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Agenda
• Imaging with magnetic field gradients

– k-space

• Pulse sequences
– Gradient-echo, spin-echo

• Image reconstruction: k-space undersampling
• Parallel imaging, compressed sensing, deep learning

• MR fingerprinting: quantitative imaging

• Experiment in Matlab & Python: accelerated brain MRI
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acquisition reconstruction

scanner raw data image

pulse sequence
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Data acquisition
Gradients, k-space and pulse sequences



Protons and spins
• The nucleus of the hydrogen atom (proton) has a 

magnetic momentum (spin)

• Proton = tiny rotating magnet



Polarization and magnetization
• Spins are randomly oriented (no net magnetization)



B0

Polarization and magnetization
• Spins are aligned by a strong magnetic field 

– magnetization



B0

Magnetic resonance
• Precession proportional to the magnetic field strength

𝑓! = 𝛾𝐵!



Magnetic resonance
•                       (gyromagnetic ratio for 1H)

• f0 = 63.9 MHz (1.5T)  
       = 127.74 MHz (3T)  

𝛾 = 42.58	 ⁄𝑀𝐻𝑧 𝑇



RF excitation (B1)
• Displacing the spins from equilibrium
• Produce a detectable magnetization
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Relaxation (T1, T2)

T1: recovery of Mz T2: decay of Mx and My 



Imaging
• Magnetic field gradients

– Spatially-varying magnetic fields

𝐵 𝑥, 𝑦, 𝑧 = 𝐵0 + 𝐺!𝑥 + 𝐺"𝑦 +𝐺#𝑧



Signal equation
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• After B0 demodulation, only magnetic field gradients 
contribute to the MR signal:

– Defining:                                       (k-space)



k-space
• Space of spatial frequencies

k-space image space



k-space
• Gradient moment 𝑘 𝑡 = 𝛾,

.

/
𝐺 𝜏 𝑑𝜏
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t kx
scan time = T
scan time = T/2



Pulse sequence
• Diagram of the temporal waveforms used for the RF (B1) 

and gradient (Gx, Gy and Gz) pulses
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90o
180o



Pulse sequence
• Program to acquire 

MRI data
– Write source code
– Compile source 

code
– Run compiled code 

on the scanner



Imaging techniques
• Slice-selective excitation (z) 
• Phase encoding (y)
• Frequency encoding (x)



2D Fourier encoding (Cartesian k-space encoding)

RF

Gz

Gy

Gx

Slice selection

Phase encoding

Frequency encoding



Slice selection
• a.k.a. slice-selective excitation
• Combination of a RF pulse and a gradient

RF

Gz

1

32

1 – RF pulse
2 – Slice selection gradient

3 – Slice refocusing gradient

Δ𝑓 = 𝛾𝐺#Δ𝑧

More information at https://mriquestions.com/slice-selective-excitation.html 
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RF pulses
• Center frequency and bandwidth matched to the slice frequencies

• Slice profile = FT of the envelope
– Ideal RF pulse: sinc function, square slice profile, too long in practice

Δ𝑓 = 𝛾𝐺#Δ𝑧



Phase encoding
• Select one ky position

RF

Gz

Gy

ky

kx

linear accumulation of phase



Frequency encoding
• Traverse a kx line

ky

kx

linear accumulation of frequency

RF

Gz

Gy

Gx

1 2 3 4

1

2
3 4



Gradient echo sequences
• Gradient echo sequences use a combination of one RF 

pulse and gradients to produce an echo
– No refocusing 180o RF pulse

• Each excitation samples a line in k-space 
• The flip angle can be lower than 90o, which enables to 

reduce the repetition time (TR) and thus scan time
– Higher flip angles increase T1 weighting
– Lower flip angles increase T2* weighting



Gradient echo sequence
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Spoiling
• Spoiling refers to the elimination of the transverse 

component of the magnetization before the next RF pulse in 
a gradient echo sequence

• The implicit spoiling mechanism is to have a TR of 5T2*, 
which limits the applicability of gradient echo sequences

