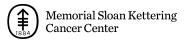


Cancer Imaging

Ross Boltyanskiy boltyanr@mskcc.org

1ttps://doi.org/10.1152/pilysrev.00045.2010

Center for Molecular Imaging and Bioengineering


My objectives for this course

- Familiarize with the fundamentals of different imaging modalities used in cancer research
- Develop an engineering approach to the design and development of tools and methods in cancer imaging
- Get some hands-on practice with imaging tools, acquisition process, reconstruction, analysis
- Be able to better understand papers and talks in Cancer Imaging
- Build up a bit more background to make an informed decision about what research group to join.

 Memorial Sloan Kettering Cancer Center

A few important notes about my class

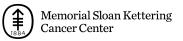
- My class is active and interactive: ask questions and don't by shy to answer!
- I'd like to cater as much as possible to what you want to get out of the class
- This is still just the beginning of the program so it's even more important for you to let me know what you found useful and interesting and what should be cut / added for next year.
- How is this different from an undergrad class? How is it different from a typical graduate level class?


Schedule + grading rubric

This week: Optics (1.5 days) + Acoustics

2nd week: Nuclear imaging, X-rays, Paper

3rd week: Magnetic resonance, hands-on activity


Assignment	% of grade
Problem Sets	65%
Class Participation	35%
Total	100%


Quick round of intros

- Your name
- Why did you choose to enroll in this new Cancer Engineering PhD program?
- What are some of the main things you'd like to get out of this class?

Take 1 min to think about it and we'll go around the room very quickly

Questions?

Common aspects of all imaging

1. Source of signal

Light, sound, radioactive decay, magnetic moment etc.

2. Method of detection

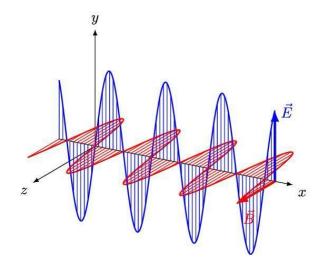
- How does the signal get captured?
- How is the signal processed/converted into interpretable data

3. <u>Generation of images</u>

- What creates contrast?
- Signal to noise ratio (SNR) considerations
- Does contrast represent a qualitative or quantitative metric?
- Is the contrast coming from a material property or a biological function?

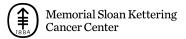
 (**) Memorial SI Concert Contract Co

In optics the source of signal is <u>light</u>

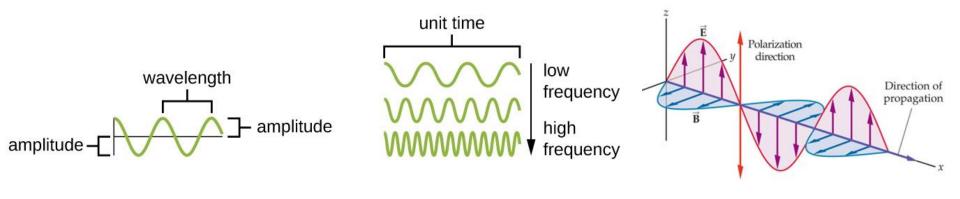

- Light is a particular form of energy
- Moving charges create an oscillating electric field, which creates an oscillating magnetic field (or other way around)

$$abla \cdot \mathbf{E} = \frac{
ho}{arepsilon_0}$$

$$abla \cdot \mathbf{B} = 0$$


$$abla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$abla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$



A few important parameters for us:

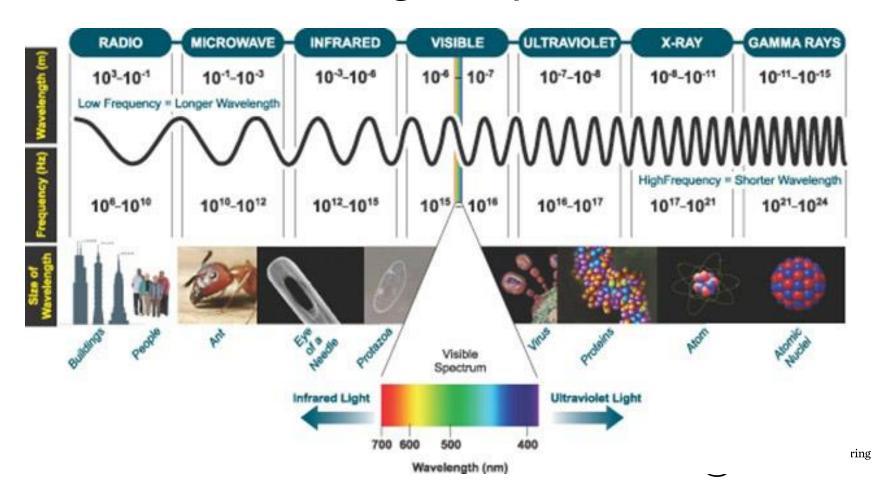
- Amplitude
- Wavelength / Frequency
- Direction of propagation
- Phase
- Polarization
- Speed

Light wave properties

What property of light do we perceive as brightness?

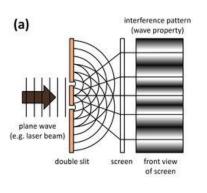
$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) \,.$$

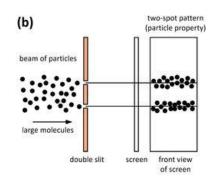
What property is the color?

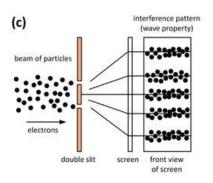

$$I(t) = \langle \mathbf{S}(t) \rangle = \frac{1}{2c\mu_0} E_0^2.$$

What determines the speed of light?

$$v = c/n$$
 $v = \lambda f$

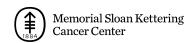

Light waves interfere creating amplification of intensity (constructive interference) or reduction of intensity (destructive interference)


Electromagnetic spectrum



Light particle properties (glimpse at quantum picture)

1801


1909 (photons) / 1961 (electrons)

diode-camera/

Color is still related to the frequency of the light

The energy of a photon is proportional to its frequency: $E = \hbar f$

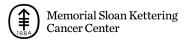
Intensity is proportional to number of photons per area: $I = n \cdot \frac{hf}{A\Delta t}$.

Interaction of light with matter

What kind of interactions exist between light and matter?

Reflection

Refraction


Transmission

Diffraction

Absorption

Scattering

- > We learn about biological matter based on how it interferes with light
- > We use these properties to design instruments to guide light and develop microscopy tools

Light ←→ Matter interaction one step deeper

Transmission: Electrons absorb the radiation and

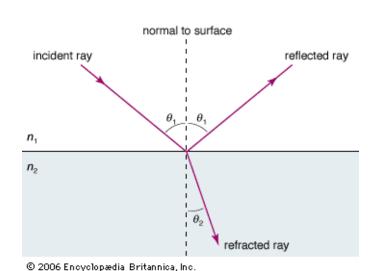
perfectly re-emit it to the neighboring

electrons until the light leaves the

material.

Reflection: Electrons absorb radiation and re-emit

phase-shifted by 180° Light therefore


is seen traveling back.

Absorption: Electrons and atoms absorb the radiation and do not reflect it back. The energy is turned into vibration and heat (usually).

Refraction: Electrons absorb the radiation and re-emit it with a phase shift and a change in speed.

Memorial Sloan Kettering

Light ←→ Matter interaction one step deeper

n is the **index of refraction** and is based on the dielectric properties of the material.

Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

n is wavelength-dependent! This is called
dispersion

$$n(\lambda) = A + rac{B}{\lambda^2} + rac{C}{\lambda^4} + \cdots$$
 Cauchy's equation

The speed of light in the medium depends on the index of refraction. As does the wavelength, but not the frequency.

$$v(n) = \frac{c}{n}$$
 $v(n) = \lambda(n) \cdot f$

Light ←→ Matter interaction one step deeper

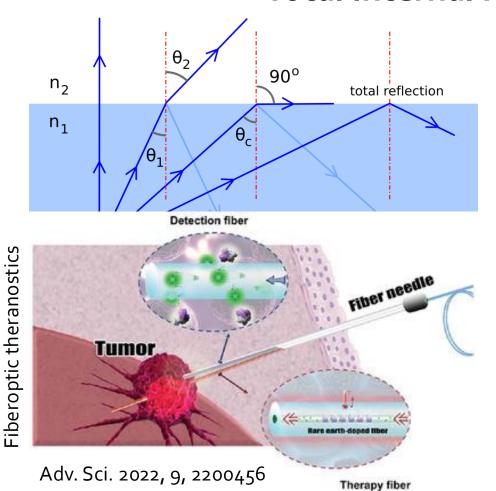
In reality *n* is complex:

- → Real part corresponds to refraction
- → The imaginary part corresponds to absorption/extinction

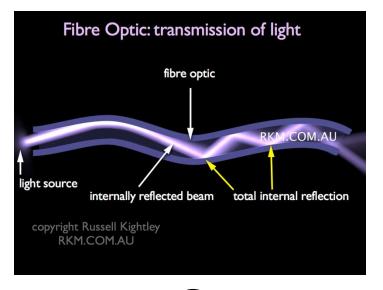
$$n=n+i\kappa$$
.

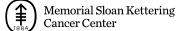
$$egin{aligned} \mathbf{E}(x,t) &= \mathrm{Re} \Big[\mathbf{E}_0 e^{i(\underline{k}x - \omega t)} \Big] \ &= \mathrm{Re} \Big[\mathbf{E}_0 e^{i(2\pi(n+i\kappa)x/\lambda_0 - \omega t)} \Big] \ &= e^{-2\pi\kappa x/\lambda_0} \; \mathrm{Re} \Big[\mathbf{E}_0 e^{i(kx - \omega t)} \Big] \end{aligned}$$

Wave number: $\underline{k} = 2\pi \underline{n}/\lambda_0$


$$I(x) = I_0 e^{-4\pi \kappa x/\lambda_0}$$

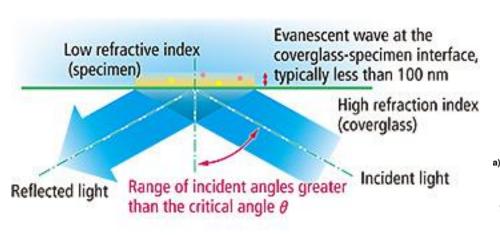
Absorption coefficient: $\alpha = 4\pi\kappa/\lambda_0$


Penetration depth: $\delta_{\rm p}=1/\alpha=\lambda_0/4\pi\kappa$



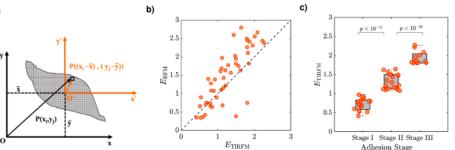
Total Internal Reflection

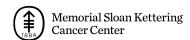
Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $\theta_c = \arcsin(\frac{n_2}{n_1})$



Evanescent wave and TIRF microscopy

Evanescent wave:


Even though no light propagates in the lower refractive index medium, some EM energy seeps in and decays exponentially away from the surface.



Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy

Elham Sheykhi, Behnaz Shojaedin-Givi, Batool Sajad [™], Hossein Naderi-Manesh [™] & Sharareh Tavaddod [™]

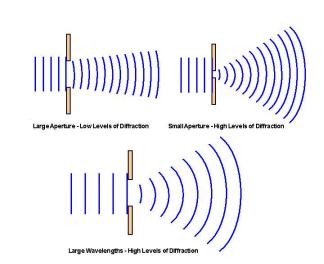
Scientific Reports 12, Article number: 19993 (2022) Cite this article

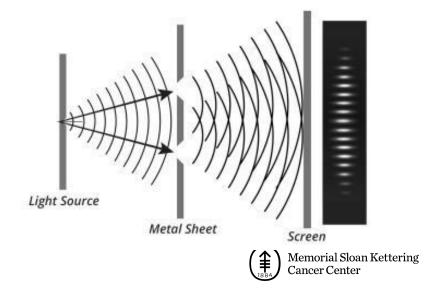
Interaction of light with matter

What kind of interactions exist between light and matter?

✓ Reflection

✓ Refraction

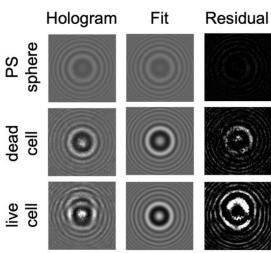

✓ Transmission


Diffraction

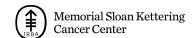
✓ Absorption

Scattering

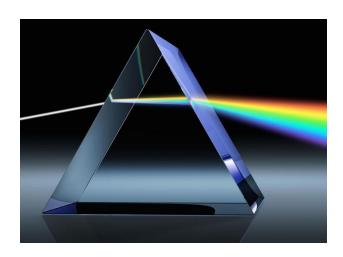
Diffraction

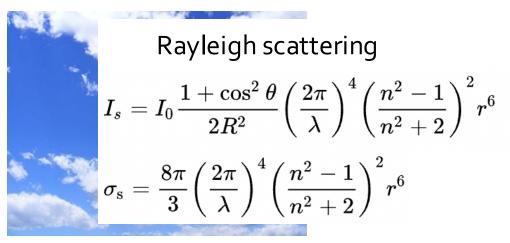

Interaction of light with matter

Scattering: In the context of optics, it's the collision of light and a particle (very broadly)


$$\alpha = \frac{\pi d}{\lambda}$$
 $\alpha << 1$: Rayleigh scattering $\alpha < 1$: Mie scattering $\alpha >> 1$: Geometric scattering

Scattering can be:


- Indicative of the presence of cells/biological matter of interest
- We can quantitatively describe the scatter and learn about the underlying biological properties
- An obstacle to the desired imaging

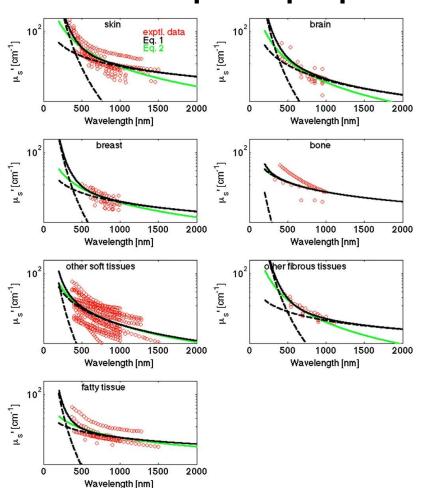

Boltyanskiy et al, Scientific Reports, 2022

Let's take a step back

IOP Publishing

PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. **58** (2013) R37–R61


doi:10.1088/0031-9155/58/11/R37

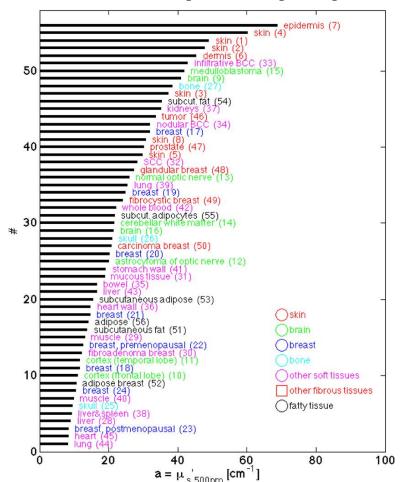
TOPICAL REVIEW

Optical properties of biological tissues: a review

Steven L Jacques^{1,2}

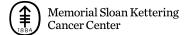
$$\mu_s' = a \left(\frac{\lambda}{500 \text{ (nm)}} \right)^{-b}$$

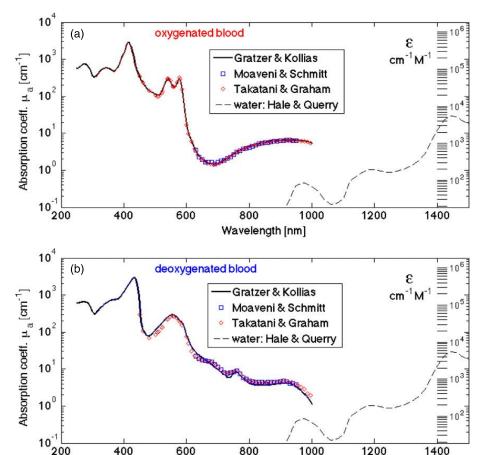
$$\mu_s'(\lambda) = a' \left(f_{\text{Ray}} \left(\frac{\lambda}{500 \text{ (nm)}} \right)^{-4} + \left(1 - f_{\text{Ray}} \right) \left(\frac{\lambda}{500 \text{ (nm)}} \right)^{-b_{\text{Mie}}} \right)$$


 μ_s ' = reduced scattering coefficient

Solid line = Rayleigh scattering component Dotted line = Mie scattering component

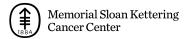
Main take away:


Generally, much less scattering at higher wavelengths



A few take aways

- Skin generally scatters more. Need ways around it to image tissues
- Diversity of results for scattering of different tissues
- Soft tissues overall scatter less than fibrous tissues



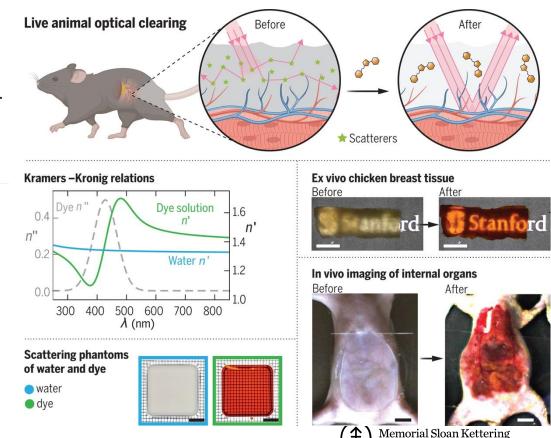
Wavelength [nm]

A few take aways

- Here is roughly what's behind the optical finger oxygen meters
- Overall less absorption at higher wavelengths

Quick demo: use flashlight

Examples research of optimizing tissue refractive index


Achieving optical transparency in live animals with absorbing molecules

ZIHAO QU (S). YI-SHIOU DUH (D). NICHOLAS J. ROMMELFANGER (B). CARL H. C. KECK (B). SHAN JIANG (B). KENNETH BRINSON JR (S). SU ZHAO (D).

ELIZABETH L. SCHMIDT (D). XIANG WU (D). [...]. AND GUOSONG HONG (D). +11 authors Authors Info & Affiliations

SCIENCE · 6 Sep 2024 · Vol 385, Issue 6713 · DOI:10.1126/science.adm6869

https://www.science.org/doi/10.112 6/science.adm6869

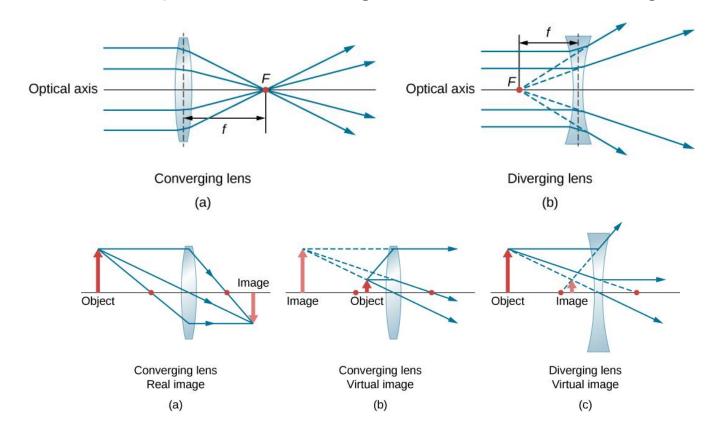
Light sources:

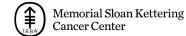
White light: LEDs and incandescent bulbs

