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Agenda

* Imaging with magnetic field gradients
— k-space

 Pulse sequences
— Gradient-echo, spin-echo

* Image reconstruction: k-space undersampling
- Parallel imaging, compressed sensing, deep learning

MR fingerprinting: quantitative imaging

 Experiment in Matlab & Python: accelerated brain MRI
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Data acquisition
Gradients, k-space and pulse sequences



Protons and spins

 The nucleus of the hydrogen atom (proton) has a

magnetic momentum (spin) ;

* Proton = tiny rotating magnet

e | y
S ) S ~ \
’/ A | //—‘ TR \ ! :S:\
i 7= | A
;" N iy~ ( i y




Polarization and magnetization

* Spins are randomly oriented (no net magnetization)




Polarization and magnetization

* Spins are aligned by a strong magnetic field
— magnetization




Magnetic resonance

* Precession proportional to the magnetic field strength




Magnetic resonance
- v =42.58 MHz/T (gyromagnetic ratio for 'H)

. f,=63.9 MHz (1.5T)
= 127.74 MHz (3T)



RF excitation (B1)

* Displacing the spins from equilibrium
 Produce a detectable magnetization

relaxation



Relaxation (T1, T2)
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Imaging

 Magnetic field gradients
— Spatially-varying magnetic fields

B(x,y,z) = B0+ G,x + Gyy +G,z




Signal equation

« After B0 demodulation, only magnetic field gradients
contribute to the MR signal:

S(t) — f M(r)eiZTL')/ f(f G(T)d’[-rdr
r

t
— Defining: [(t) = yj G(t)dt (k-space)
0

s(t) :f M (r)et?™ ()T gy Fourier transform of M(r)
r



k-space

 Space of spatial frequencies

k-s pace image space Each Point in K-space Corresponds to a

Particular Spatial Frequency




k-space

 Gradient moment k(t) = yf
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Pulse sequence

* Diagram of the temporal waveforms used for the RF (B1)
and gradient (Gx, Gy and Gz) pulses
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ksgre: GRE sequence (2D/3D)

Pulse sequence

Data Structures

struct KSGRE_SEQUENCE

* Program to acquire

#define KSGRE_MINHNOVER 16

#define KSGRE_DEFAULT_SSI_TIME 200 /* which may allow us to use the same SSI for other sequence modules too */
M RI d at a #define KSGRE_DEFAULT_SSI_TIME_SSFP 100
#define KSGRE_INIT_SEQUENCE

Functions

— Write source code

STATUS cveval (void)
STATUS my_cveval (void)
- STATUS cvcheck (void)
— Compile source STATUS. predowntoed (vod)
STATUS pulsegen (void)
STATUS mps2 (void)
d STATUS aps2 (void)
co e STATUS scan (void)
abstract ("GRE [KSFoundation]")
psdname ("ksgre")
u STATUS ksgre_pg (int start_time)
— R u n co m I I e d co d e int ksgre_scan_coreslice (const SCAN_INFO *slice_pos, int dabslice, int shot, int exc)
int ksgre_scan_coreslice_nargs (const SCAN_INFO *slice_pos, int dabslice, int nargs, void **args)

int ksgre_scan_sliceloop (int slperpass, int passindx, int shot, int exc)

int ksgre_eval_ssitime ()
O n e s ca n n e r void ksgre_init_imagingoptions (void)
STATUS ksgre_init_UI (void)
STATUS ksgre_eval_UI ()
STATUS ksgre_eval_setupobjects ()
STATUS ksgre_eval_TErange ()
STATUS ksgre_eval_inversion (KS_SEQ_COLLECTION *seqcollection)
STATUS ksgre_eval_tr (KS_SEQ_COLLECTION *seqcollection)
STATUS ksgre_eval_scantime ()
STATUS ksgre_check ()
STATUS ksgre_predownload_plot (KS_SEQ_COLLECTION *seqcollection)
STATUS ksgre_predownload_setrecon ()
float ksgre_scan_phase (int counter)
STATUS ksgre_scan_init (void)
STATUS ksgre_scan_prescanloop (int nloops, int dda)