• There are two main spoiling mechanisms to have a short TR:
– Gradient spoiling: a slice-selective gradient with a 

different amplitude
– RF spoiling: change the phase of the RF pulse 

More information at https://mriquestions.com/spoiling---what-and-how.html 
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Spoiled gradient echo sequence
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Gy

Gx

TE
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TR<<5T2*

a

gradient spoiling

RF spoiling
(phase of the RF pulse)

(+) (-)

(steady state)



Spin echo sequences
• The spin echo sequence uses a 90o excitation pulse, 180o 

refocusing pulse at TE/2 and signal reading centered at TE. 
This series is repeated for each TR. With each repetition, a 
k-space line is filled, thanks to a different phase encoding.

• The 180o refocusing pulse compensates for the magnetic 
field heterogeneities to obtain an echo that is weighted in 
T2 and not in T2*.



Spin echo sequence
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Contrast

Short TR, short TE
- Incomplete recovery
- Minimal signal decay

Short TR, long TE
- Incomplete recovery

- Signal decay

Long TR, short TE
- Full recovery

- Minimal signal decay

Long TR, long TE
- Full recovery
- Signal decay

T1 weighting

T2 weighting

Proton density 
weighting

Mixed weighting
(not used)

𝑆 = 𝑆! 1 − 𝑒
"!"!#  𝑒"

!$
!%

TE

TR

S=0

S=0 (very long TE)



Turbo Spin Echo (TSE) or Fast Spin Echo (FSE)
• Fast spin echo (FSE) imaging, also known as Turbo spin 

echo (TSE) imaging, are commercial implementations of the 
RARE (Rapid Acquisition with Relaxation Enhancement) 
technique originally described by Hennig et al in 1986. 

• FSE uses one 90o pulse followed by a series of 180o pulses. 
Phase encoding is applied for each 180o pulse such that 
multiple k-space lines can be acquired for each TR (echo 
train), which reduces the total acquisition time

• FSE is one of the workhorse sequences in modern MRI



Turbo Spin Echo (TSE) or Fast Spin Echo (FSE)



Turbo Spin Echo (TSE) or Fast Spin Echo (FSE)
• The signal for each echo in the train is modulated by T2
• Long echo trains can result in blurring due to T2 decay

RF

Gz

Gy

Gx

TE

90o
180o 180o

TE
T2 decay



Test your knowledge: True or False
• Gradient echo sequences do not require an RF pulse to 

form an echo 

FALSE

Every MRI sequence, including gradient echo 
sequences, require a RF pulse to flip the spins and 
generate a signal. 



Test your knowledge: True or False
• Fat (short T1) appears bright on T1-weighted images and 

dark on T2-weighted images  

TRUE

Fat has a short T1, which allows it to recover 
signal quickly, appearing bright on T1-weighted 
images, and has a short T2, which causes it to 
lose signal quickly, appearing darker on T2-
weighted images compared to water. 



Test your knowledge: True or False
• Spin echo has a shorter echo time (TE) than gradient 

echo   

FALSE

Spin echo sequences require a longer TE because 
they must wait for the 180° pulse to refocus the 
spins, and this process takes more time compared 
to the use of a refocusing gradient. 



Image reconstruction
Fourier, parallel imaging, compressed sensing, 

deep learning



Image reconstruction
• Turn acquired k-space data into an image
• Inverse Fourier transform

imagek-space

F-1



k-space undersampling = acceleration
• Reduce the number of k-space points

k-space 
sampling 
pattern

Fourier 
reconstruction

low-resolution uniform random



k-space undersampling = acceleration
• Reconstruction: fill-in k-space or unalias images

• Parallel imaging: Multiple coils

• Compressed sensing: Image compressibility

• Deep learning: Neural network learning



Parallel imaging

Sodickson DK, Manning WJ.  Magn Reson Med. 1997; 38: 591-603
Pruessmann KP et al. Magn Reson Med 1999; 42: 952-962

• Multiple receiver coils with different spatial sensitivities

• Uniform k-space undersampling
• Matrix inverse (linear)

𝑦!(𝑟) = 𝑚(𝑟)𝑐!(𝑟)



Gradient + coil-sensitivity encoding
Image space k-space

FTGradient
encoding 

only

Only one k-space 
point at a time

!