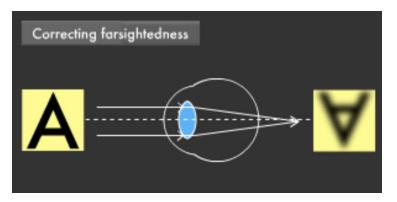
One color + coherence: Lasers

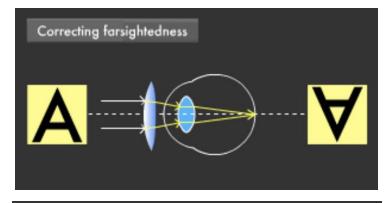
Lenses, mirrors etc

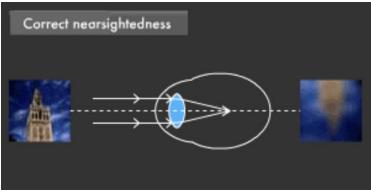
Cameras

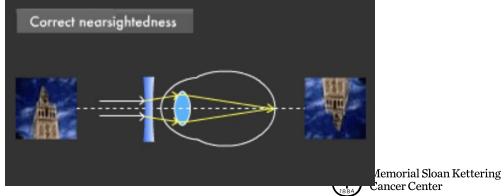




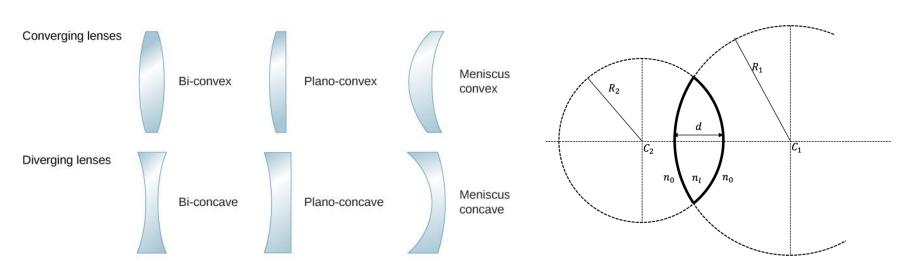



Lenses: Focus and collimate light based on Snell's law (and Len's Maker's formula) Carry and transform imagine information (such as magnification)





Lenses: Focus and collimate light based on Snell's law (and Len's Maker's formula) Carry and transform imagine information (such as magnification)



https://global.canon/en/technology/s_labo/light/oo3/o2.html

Lenses: Focus and collimate light based on Snell's law (and Len's Maker's formula) Carry and transform imagine information (such as magnification)

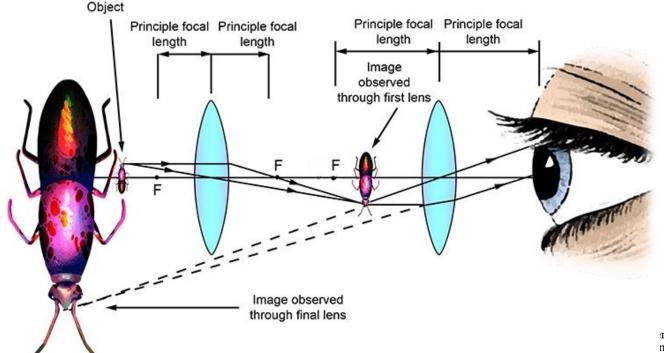
Lens-maker's formula:

$$rac{1}{f}=\left(rac{n_l-n_0}{n_0}
ight)\left(rac{1}{R_1}-rac{1}{R_2}
ight).$$

Thin lenses:

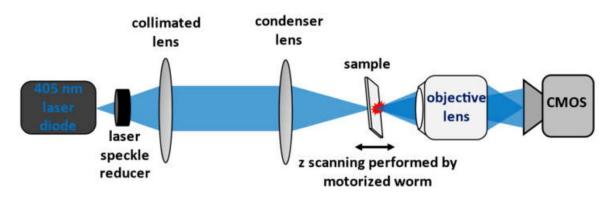
$$\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$$

Magnification

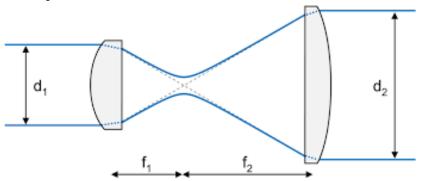

$$M = \frac{d_i}{d_0}$$

l Sloan Kettering enter

Microscopy tools: combination of lenses

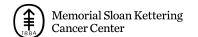

Combinations of lenses can be used to relay and magnify and image

This is the fundamental principle behind compound microscopes

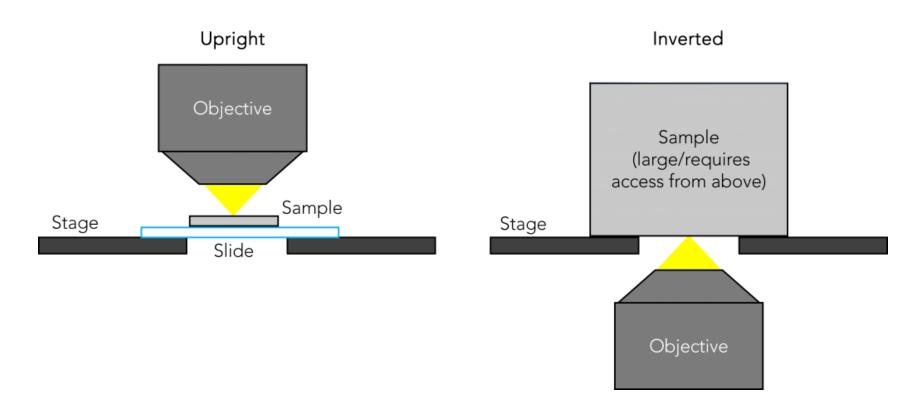


morial Sloan Kettering ncer Center

Bare bones of a microscope



Dion, Sylvere & Agre, Don & Akpa Marcel, Agnero & Zoueu, Jeremie. (2023). Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy. Photonics. 10. 163. 10.3390/photonics10020163.



Soliman, Dominik. (2016). Augmented microscopy: Development and application of high-resolution optoacoustic and multimodal imaging techniques for label-free biological observation. 10.13140/RG.2.2.24410.03525.

- Lenses are placed at focal lengths from each other.
- Can resize a beam with 2 lenses at focal lengths apart (magnification = ratio of focal lengths)
- Due to dispersion, the exact workings of all optics will be wavelength dependent!

Upright vs. Inverted Microscopes

Little history break: first microscopes

Letters, however small and dim, are comparatively large and distinct when seen through a glass globe filled with water.

Seneca (c. 4 BC – AD 65)

Zacharias Janssen (1585–c. 1632) and his father Hans are thought to have made one of the earliest (c. 1600) compound microscopes

Robert Hook Microscope, 1665

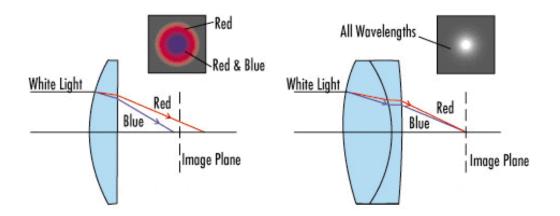
Leeuwenhoek (1632–1723) made simple one-lens microscopes using small, high-quality lenses that he ground himself. Leeuwenhoek observed animal and plant tissues, protozoa, human sperm and red blood cells etc

First picture illustrating use of a microscope ~1686

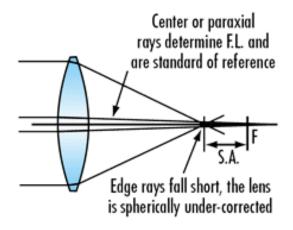
First microscopes

Joseph Lister (1786–1869) and his son: doctor and engineer.

First achromatic lenses (minimizing dispersion)

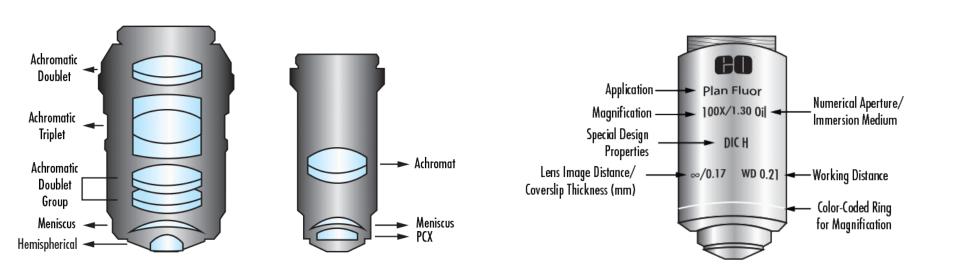

Nikon's first microscope
~ 1920's

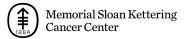
- > The invention of a microscope completely revolutionized cell biology.
- > This is our dream in Cancer Engineering: to revolutionize cancer research and patient care through novel tools and technologies.



How to fix dispersion and spherical aberrations?

Dispersion


Spherical aberrations

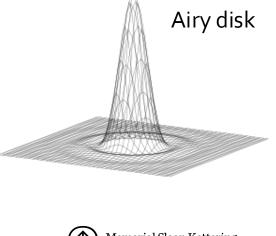

Modern objectives often have numerous combinations of lenses that try to compensate both of these effects

The anatomy of an objective

The objective is one of the most important choices when designing an imaging system

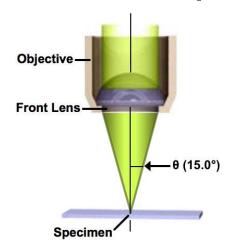
Important imaging / microscopy concepts

Resolution: the ability to distinguish 2 features close together



This blurred image of a feature is called the **point spread function (PSF)**

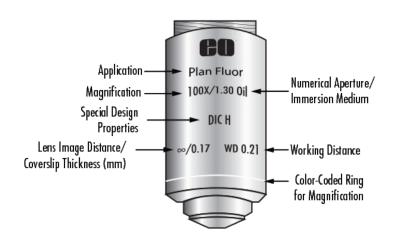
The PSF comes from all imperfections in the optics combined.


Cutting off part of the light from the finite size of objective is a bit part of it

$$ext{PSF}(f,z) = I_r(0,z,f) \exp \left[-z lpha(f) - rac{2
ho^2}{0.36 rac{cka}{ ext{NA}f} \sqrt{1 + \left(rac{2 \ln 2}{c\pi} \left(rac{ ext{NA}}{0.56k}
ight)^2 fz
ight)^2}}
ight]$$

Important imaging / microscopy concepts

The objective doesn't capture all of the light and the sample scatters light as well. Both of those contribute to the loss in resolution:

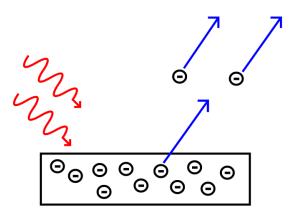

Numerical aperture (NA) = $n \sin(\theta)$

Where n is the refractive index of the immersion medium High NA = better resolution

Microscopy resolution: $\Delta X \approx \frac{\lambda}{2 NA}$

- Exact numbers depends on how you define overlap of Airy disks
- Higher NA means better resolution
- Imaging with lower frequency / higher wavelength gives better resolution
- This is just an approximation. Other optics aberrations can degrade the resolution.