Variables

KS_SEQ_COLLECTION seqcollection
float ksgre_excthickness = 0
float ksgre_gscalerfexc = 0.9
int ksgre_slicecheck = 0 with {0, 1, 0, VIS, "move readout to z axis for slice thickness test",}
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Imaging techniques

+ Slice-selective excitation (z)
 Phase encoding (y)
* Frequency encoding (x)



2D Fourier encoding (Cartesian k-space encoding)

GOO

- Slice selection

Phase encoding

—\_,—‘ Frequency encoding
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Slice selection

* a.k.a. slice-selective excitation
« Combination of a RF pulse and a gradient

0.6k 1 — RF pulse
04r
RF 02 : 2 — Slice selection gradient
_0:24 ] ] ]
. Af =yG,Az
G. 00 2 3
“ 20f 3 — Slice refocusing gradient

More information at https://mriquestions.com/slice-selective-excitation.html
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RF pulses

« Center frequency and bandwidth matched to the slice frequencies
Af =yG,Az

« Slice profile = FT of the envelope
— ldeal RF pulse: sinc function, square slice profile, too long in practice

RF Pulse Slice Profile




Phase encoding

* Select one k, position
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Frequency encoding

* Traverse a k, line

ky
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Gradient echo sequences

« (Gradient echo sequences use a combination of one RF
pulse and gradients to produce an echo

— No refocusing 180° RF pulse
« Each excitation samples a line in k-space

* The flip angle can be lower than 90°, which enables to
reduce the repetition time (TR) and thus scan time

— Higher flip angles increase T1 weighting
— Lower flip angles increase T2* weighting



Gradient echo sequence

(04

TR=5T2"



Spoiling

 Spoiling refers to the elimination of the transverse
component of the magnetization before the next RF pulse in
a gradient echo sequence

 The implicit spoiling mechanism is to have a TR of 5T2%,
which limits the applicability of gradient echo sequences

* There are two main spoiling mechanisms to have a short TR:

— Gradient spoiling: a slice-selective gradient with a
different amplitude

— RF spoliling: change the phase of the RF pulse

More information at https://mriquestions.com/spoiling---what-and-how.html
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Spoiled gradient echo sequence
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Spin echo sequences

* The spin echo sequence uses a 90° excitation pulse, 180°
refocusing pulse at TE/2 and signal reading centered at TE.
This series is repeated for each TR. With each repetition, a
k-space line is filled, thanks to a different phase encoding.

* The 180°refocusing pulse compensates for the magnetic
fleld heterogeneities to obtain an echo that is weighted Iin
T2 and not in T2,



Spin echo sequence

180° 180°

90° [J

TE




_TR\ _TE
1—e Tl)e T2

Contrast ¢ — 50(

Long TR, short TE
- Full recovery

. Short TR, short TE
. - Incomplete recovery
. - Minimal signal decay |

T1 weighting Proton density

; weighting
S=0
TE . Short TR, long TE Long TR, long TE
' - Incomplete recovery - Full recovery
- Signal decay - Signal decay
Mixed weighting T2 weighting
| (not used)
oo

S=0 (very long TE)



Turbo Spin Echo (TSE) or Fast Spin Echo (FSE)

 Fast spin echo (FSE) imaging, also known as Turbo spin
echo (TSE) imaging, are commercial implementations of the
RARE (Rapid Acquisition with Relaxation Enhancement)
technique originally described by Hennig et al in 19860.

 FSE uses one 90° pulse followed by a series of 180° pulses.
Phase encoding is applied for each 180° pulse such that
multiple k-space lines can be acquired for each TR (echo
train), which reduces the total acquisition time

 FSE is one of the workhorse sequences in modern MR



Turbo Spin Echo (TSE) or Fast Spin Echo (FSE)

90° 180° 90° 180°
Conventional Spin Echo (CSE)

Fast (Turbo) Spin Echo (FSE) :
90° 180°  180° 180°  180° 190° 180°

k——————TR—————————



Turbo Spin Echo (TSE) or Fast Spin Echo (FSE)

 The signal for each echo in the train is modulated by T2
 Long echo trains can result in blurring due to T2 decay

»F
T2 decay

180° 180°
90°

TE



Test your knowledge: True or False

 Gradient echo sequences do not require an RF pulse to
form an echo

FALSE

Every MRI sequence, including gradient echo
sequences, require a RF pulse to flip the spins and

generate a signal.