!
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FT

Gradient
+

Coil 
sensitivity 

Several k-space 
points at a time



Gradient + coil-sensitivity encoding
• Effective k-space oversampling



Parallel imaging reconstruction
• Image domain

– Unfold aliased images
– SENSE

• k-space
– Estimate missing k-space points
– Interpolation
– SMASH, GRAPPA



SENSE reconstruction
• Image domain

– FOV is reduced by R
– Each point in the aliased image is a combination of R 

points from the fully-sampled image



SENSE reconstruction
• Encoding equation (linear model: matrix)

aliased 
images
(Ry = 2)
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SENSE reconstruction
• Inverse of the encoding equation

– Undersampling factor < number of coils
– Pseudoinverse of E



GRAPPA

coil 1

ky

kx

coil 2
sampled
non-sampled

2x3 kernel

Griswold MA et al. Magn Reson Med 2002; 47: 1202-10
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• Coil-by-coil k-space reconstruction
• Linear combination of k-space neighbors from all coils



GRAPPA
• Reconstruction weights (GRAPPA kernel)

ACS: 4x4 matrix
kernel size: 2x3
Ry=2 

S: source matrix (Nb × KsizeNc)
T: target matrix (Nb×Nc) =! "#

! " !# $−=! " " " # (Nb × KsizeNc)

Calibration model:

Invert to get the weights:



GRAPPA algorithm
• Compute GRAPPA weights from calibration data
• Compute missing k-space data (coil-by-coil reconstruction)
• Inverse FFT to each coil individual coil images and coil combination

calibration region

zero-pad 
at the 
border



Reconstruction examples

SENSE

GRAPPA

R=2 R=4R=3



Compressed sensing

• Compressibility/sparsity

• Incoherence

• Non-linear reconstruction



Medical images are compressible
• Information < number of pixels

raw

JPEG
200 kB

compressed

20 kB

10% of the data ® true information 

90% of the data ® 



Medical images are compressible
• Sparsity is the key

sparsifying 
transform

wavelets 
(JPEG2000 standard)

few non-zero pixels



Sparsifying transforms
• Finite differences
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Sparsifying transforms
• Wavelets

– Space-frequency localization
– More efficient than Fourier transform to represent 

discontinuities



Compressed sensing
• Exploit compressibility/sparsity to reduce k-space data 

IFT JPEG
200 kB 20 kB

IFT

Nyquist 
sensing

1min

Compressed 
sensing
20 sec

Sparsity-promoting reconstruction



How to sample k-space to exploit image sparsity?
• Incoherence

– Aliasing artifacts should not replicate image features
– Aliasing artifacts should look like noise



How to reconstruct to exploit image sparsity?
• Sparse reconstruction

threshold

sparsity + incoherencesparsity

_
threshold

exact 
sparse 

solution!

Iterative thresholding algorithm



Incoherent k-space sampling

fully-sampled image sparse representation

?

• Knee image example

k-space sampling



Incoherent k-space sampling
• Uniform k-space undersampling

image space transform spacek-space

sparsity is lost



Incoherent k-space sampling
• Non-uniform k-space undersampling

random
sparsity is 
preserved

image space transform spacek-space



Inherent incoherence in non-Cartesian sampling
• Radial sampling

sparsity is 
preserved

image space transform spacek-space



Incoherent sampling patterns ?
• What are the best samples?

sampling pattern image domain sparse domain

random 
undersampling

(Cartesian)

variable-density
random 

undersampling
(Cartesian)

regular 
undersampling

(radial)



Sparse reconstruction
• Optimization problem, iterative algorithm

• Acquisition model:
d: k-space data
E: undersampled Fourier transform
m: image to reconstruct

𝑑 = 𝐸𝑚

!