One more word on objectives


Working distance of an objective (**WD**) is the maximum distance between the surface of the objective and the closest surface of the glass slide

Manufacturer	Correction	Magnification	Numerical Aperture	Working Distance
Nikon	PlanApo	10x	0.45	4.0 mm
Nikon	PlanFluor	20x	0.75	0.35 mm
Nikon	PlanFluor (oil)	40x	1.30	0.20 mm
Nikon	PlanApo (oil)	60x	1.40	0.21 mm
Nikon	PlanApo (oil)	100x	1.40	0.13 mm

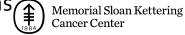
Basics of cameras

https://www.photometrics.com/learn/imaging-topics/what-happens-when-light-hits-a-pixel

The most fundamental working principle of all cameras is the **photoelectric effect**

- Light is incident on camera chip (usually silicon), electrons are released from the surface
- The number of electrons released is proportional to the intensity of the light
- The released electrons generate a current that is then converted into an intensity level displayed to the user

CMOS sensors: Complementary Metal Oxide Semiconductor


Each pixel has an amplifier

Usually more noise, but cost-effective and light

CCD sensors: Charged coupled devices

Each pixel is a photodiode and collects it's photoelectrons

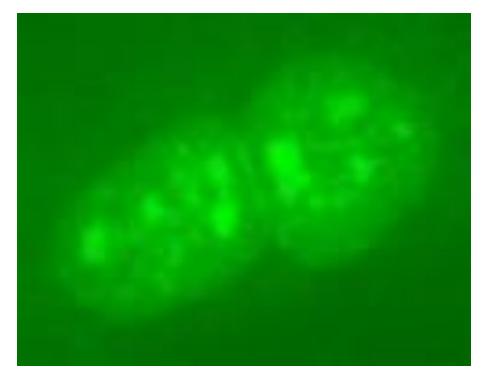
Usually produce better resolution

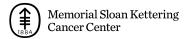
Signal to noise ratio (SNR)

 Just like every measurement has an error bar and the measurement is only meaningful with an error bar, every image has noise.

• In optics:
$$SNR = \frac{S}{\sqrt{\sigma_S^2 + \sigma_D^2 + \sigma_R^2}}$$

S = total signal (total number of photons) $\sigma_s = photon shot noise$ $\sigma_D = dark noise$ $\sigma_R = read noise$


 σ_s = photon shot noise: quantum nature of light (1/ \sqrt{N}) σ_D = dark noise: electronic noise from thermal fluctuations in a camera


 σ_R = read noise: noise in converting charge to pixel value

 In practice, you also have extraneous signal from non-relevant sources contributing to the noise

Signal to noise ratio (SNR): example

- Think of 3 different ways to define SNR of the following image.
- Identify at least one pitfall of each

Reminder of where we are: common aspects of all imaging

Source of signal

Light, sound, radioactive decay, magnetic moment etc.

2. Method of detection

- How does the signal get captured?
- How is the signal processed/converted into interpretable data

3. <u>Generation of images</u>

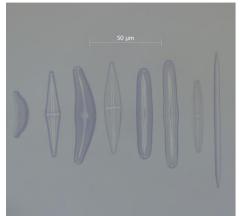
- What creates contrast?
- SNR and not signal is what matters
- Does contrast represent a qualitative or quantitative metric?
- Is the contrast coming from a material property or a biological function?

 (**) Memorial SI Concert Contract Co

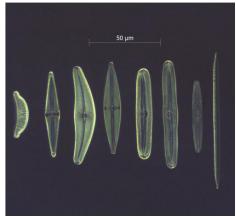
Widefield microscopy

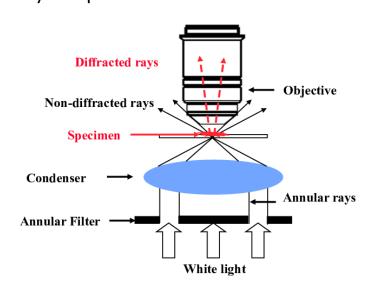
Transmission: The light detected in the camera (or eye piece) is what

the sample transmitted. (bright = less scattered etc)

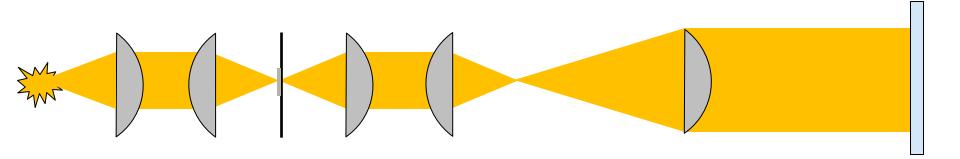

Brightfield

Reflection: The light detected is what's reflected from the sample

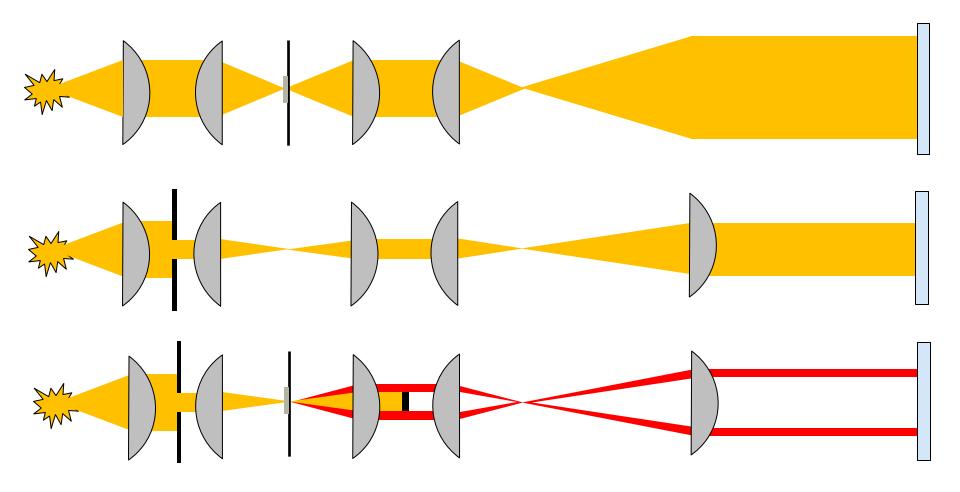

Darkfield: Block any light that's transmitted and only keep what has


been scattered by the sample

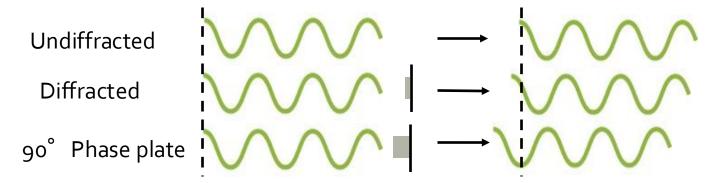
Brightfield



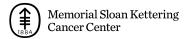
Darkfield

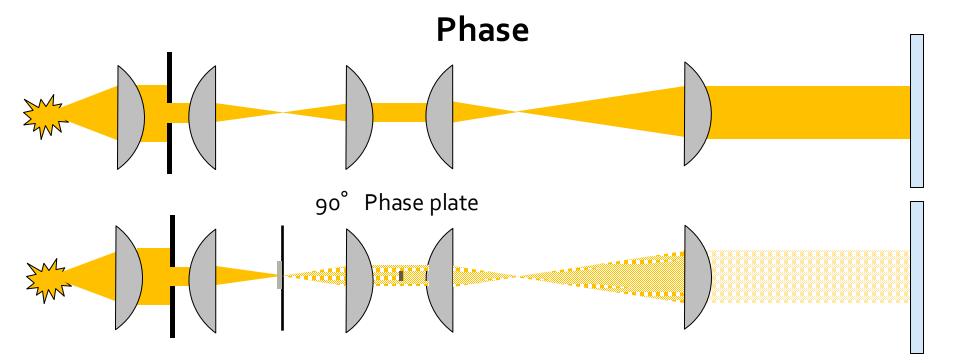


Transmission

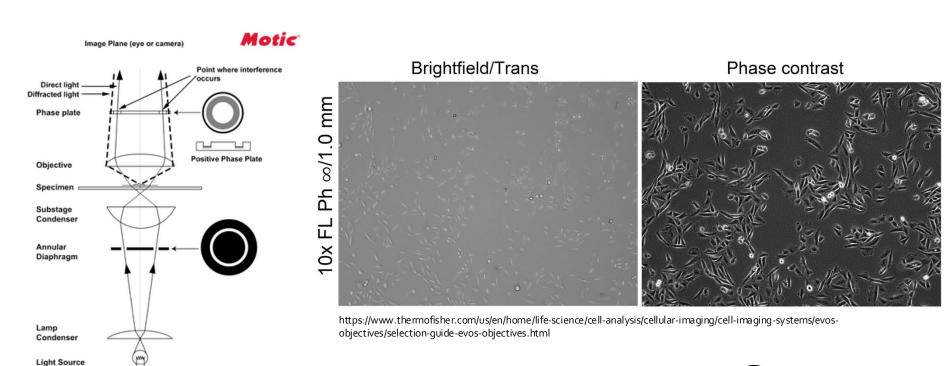


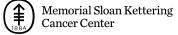
Darkfield


Widefield microscopy: phase imaging

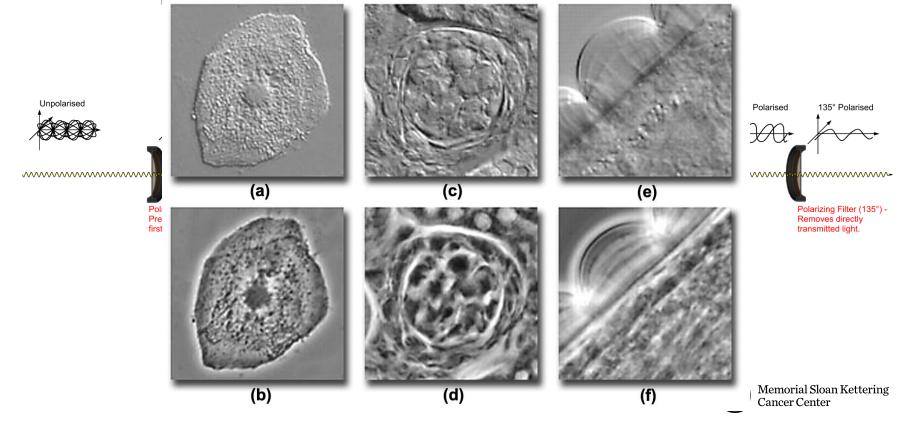

Phase: Use the fact that samples can change the phase of light to create contrast

Idea of phase imaging: Make it such that light that did not interact with a sample interferes destructively and disappears. This occurs through a phase plate (or multiple).