Test your knowledge: True or False

 Fat (short T1) appears bright on T1-weighted images and
dark on T2-weighted images

TRUE

Fat has a short T1, which allows it to recover
signal quickly, appearing bright on T1-weighted
images, and has a short T2, which causes it to

lose signal quickly, appearing darker on T2-
weighted images compared to water.



Test your knowledge: True or False

 Spin echo has a shorter echo time (TE) than gradient
echo

FALSE

Spin echo sequences require a longer TE because
they must wait for the 180° pulse to refocus the
spins, and this process takes more time compared
to the use of a refocusing gradient.



Image reconstruction
Fourier, parallel imaging, compressed sensing,
deep learning



Image reconstruction

 Turn acquired k-space data into an image
* Inverse Fourier transform




k-space undersampling = acceleration

 Reduce the number of k-space points

low-resolution  uniform random

k-space
sampling
pattern

Fourier
reconstruction




k-space undersampling = acceleration

 Reconstruction: fill-in k-space or unalias images
« Parallel imaging: Multiple colls
« Compressed sensing: Image compressibility

 Deep learning: Neural network learning



Parallel imaging

 Multiple receiver coils with different spatial sensitivities

yi(r) = m(r)ci(r)

* Uniform k-space undersampling
* Matrix inverse (linear)

Sodickson DK, Manning WJ. Magn Reson Med. 1997; 38: 591-603
Pruessmann KP et al. Magn Reson Med 1999; 42: 952-962



radient + coil-sensitivity enco

Gradient
encoding
only

Gradient
+
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Gradient + coil-sensitivity encoding

- Effective k-space oversampling

Image Space k-Space
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Parallel imaging reconstruction

* Image domain

— Unfold aliased images
— SENSE

 k-space
— Estimate missing k-space points
— Interpolation
— SMASH, GRAPPA



SENSE reconstruction

* Image domain
— FOV is reduced by R

— Each point in the aliased image is a combination of R
points from the fully-sampled image
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SENSE reconstruction

 Encoding equation (linear model: matrix)

aliased
images
fully-sampled (R,=2)
image
(R,=1)
_ w, 1T )
c(r) o r+—1|| p)
ey Al
a(r) c,(r) ¢, [r + %j _p(r " Ty)_




SENSE reconstruction

* Inverse of the encoding equation
— Undersampling factor < number of colls
— Pseudoinverse of E

p=(E"E) 'E7a



GRAPPA

e Coil-by-coil k-space reconstruction
e Linear combination of k-space neighbors from all coils

colil 2

| oo @ sampled
coil 1 | , % O non-sampled
® O
o0 B—-08-0 2x3 kernel
e '@ o o O]

oo o of
Ky

Dy(ky)= Y wik)D(k)

kekernel

Griswold MA et al. Magn Reson Med 2002; 47: 1202-10



GRAPPA
 Reconstruction weights (GRAPPA kernel)

=)

ACS: 4x4 matrix
kernel size: 2x3
R,=2

Calibration model: T = Sw

® SOURCE
@ TARGET

s(1) S(2) 8(3)
p ® O 0O O O o ||

<>%<> % no o o o
¢ e o O % o O e e &
O 0 O O 0O O 0 O O

S: source matrix (N, x K,.N.)
T: target matrix (N, xN,)

Invert to get the weights:w = (S"S)'S"T  (Nb % KyizeNo)

O O O O




GRAPPA algorithm

Compute GRAPPA weights from calibration data

Compute missing k-space data (coil-by-coil reconstruction)

Inverse FFT to each coll individual coil images and coil combination
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Reconstruction examples

