqqur1dcWLVo03IYzJqTmFi5cqL7fs2eP/Pzzzyqdd8wxx0hqaqqccMIJDfe7z76Q9hwyZEjDbTjzwLHw3GB5rQBeo48++kilhGEG+OGHH6rU6Yknnhiwr1VxcbH6mpiYqL4uX75cnXXh93LTo0cPadeunfr9Ab727dtX/T25GTlypDKTw9mn+zGNj+F+jPsYxH9w72ga3DcOTzDtGwxmvIz7D2Xy5MlSWFioUndTpkyR7Oxsyc3NVY9BehQ89NBDcu2118pXX32lapEjRoxoqPui3osNqzGhoaHqjxT3BctrBWbOnKnekKj5YsO6/vrr5ZNPPlF120B8rbDxIo177LHHSp8+fdRt+D3Cw8PV5tsYbEDu3xFfG29I7vvd9x3pMdi4GmsuiO/h3tE0uG8cmmDbNxjMeJmwsDCZPXu2bNq0Sb0pIKiaP3++nH766Q01bfzRAby5rr76ahk4cKA899xz0r17d3n77bclWGjKawXuv/9+KSoqknnz5skvv/wid9xxh6p9ow4eiKAGvnbtWnUmSYIH7h1Ng/vGoQm2fSPU3wsIBgYPHqxEUkj54awhOTlZjjrqqIZ0Zlpamvraq1evA57Xs2dPpSoHUOAjpdwYqMuRMsV9wfJabd26VV5++WX1Ju3du7e6DcLAH3/8UYkDX3vttYB6rSDkdAsR27Rp03A7fg+8PticG59loSvB/TviKwShjXF3LTR+zMGdDPge3RyRkZFe/d3In8O9o2lw3ziQYNw3mJnxIfHx8epNhvQvzgzOPvtsdXuHDh1US+HBLXQ404AqHxx99NHqDxA1Tzfff/+9OjPDmzZYXquKigr1tfEZFwgJCWk4Sw2E1wo6R2xISINj7R07dvzD5o0z0u+++67hNvz94AMMvz/AV5x1Nt6g0eGADcf94YfHND6G+zHuYxB7wL2jaXDfcAXvvuE36XEAUVpa6lq5cqW64CV99tln1fUdO3ao+2fOnOmaP3++a+vWra5PP/3U1b59e9d55513wDGee+45pRaHynzz5s2qO6FFixauLVu2NDxm1KhRroEDB7p+/vln18KFC11du3Z1jRs3zhVMr1VNTY2rS5curuOOO069Dnh9nn76adVx8PnnnwfMazVx4kRXfHy8a8GCBa7c3NyGS0VFRcNj/vrXv7ratWvn+v77712//PKL6+ijj1YXN/v373f16dPHddppp7lWrVrl+uqrr1SHx+TJkxses23bNldUVJTr7rvvVl0Nr7zyiiskJEQ9lngf7h1Ng/tG05gYxPsGgxkLwJsIb7CDL1deeaW6/4UXXnC1adNGtcThjwibjbvFrTFPPPGEehz+SPDH9eOPPx5wf35+vnpjxcTEqM3r6quvVm/yYHutNm3apDaqlJQU9Vr169fvDy2XTn+tDvUa4TJt2rSGx1RWVrpuuOEGV0JCgnodzj33XLVxNSYzM9N1+umnuyIjI12tWrVy3Xnnna7a2to//J8MGDDAFR4e7urUqdMBP4N4F+4dTYP7RtOQIN43muEf/+WFCCGEEELMQc0MIYQQQhwNgxlCCCGEOBoGM4QQQghxNAxmCCGEEOJoGMwQQgghxNEwmCGEEEKIo2EwQwghhBBHw2CGEEIIIY6GwQwhhBBCHA2DGRLQ1NXVNRjJEUJIU+C+4TwYzBCf8e6770pSUpJUV1cfcPs555wjl19+ubr+2WefyaBBg6RFixbSqVMnefjhh2X//v0Nj3322Welb9++Eh0dLW3btpUbbrhBysrKGu6fPn26srafM2eOcniNiIhQjrCEEGfCfYM0Cb86Q5GgAs6tcHSFw62bvLw8V2hoqHJw/e9//6vM3aZPn67cb7/55htXhw4dXA899NABDsF47Pbt213fffedq3v37sop1g3MzmA2d8wxx7gWLVrk2rBhg6u8vNznvyshxBq4b5CmwGCG+BRsIHBjdfPMM88ox9X6+nrXiBEjXH//+98PePy//vUvV1pa2mGPN2vWLFdSUtIBmxJidFjXE0ICA+4b5M+gazbxKStXrpShQ4fKjh07JCMjQ/r16ycXXHCB3H///ZKcnKxSvyEhIQfUrquqqqS8vFyioqJk3rx58sQTT8iGDRukpKREpZIb34908fXXX69ua9asmV9/V0KINXDfIH9G6J8+ghALGThwoPTv31/VwU877TT57bff5PPPP1f3YUNCrfu88877w/NQC8/MzJSzzjpLJk6cKI8//rgkJibKwoULZcKECVJTU6M2JRAZGckNiZAAgvsG+TMYzBCfc80118jzzz8vu3btklNOOUUJ8gAEfBs3bpQuXboc8nnLly9XHQbPPPOMNG9uaNdnzpzp07UTQvwD9w1yJBjMEJ9zySWXyF133SVvvPGGOtNy88ADD6gzqHbt2sn555+vNp7Vq1fL2rVr5bHHHlObVW1trbz00ksyevRoWbRokbz22mt+/V0IIb6B+wY5EmzNJj4nPj5exo4dKzExMaq90s3IkSNl7ty58s0336j6+LBhw+S5556T9u3bq/uRZkaL5ZQpU6RPnz7y/vvvqzo4ISTw4b5BjgQFwMQvjBgxQnr37i0vvviiv5dCCHEI3DfI4WAwQ3xKYWGhLFiwQKWD161bJ927d/f3kgghNof7BvkzqJkhPu9KwMaElC83JEJIU+C+Qf4MZmYIIYQQ4mgoACaEEEKIo2EwQwghhBBHw2CGEEIIIY6GwQwhhBBCHA2DGUIIIYQ4GgYzhBBCCHE0DGYIIYQQ4mgYzBBCCCHE0TCYIYQQQog4mf8HzCk5r/lzU+oAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 2)\n", "sns.lineplot(x='year', y='life_expectancy', data=df, linestyle=':', ax=ax[0], color='green')\n", "sns.lineplot(x='year', y='life_expectancy', data=df, linestyle='-.', ax=ax[1], color='red')" ] }, { "cell_type": "code", "execution_count": null, "id": "3f2f2d4a-7b32-4f66-9f37-26348fc06bc7", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 5 }