Fritz Zernike got the Noble Prize for this in 1953



Widefield microscopy: phase imaging


Phase: Use the fact that samples can change the phase of light to create contrast

Widefield microscope: beyond transmission

DIC: Differential interference contrast. Use polarization to separate beams of light and utilize phase delays caused by the sample to create contrast

Quick recap

Some aspects of light we have discussed

Amplitude

Frequency / wavelength

Direction of propagation

Phase

Speed

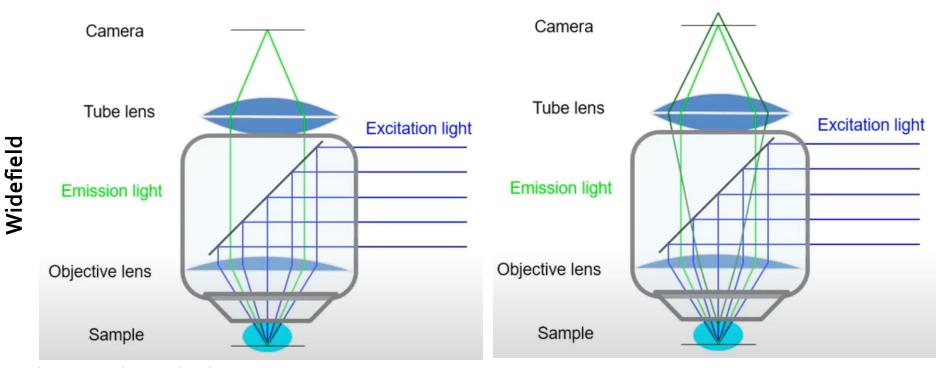
Polarization

Which aspect is most relevant in the following imaging techniques

Transmission

Phase

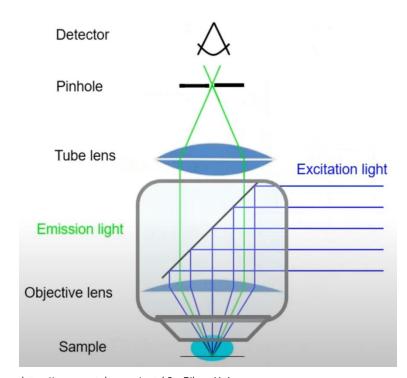
DIC

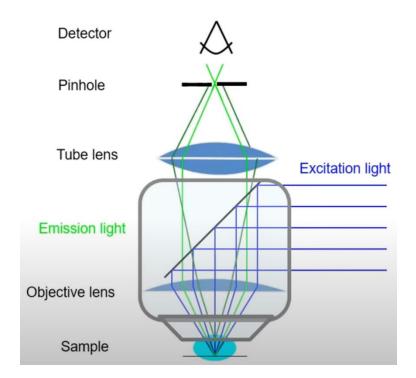

Reflection

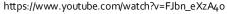
Darkfield

What is not a widefield scope? A confocal

Confocal: A selective way of imaging a thin slice of a sample.

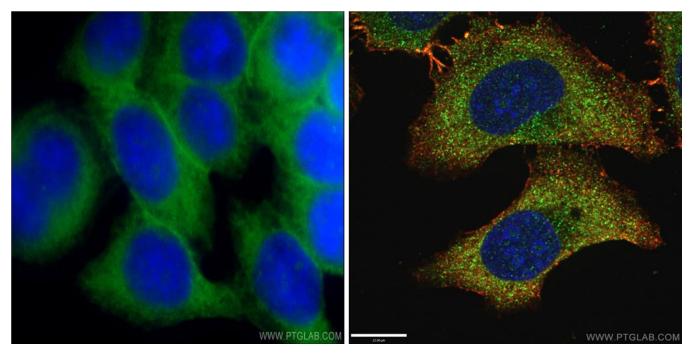

https://www.youtube.com/watch?v=FJbn_eXzA4o



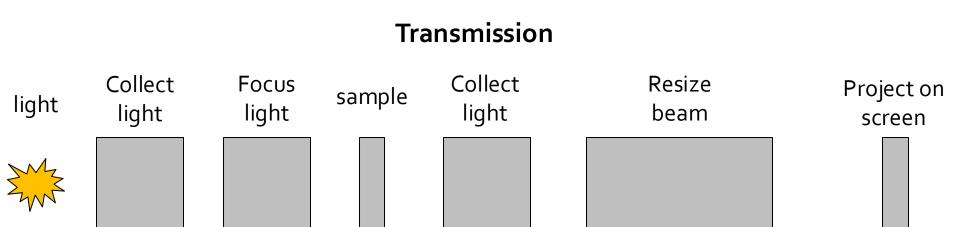

What is not a widefield scope? A confocal

Confocal: A selective way of imaging a thin slice of a sample.

Confocal



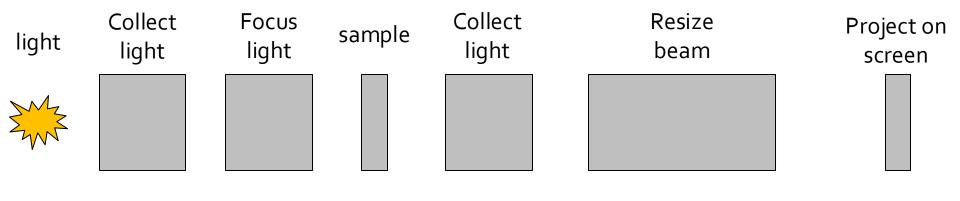
Confocal imaging

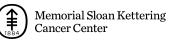


https://www.ptglab.com/news/blog/if-imaging-widefield-versus-confocal-microscopy/

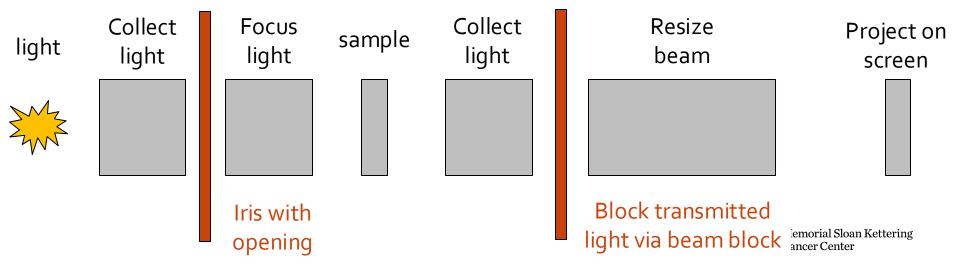
Benefits and drawbacks?

While the signal may be decreased, the contrast and resolution are usually better.



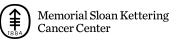

Part 1: Break up into groups of 2 or 3 and draw where you would put the lenses to project a transmission image (5 minutes)
Can use handout as a guide
You have four plano-covex 6omm lenses, one plano-covex 125mm lens

Darkfield


Part 2: In the same groups discuss what and where you would need to add to the system to turn it into darkfield imaging.

Darkfield

Part 2: In the same groups discuss what and where you would need to add to the system to turn it into darkfield imaging.

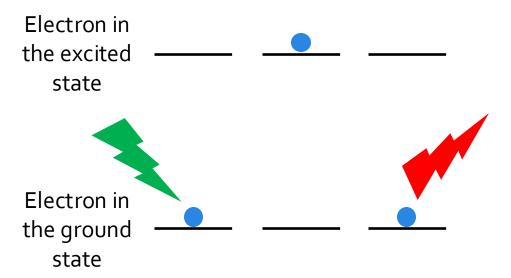

Objective #1: Build a simple transmission microscope and project the image of your sample (letter) on a far placed screen

Objective #2: Convert your setup into a darkfield microscopy and demonstrate that you are imaging scattered light almost exclusively


(In addition to lenses, have an iris and a beamblock)

Tips: → Feel free to use the cheat sheet of suggestions

→ Make sure everyone has a part in the building



Fluorescence imaging

Fluorescence imaging

Fluorophore: Usually a small molecule or a protein that has "excitable" electrons which absorb one frequency of light and emit another.

The frequency of light that illuminates the fluorophore is called the **excitation frequency.**

The frequency of light that is emanated is called the **emission frequency.**

The length of time the electron is in the excited state is called its **lifetime**.

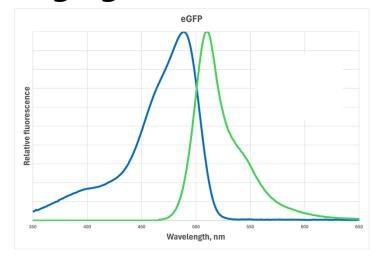
- > Excitation frequency is always higher than the emission frequency
- > Excitation wavelength is always lower than emission wavelength

$$E = \hbar f$$

$$v = \lambda f$$

$$\text{Memorial Sloan Kettering Cancer Center}$$

Fluorescence imaging


GFP: Green fluorescent protein

2008 Noble prize in chemistry

Different variants but most common one is illuminated in blue and fluoresces in green

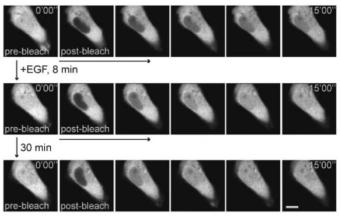
At this points, probably hundreds of fluorescent dyes, proteins etc with the possibility to conjugate to different cell proteins / components.