"

"
#$% !"#$"
"

λ+−

• T: sparsifying transform
• l: regularization parameter

– Trade-off between sparsity (l1-norm term) and data consistency (l2-
norm term)



Sparse reconstruction using iterative soft-thresholding

initial solution:

for each iteration k

𝑚$ = 𝐸∗𝑑

𝑚& = 𝑇∗ 𝑆𝑜𝑓𝑡 𝑇𝑚&'(, 𝜆

inputs: 𝐸, 𝑑, 𝑇, 𝜆

enforce sparsity:

𝑚& = 𝑚& − 𝐸∗ 𝐸𝑚& − 𝑑enforce data consistency:

end for



sparsify

denoise

Sparse reconstruction using iterative soft-thresholding



sparsify

denoise

data 
consistency

Sparse reconstruction using iterative soft-thresholding



initial solution after 40 iterations

Sparse reconstruction using iterative soft-thresholding



Combination of compressed sensing and parallel imaging

• Complementary sources of information

coil sensitivity encodingsparsity



• Joint sparsity rather than coil-by-coil sparsity
– New definition of sparsity
– Exploit inter-coil correlations

(1) Otazo R et al. ISMRM 2009, 378; MRM 2010 

(2) l1-l2-norm:x1 x2 x3 x4

(1) joint l1-norm:

x = [x1, x2, x3, x4]

Combination of compressed sensing and parallel imaging

(2) Lustig M et al. ISMRM 2009, 379; MRM 2010



SPARSE-SENSE
• 4-fold acceleration

GRAPPA Coil-by-coil CS SPARSE-SENSE

Otazo R et al. ISMRM 2009, 378



Dynamic MRI
• Time-series of images
• Video
• Physiological information

contrast agent
- gadolinium-based: T1 reductionmotion



Temporal compressed sensing
• Temporal sparsity

– Videos are more compressible than images

Temporal FFT

Temporal PCA



• Temporal sparsity
– Difference between consecutive frames is sparse

Temporal compressed sensing



Temporal compressed sensing
• Temporal incoherence

– Different irregular k-space sampling pattern for each time point
• Random Cartesian

t=1 t=2

ky

kx

ky

t



k-t SPARSE-SENSE
• Cardiac perfusion (video of contrast enhancement)

– 8-fold acceleration, 10 slices per heartbeat 
– Temporal res. = 60 ms/slice, spatial res. = 1.7x1.7x3 mm3

Otazo R et al. MRM 2010 



GRASP: radial compressed sensing
• Dynamic contrast enhanced imaging
• Isotropic spatial resolution  = 1.6 mm3

• Temporal resolution = 5 seconds

acquired axial orientation reformatted sagittal

78-year-old woman with stage T1c invasive ductal carcinoma



Deep learning MRI reconstruction
• Neural network for reconstruction for undersampled k-

space data

undersampled k-space data unaliased image

learning: compute network parameters to minimize loss function 

𝐿 𝜃 =*
!

𝑁𝑁 𝑥! , 𝜃! − 𝑦!

x 𝑁𝑁 𝑥, 𝜃

y	:	training	target
i:	index	for	training	cases	



Supervised learning with fully-sampled k-space data



Unrolled network
• Unroll compressed sensing iterations

– Fixed data consistency (DC)
– Trainable regularization (R)

DC

R 

DC

R 

DC

R 

…

input output

raw 
data



Variational network
• Gradient descent algorithm as a network

Hammernik K et al. MRM 2017

A: acquisition model



Variational network
• 4-fold acceleration

Hammernik K et al. MRM 2017

sampling pattern Fourier compressed sensing variational network



AUTOMAP: self-consistent network
• Fully-connected + convolutional layers

– Low-dimensional manifold learning

Zhu B et al. Nature 2018

undersampled 
k-space



AUTOMAP

Zhu B et al. Nature 2018

50%

50%



Modular network for 3D MRI with 2D acceleration
• Brain MRI: ky-kz acceleration (coronal), axial image evaluation 