SENSE

GRAPPA



Compressed sensing

 Compressibility/sparsity

* Incoherence

* Non-linear reconstruction




Medical images are compressible

* Information < number of pixels

raw compressed

10% of the data — true information

S o
90% of the data — W



Medical images are compressible

« Sparsity is the key
wavelets
(JPEG2000 standard)

sparsifying
transform

=

few non-zero pixels




Sparsifying transforms

 Finite differences

y(n) = x(n) - x(n—1) | T, “\

Inmatrixform: y = Dx

_1 —1 ] y=Dx

D:_ 1‘11_1_ JL[N I

e Total variation

N

TV(x) = Z‘x(n)— x(n — 1)‘ ‘ min TV(x) = minHDle

n=2




Sparsifying transforms

« Wavelets

— Space-frequency localization

— More efficient than Fourier transform to represent
discontinuities

Daubechies 4 tap wavelet

-1.5 scaling function
wavelet function
2 | | | 1 I

0 0.5 1 1.5 2 2.5 3




Compressed sensing

« Exploit compressibility/sparsity to reduce k-space data

Nyquist
sensing
1min

Compressed
sensing
20 sec




How to sample k-space to exploit image sparsity?

* Incoherence

— Aliasing artifacts should not replicate image features
— Aliasing artifacts should look like noise

)




How to reconstruct to exploit image sparsity?

« Sparse reconstruction

sparsitypaisidyherence
I ‘ > Q = >
W\LWV‘WW‘WM’V"
= exact
sparse

I ‘ > | I solution!

[terative thresholding algorithm



Incoherent k-space sampling

 Knee image example

fully-sampled image sparse representation kK-space sampling




Incoherent k-space sampling

* Uniform k-space undersampling

k-space image space transform space

sparsity is lost



Incoherent k-space sampling

 Non-uniform k-space undersampling

k-space image space transform space




Inherent incoherence in non-Cartesian sampling

 Radial sampling

k-space image space transform space




Incoherent sampling patterns
« What are the best samples?

random
undersampling
(Cartesian)

variable-density
random
undersampling
(Cartesian)

regular
undersampling
(radial)



Sparse reconstruction

« Optimization problem, iterative algorithm

d: k-space data

 Acquisition model: d = Em | E: undersampled Fourier transform
m: image to reconstruct

minHEm — dHi + }LHTmH1

« T: sparsifying transform
* A:regularization parameter

— Trade-off between sparsity (I11-norm term) and data consistency (I2-
norm term)



Sparse reconstruction using iterative soft-thresholding

inputs: E,d, T, A

initial solution: my = E™d
for each iteration k

enforce sparsity: m;, = T*(Soft(ka_l,A))

enforce data consistency: m, = my, — E “(Emy — d)

end for



Sparse reconstruction using iterative soft-thresholding

denoise

B sparsify [




Sparse reconstruction using iterative soft-thresholding

data B ARl BN
consistency Es

T denoise
sparsify




Sparse reconstruction using iterative soft-thresholding

Initial solution after 40 iterations




Combination of compressed sensing and parallel imaging

« Complementary sources of information

sparsity coll sensitivity encoding




Combination of compressed sensing and parallel imaging

« Joint sparsity rather than coil-by-coil sparsity

— New definition of sparsity
— Exploit inter-coil correlations

Ne

¢, (p)x,(p)
fZﬂ: |Cz(P)‘2

Np
(1) joint /;-norm:  [Kuz], = >
p=1

Np [ Ne ) 1/2
@ tbenomm: o =, = 3 Do

p=1\_i=1

X= [Xll X21 X31 X4]

(1) Otazo R et al. ISMRM 2009, 378; MRM 2010
(2) Lustig M et al. ISMRM 2009, 379; MRM 2010



SPARSE-SENSE

 4-fold acceleration

GRAPPA Coil-by-coil CS SPARSE-SENSE

Otazo R et al. ISMRM 2009, 378



Dynamic MRI

 Time-series of images
* Video
* Physiological information

contrast agent
motion - gadolinium-based: T1 reduction




Temporal compressed sensing

 Temporal sparsity
— Videos are more compressible than images

Temporal FFT

, Y \
e =9 V o
g '4"1 .~

Temporal PCA




Temporal compressed sensing

 Temporal sparsity
— Difference between consecutive frames is sparse




Temporal compressed sensing

« Temporal incoherence

— Different irregular k-space sampling pattern for each time point
« Random Cartesian




k-t SPARSE-SENSE

» Cardiac perfusion (video of contrast enhancement)
— 8-fold acceleration, 10 slices per heartbeat
— Temporal res. = 60 ms/slice, spatial res. = 1.7x1.7x3 mm?