Fluorophore	Fluorescence Colour	Maximal Absorbance, nm	Maximal Emissions, nm	Relative Brightness
Alexa Fluor*405	i -	401	421	3
Pacific Blue		410	455	1
CoraLite*488		495	519	3
FITC		490	525	3
PE"		490; 565	578	5
CoraLite® 594		590	617	4
APC		650	661	4
CoraLite*647		650	665	4
PerCP		490	675	2
Alexa Fluor*700		702	723	2

*PE is the same as R-phycoerythrin

A few important fluorescence properties

Photobleaching:

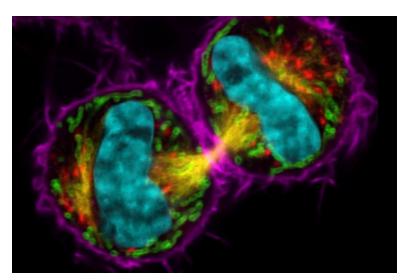

- Most applications want to avoid it, but in several cases it's a usual feature
 - > Background fluorescence can sometimes be bleached for better SNR
 - > FRAP: fluorescent recovery after photobleaching is an imaging technique

Repeated FRAP of the actin-binding protein CapG in the cell nucleus—a functional assay for EGF signaling in the single live breast cancer cell

M. K. Fernandez, M. Sinha, R. Kühnemuth & M. Renz □

Scientific Reports 14, Article number: 23159 (2024) | Cite this article

Autofluorescence: Fluorescence of the naturally abundant molecules in cells / tissues of interest



Memorial Sloan Kettering

Fluorescence Imaging in Cancer Research In vitro vs. In vivo

In vitro: "On a glass slide" which usually means with cultured cells, or thin tissue sections

- Could be live cells or stained
- Often a combination of fluorescently tagged cells components and a corresponding phase image of entire cell
- Static or dynamic

Example: COS7 mitotic cells.

- Chromatin (cyan, mCherry)
- mitotic spindle (yellow, EGFP),
- Golgi apparatus (red, Atto647N)
- mitochondria (green, AF532)
- actin filaments (magenta, SiR700)

Fluorescence in-vitro applications span wide areas of cancer

Labeling antibodies: By fluorescently tagging specific antibodies one can track the proteins of interest (both in vivo and in vitro).

→ Development and identification of cancer biomarkers

Tagging signaling pathways: Ras, PI₃K and other common cancer-related proteins can be tracked when tagged with one of the fluorophores we discussed

Viability assays: Certain dyes only become permeable when cells dye allowing for viability assessment

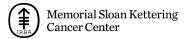
Light up ECM: Extra-cellular matrix can be visualized either by fluorescently labeling ECM components (collagen etc) or by tracer particles

Labeling specific cells: Can genetically modify cells to express GFP for example and tag their growth / migration etc

Fluorescence in-vitro applications span wide areas of cancer

Tracking immune response: Can tag cancer target cells and thus monitor efficiency of immune clearing.

Can tag immune-specific molecules like PD-1, PD-L1 and track the initiation of an immune response.


Tagging stem cells:

Can tag stem cell biomarkers (CD44 or CD133) and look at the progression from stem cells to tumors etc

FACS is a fluoresncence-based protocol commonly used to sort

cancer stem cells

Many others of course!

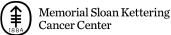
Fluorescence in-vivo applications

Intravital Imaging: Basically in-vivo microscopy, often fluorescence based

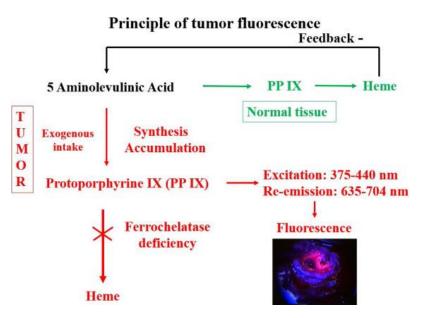
How do you image inside of a person or animal?

- Make sure the fluorescent signal (excitation and emission) penetrate through tissues
 - Use confocal or multi-photon imaging with "regular" fluorophores
 - Use fluorophores that penetrate deeper into tissues
 - Bioluminescence
 - NIRF / SWIRF
- Create a window to image through
 - Fix a window (usually in animals) for imaging
 - Surgically open the tissue to visualize tumor

nature reviews cancer

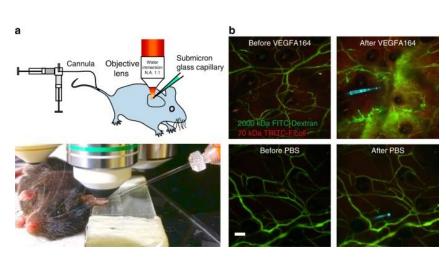

https://doi.org/10.1038/s41568-022-00527-

Review article

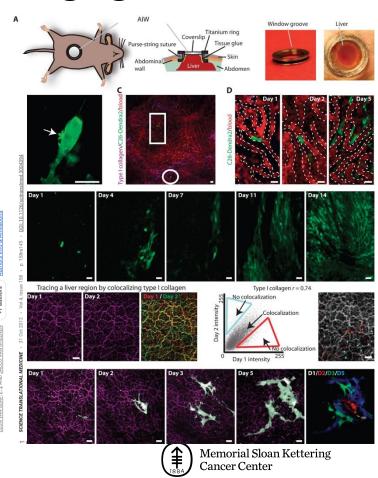

Check for updates

Intravital imaging to study cancer progression and metastasis

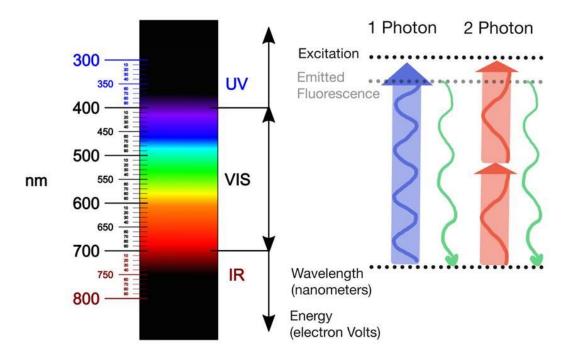
David Entenberg © 1,2,3 , Maia H. Oktay 1,2,3,4 , & John S. Condeelis 1,2,4,5


Fluorescence guided surgery

Window for intravital imaging


Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events

Naoki Honkura ^M, Mark Richards, Bàrbara Laviña, Miguel Sáinz-Jaspeado, Christer


Betsholtz & Lena Claesson-Welsh

Nature Communications 9, Article number: 2746 (2018) | Cite this article

ntravital Microscopy Through an Abdominal Imaging Pre-Micrometastasis Stage During Window Reveals


Two-photon / Multiphoton microscopy

https://www.neurotar.com/contract-research/two-photon-microscopy/

In-vivo calcium imaging

Advantages and costs of multiphoton microscopy

Multiphoton: Each photon is lower energy → Each photon is higher wavelength

- Deeper tissue penetration
- Lowertoxicity
- Higher costs / complexity
- Longer imaging time
- Resolution

Volume 187, Issue 17, 22 August 2024, Pages 4458-4487

Review

Multiphoton fluorescence microscopy for *invivo* imaging

 $E = \hbar f$ $v = \lambda f$, [cm.1] Wavelength [nm] Wavelength [nm] µ, [cm.¹] [cm.] Wavelength Inm? er fibrous tissues [[cm.] s [, [cm,] 1000 Wavelength [nm] μ* [(cm.]] an Kettering

Chris Xu ¹, Maiken Nedergaard ^{2 3}, Deborah J. Fowell ⁴, Peter Friedl ⁵, Na Ji ⁶ $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\boxtimes}$

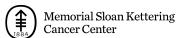
NIRF/SWIRF

NIRF: Near infrared fluorescent imaging (~ 700 – 1400 nm)

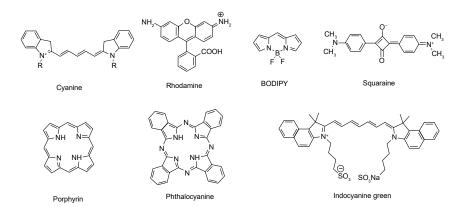
SWIRF: Short wave infrared fluorescence imaging (~ 1400 – 3000 nm)

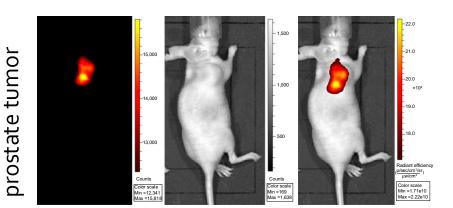
- Deeper penetration:
 - Less scattering
 - Less absorption
- Less tissue autofluorescence in this range, hence better SNR

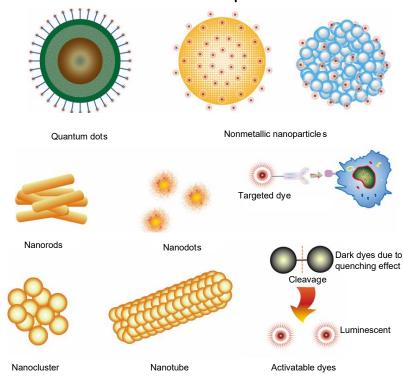
International Journal of Nanomedicine

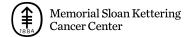

Dovepress

open access to scientific and medical research


REVIEW


Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field


NIRF / SWIRF probes

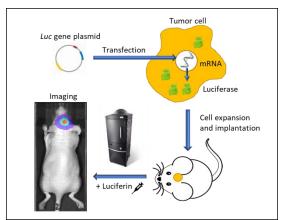

Several NIRF dyes

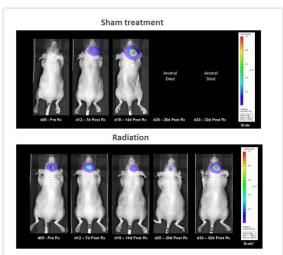
NIRF nanoparticles

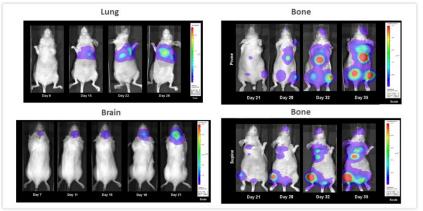
Mouse with subcutaneous

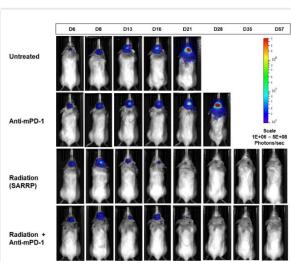
Bioluminescence

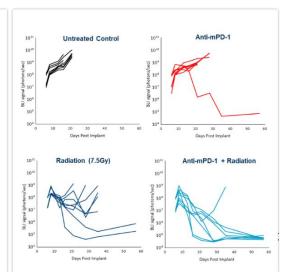
There is a way to make cells or tissues fluoresce without an excitation light. Everyday example: firefly