Mekhanik A et al. ISMRM 2022

ky

kz

8-fold acceleration coronal image axial image



Modular network for 3D MRI with 2D acceleration

Mekhanik A et al. ISMRM 2022



Deep learning
Scan time:
 2 x 90 sec

Compressed 
sensing

Scan time:
2 x 166 sec

Pre-contrast Post-contrast



movienet
• Fast 4D reconstruction without data consistency

stack-of-stars

motion detection 
+ motion sorting 

+ FFT kz 
+ NUFFT ky-kx

movienet

m
ot

io
n

coils

aliased 5D images

unaliased 
4D images

Murray V et al. MRM 2023

multicoil    
3D k-space

space-time kernels
no data consistency
no coil sensitivities

fast: few seconds



Motion consistency instead of data consistency

movienet -

training

m
ot

io
n

coils

input: aliased 5D images reference: compressed sensing

• Preserve motion range and order of motion states in the 
input

similar motion 
range and order



Motion-tolerant MRI with movienet
• Scan time = 1 minute
• movienet with 4 motion states
• Live mode picture

movienet (4D)conventional (3D)
expiration

patient with 
kidney cyst



MR fingerprinting
• Fast quantitative mapping of tissue parameters

– T1, T2, PD
– Diffusion
– pH level

Ma D et al. Nature 2013

• Different types of 
tissue have 
unique MR signal 
evolutions



Fingerprint identification system 

Name
Phone number 
Address 
…
…

Match

Sample

Database



MR fingerprinting 
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MR fingerprinting 
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MR fingerprinting acquisition 

• Series of highly-
undersampled data

• Each frame has mixed 
contrast 
– Different FA and TR



MR fingerprinting reconstruction 

!"#$%&%'(!" !"#!$ $$
=

i(r) : database index for pixel r
di     :  i-th database element
s(r) : temporal signal for pixel r

• Database entry that yields highest correlation with the 
input temporal signal



MR fingerprinting in the brain 
One spiral 
readout

1,000 time frames, scan time = 12.3 seconds



MR fingerprinting of prostate cancer

Lo W-C et al. MAGMA 2023



Metabolic MR fingerprinting (CEST-MRF)
• New contrast beyond T1 and T2 mapping: pH level of tumors
• Improved diagnosis and treatment monitoring of brain tumors

CEST-MRFStandard

Non-visible in 
standard MRI

Cohen O et al. NMR in Biomed 2023



Review paper on compressed sensing



Questions
• What are the factors that limit the speed of conventional 

MRI using magnetic field gradients?

– Gradient performance: amplitude and slew-rate
• Physical: power increases with the cube of the 

acceleration factor 
• Physiological: peripheral nerve stimulation due to 

fast gradient switching



Questions
• What are the main ingredients for compressed sensing?

– Sparsity: image representation
– Incoherence: k-space undersampling pattern
– Non-linear reconstruction: promote sparsity



Questions
• Why is MRI a good candidate for application of 

compressed sensing?

– Images are compressible (in general)
– Acquisition is in a transform domain (facilitates 

incoherence)
• Software change to undersample k-space



Questions
• Is random k-space sampling the only way to achieve 

incoherence?

– No, regular undersampling of non-Cartesian k-space 
trajectories will also result in incoherence



Questions
• Can you apply compressed sensing to accelerate the 

acquisition of dynamic MRI (videos)? Discuss the main 
differences with respect to acceleration of anatomical 
images

– Yes, in fact videos are more compressible than images 
and therefore higher accelerations should be expected for 
dynamic imaging. The main differences would be to have a 
sparsifying transform that exploits temporal correlations 
and to change the k-space undersampling pattern for each 
time point to have spatial and temporal incoherence 



• Hands-on exercise: compressed sensing in 
Matlab

• Homework: deep learning reconstruction