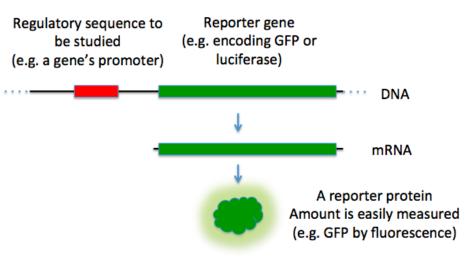

A luciferase enzyme catalyzes luciferin (with other ingredients) to provide light (and other products)


https://goldbio.com/articles/article/a-crash-course-on-luciferase-assays

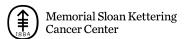

- Can genetically encode cells to produce luciferase
- Provide luciferin as a substrate in the media
- The wavelength of light produced depends on the source / type of luciferase
- Can essentially tag cells (such as cancer cells of interest) and observe their growth, migration etc




Bioluminescence example


https://www.labcorp.com/bioluminescence

Genetic reporter systems

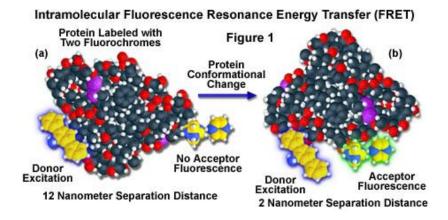

Reporter gene:

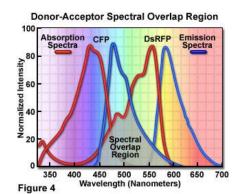
Usually traditional fluorescence (like GFP) or bioluminescence that is genetically introduced and coupled to an experimental promoter gene

➤ Fluorescence or bioluminescence is then indicative of expression of the gene of interest

- ➤ In a sense, bioluminescence can be cast as a genetic reporter system as well
- ➤ The reporter, like luciferase, can be placed downstream of a particular signaling cascade

Benefits


Challenges


FRET

FRET: Fluorescence Resonance Energy Transfer: the emission of one fluorophore is the excitation of another

FRET Detection of in vivo Protein-Protein Interactions No Green Blue Fluorescent Fluorescent Protein Protein Emission 380 Nanometer Excitation at 510 Separated Nanometers Protein Molecules Intermolecular Association Figure 2 Blue Green Fluorescent Fluorescent Protein Protein 380 Nanometer **Emission at** 510 Nanometers Excitation GFP

https://www.olympus-lifescience.com/en/microscoperesource/primer/techniques/fluorescence/fret/fretintro/

Beyond fluorophores

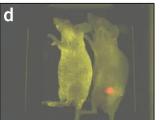
Quantum dots: Semiconductors with interesting quantum optics properties

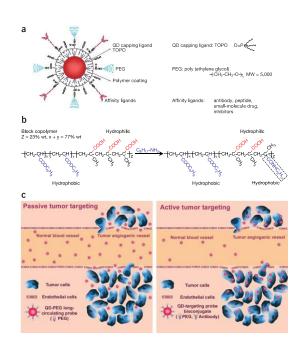
Size-dependent emission (2-20 nm)

Much more resistant to photobleaching

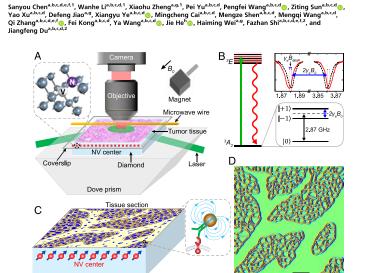
Switch to non-radiative states cause quantum dots to blink

nature biotechnology


In vivo cancer targeting and imaging with semiconductor quantum dots

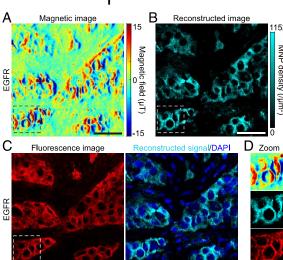

Xiaohu Gao, 1 Yuanyuan Cui, 2 Richard M Levenson, 3 Leland W K Chung2 & Shuming Nie1

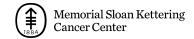
Beyond fluorophores


Nitrogen Vacancy: A fluorescent defect in a diamond

Defects in a slab or nanodiamonds

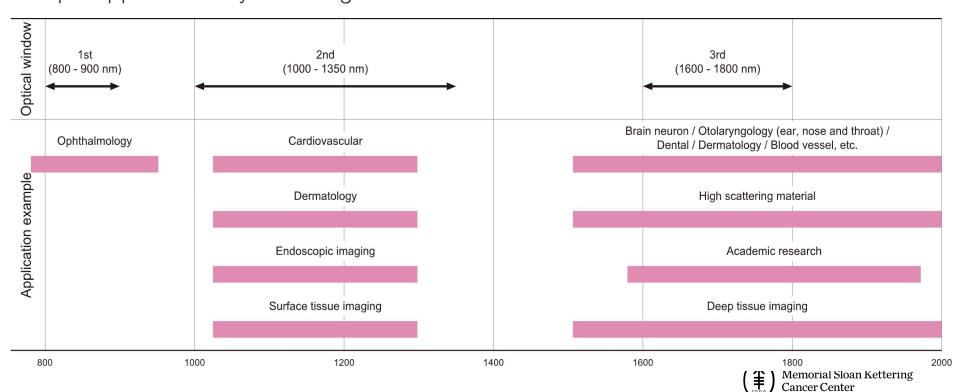
No bleaching or blinking


Optical output indicative of many biophysical parameters

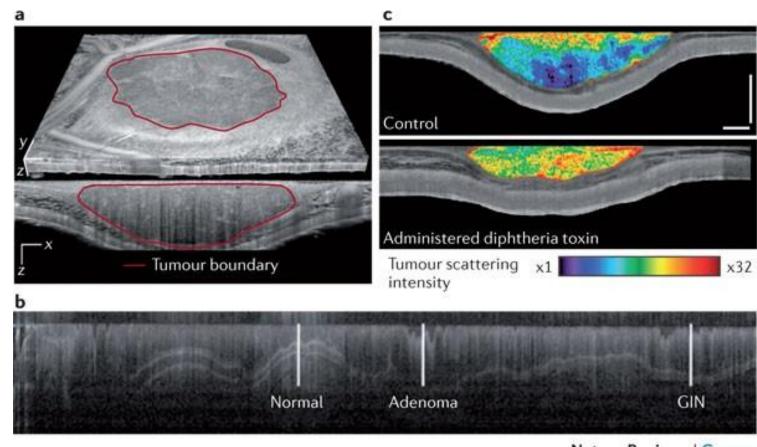

- Magnetic fields (NMR)
- ➤ pH
- Temperature

Immunomagnetic microscopy of tumor tissues using

quantum sensors in diamond



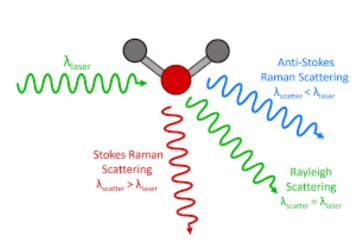
Optical Coherence Tomography

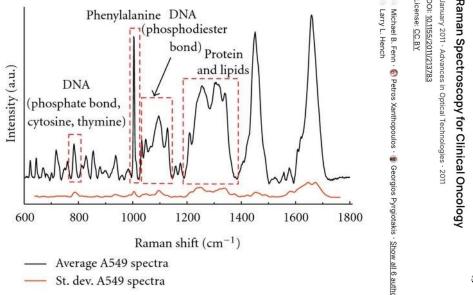

OCT: Imaging based on light interference at different wavelengths

Sample applications by wavelength

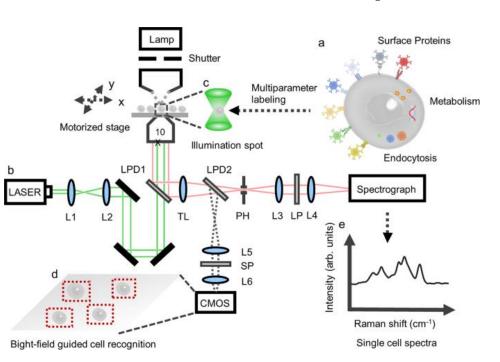
Optical Coherence Tomography example

Benjamin J. Vakoc, Dai Fukumura, Rakesh K. Jain and Brett E. Bouma

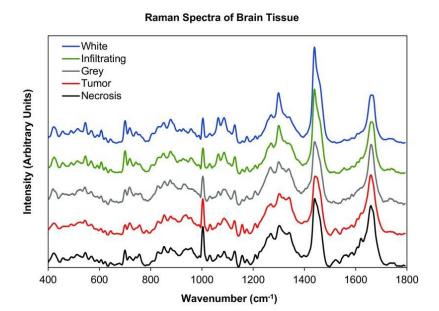



Raman spectroscopy

Raman scattering:


Light scattering by molecules can come in two forms:

- > Elastic = no energy change
- Inelastic = change in energy (due to molecular vibration)
 - This inelastic scattering is particular to each molecule and can be used as a molecular signature.



Raman spectroscopy examples

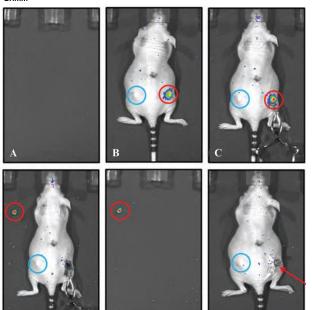
Multiplexed live-cell profiling with Raman probes

Chen Chen, Zhilun Zhao, Naixin Qian, Shixuan Wei, Fanghao Hu & Wei Min □

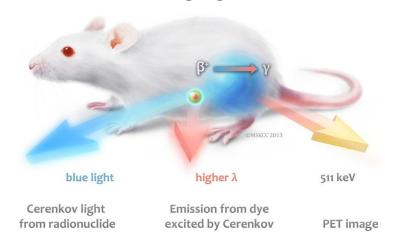
Cancer and Metastasis Reviews (2018) 37:691–717 https://doi.org/10.1007/s10555-018-9770-9

Applications of Raman spectroscopy in cancer diagnosis

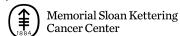
Gregory W. Auner 1,2,3,4 · S. Kiran Koya 1,2,3 · Changhe Huang 1,2,3 · Brandy Broadbent 2,3 · Micaela Trexler 2,3 · Zachary Auner 3,5 · Angela Elias 2,3 · Katlyn Curtin Mehne 2,3 · Michelle A. Brusatori 1,2,3


Cerenkov imaging in cancer

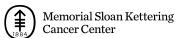
Cerenkov radiation:

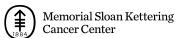

Charged particle can travel in a medium faster than the speed of light. As they do, they emit characteristic light that can serve as an imaging tool

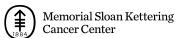
Intraoperative Imaging of Positron Emission Tomographic Radiotracers Using Cerenkov Luminescence Emissions

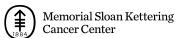

Jason P. Holland, Guillaume Normand, Alessandro Ruggiero, Jason S. Lewis, and Jan Grimm

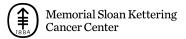
SCIFI = Secondary Cerenkov-induced Fluorescence Imaging



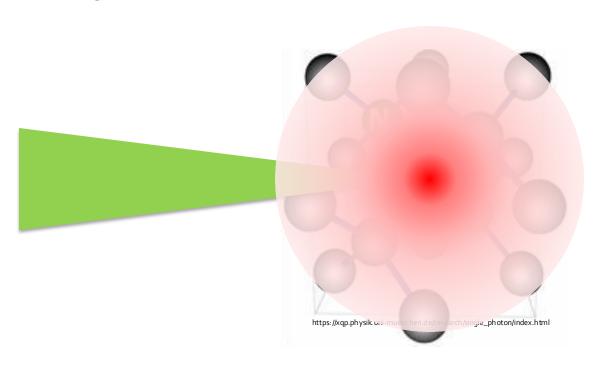

Shaffer, T., Pratt, E. & Grimm, J. Utilizing the power of Cerenkov light with nanotechnology. *Nature Nanotech* **12**, 106–117 (2017). https://doi.org/10.1038/nnano.2016.301

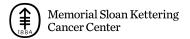



So much more to say!

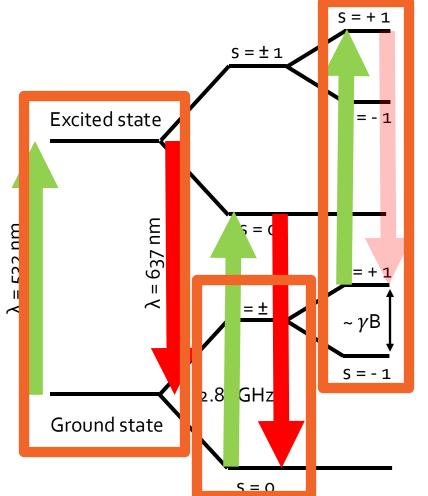


Short feedback form


Perhaps a case in point about how we built one
-- Air table, all of the optics, the energy diagram (like my
version for CERIP)

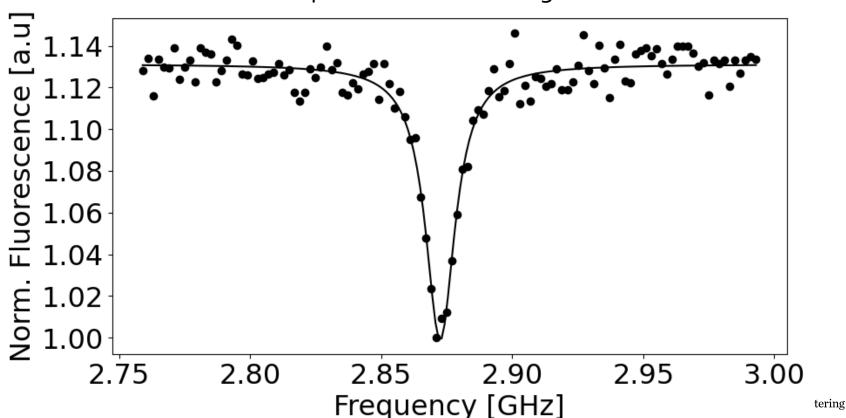


We have developed a multi-purpose intracellular optical sensor based on a defect in a diamond lattice

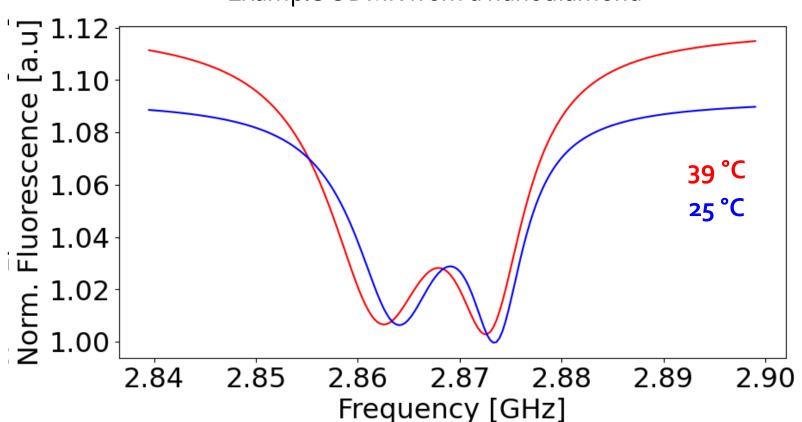

Nitrogen vacancy (NV) color center:

- ✓ A magnetic field
 - > NMR
- ✓ A pH change
 - Intracellular pH
- ✓ A temperature change
 - ➤ Nano-thermometry

How does it work? A short foray into quantum mechanics


Optically Detected Magnetic Resonance

- Optical (fluorescent) readout of the spin state of the system
- Sensing of external magnetic fields (i.e. performing NMR) is done by properly pulsing between the magnetically split (+1 or -1) and o states
- Temperature changes the $0 \rightarrow \pm 1$ transition
- > pH changes the emission frequency


Shifts in ODMR represent temperature changes

Example ODMR from a single NV

Shifts in ODMR represent temperature changes

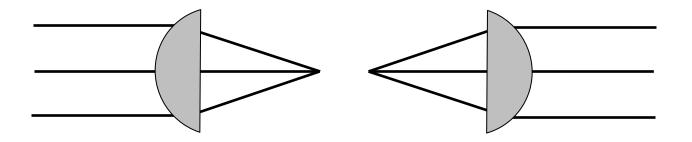
Example ODMR from a nanodiamond

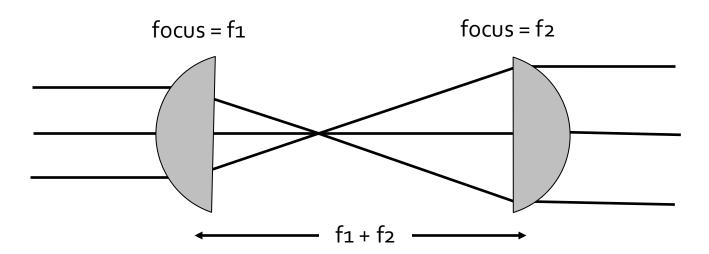
Microscopy tools

Light sources:

- White light: LEDs and incandescent bulbs
- One color: lasers

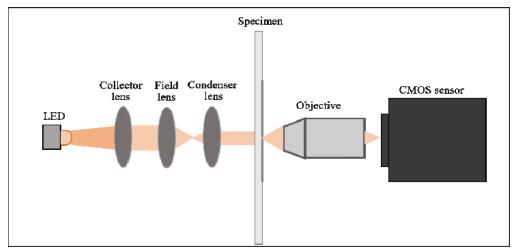
LED:

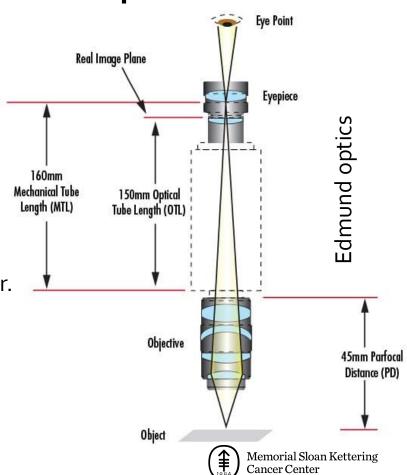

- Light emitting diode
- Semiconductors
 with specific
 photonic band gap
 properties
- Color depends on energy band gap
- When electrons meet holes, light is emitted
- Efficient, long-lasting



Incandescent bulb:

- Filament inside heats up and emits light
- Quite inefficient and shorter lifetime
- Simple, more time on the market





Bare bones of a microscope


Lenses are placed at focal lengths from each other.

- Can resize a beam with 2 lenses at focal lengths apart (magnification = ratio of focal lengths)
- Due to dispersion, the exact workings of all optics will be wavelength dependent!

Mode	Principle	Main Advantages	Main Disadvantages)
Transmission (Brightfield)	Detects light transmitted through sample; contrast arises from absorption or staining.	Simple and inexpensiveWorks well with stained or pigmented samplesColor and structural information visible	 Poor contrast for transparent (unstained) samp Not suitable for thick or opaque specimens 	oles
Reflection (Epi- illumination)	Detects light reflected or backscattered from sample surface.	 Ideal for opaque samples (e.g., metals, semiconductors, tissue surfaces) Provides surface topography and reflectivity info Compatible with fluorescence and confocal modes 	 Limited depth information (surface-sensitive) Can have glare/specular reflections Not useful for fully transparent specimens 	
Phase Contrast	Converts optical phase shifts (from thickness/refractive index differences) into intensity differences using a phase ring and annulus.	 Excellent for viewing live, unstained cells Simple setup and easy interpretation Works with transparent aqueous samples 	 Produces halos and shade-off artifacts Not quantitative Limited compatibility with color imaging and th 	ick samp
Darkfield	Blocks direct light; only scattered light enters the objective, so features appear bright on dark background.	 High contrast for small or weakly scattering features (e.g., bacteria, nanoparticles) No need for staining Highlights edges and fine structures 	 No internal structural info (only scatterers visib Very sensitive to dust and alignment Not suitable for thick or highly scattering speci 	,
DIC (Differential Interference Contrast)	Uses polarized, sheared beams that interfere after passing through slightly offset regions; converts phase <i>gradients</i> to intensity.	 Very high-resolution, crisp images Pseudo-3D "relief" contrast Works well for live transparent samples No halos, adjustable contrast direction 	 Directional (contrast depends on shear direction Expensive, complex optics (one prism per objective) Not quantitative Doesn't work well on birefringent materials 	,