Otazo R et al. MRM 2010



GRASP: radial compressed sensing

 Dynamic contrast enhanced imaging
« Isotropic spatial resolution =1.6 mm?
« Temporal resolution = 5 seconds

/8-year-old woman with stage T1c invasive ductal carcinoma

acquired axial orientation reformatted sagittal



Deep learning MRI reconstruction

* Neural network for reconstruction for undersampled k-
space data

undersampled k-space data

learning: compute network parameters to minimize loss function

B : training target

= NN(x;, 0;:) — vy; Y

L(6) 2 INN(xi, 00 = yill 5.4 dex for training cases
l



Supervised learning with fully-sampled k-space data

Ground Truth Image (x)

Undersampled data Low-quality Image

e

N,
| |
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|
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|
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Reconstruction Network
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Unrolled network

* Unroll compressed sensing iterations

— Fixed data consistency (DC)
— Trainable regularization (R)




Variational network

* Gradient descent algorithm as a network

- M A*(Au! — f)
1 RE /\/é/_’ 1 .RE
o

1 JIM 1 JM
I'fm w Ikm w
B B

N
ut+1 — yt — Z(Kit)'l'qbf/ (Kitut) . )\tA*(AUt . f)
=1

A: acquisition model

Hammernik K et al. MRM 2017



Variational network

 4-fold acceleration

sampling pattern Fourier compressed sensing variational network

nrmse: 0.20 nrmse: 0.06 ' |nrmse: 0.05
ssim: 0.69 ssim: 0.90 ssim: 0.92

Hammernik K et al. MRM 2017



AUTOMAP: self-consistent network

* Fully-connected + convolutional layers
— Low-dimensional manifold learning

~Conv.5 ~Conv. ~Deconv.+

2 % U

44

¥ FC2 FC3 mxnxn nxn
n nl-snxn m, xnxn

undersampled
k-space

n.

n

FC1
Zhu B et al. Nature 2018



AUTOMAP

Encoding Reference AUTOMAP Conventional

50%

50%

Zhu B et al. Nature 2018



Modular network for 3D MRI with 2D acceleration

 Brain MRI: k,-k, acceleration (coronal), axial image evaluation

8-fold acceleration coronal image axial image

Mekhanik A et al. ISMRM 2022



Modular network for 3D MRI with 2D acceleration

Coronal Slices Axial Slices
. |

Multicoll Data

—

Unaliaser Consistency

Spatial Mixing Channel Mixing

Patch Embedding
v
Mixing

Mekhanik A et al. ISMRM 2022



Deep learning
Scan time:
2 X 90 sec

Compressed
sensing

Scan time:
2 X 166 sec

Pre-contrast

Post-contrast




movienet

 Fast 4D reconstruction without data consistency

coils
== =i _
- H_} unaliased
O == = 4D images
< - TP
multicoll motion detection |
3D k-space aliased 5D images

+ motion sorting : e
+ FFT &, > movienet —

+ NUFFT k,k,

D)

space-time kernels
stack-of-stars no data consistency

no coil sensitivities
fast: few seconds

Murray V et al. MRM 2023



Motion consistency instead of data consistency

 Preserve motion range and order of motion states in the
input

input: aliased 5D images training reference: compressed sensing
=S = | =

g ¥ Weee [ I — % movjenet —> ()e— [}

=

similar motion
range and order



Motion-tolerant MRI with movienet

e Scan time =1 minute
 movienet with 4 motion states
 Live mode picture

conventional (3D) movienet (4D)

.......... —

patient with
Kidney cyst




MR fingerprinting

* Fast quantitative mapping of tissue parameters
- T1, T2, PD
— Diffusion
— pH level

* Different types of
tissue have
unique MR signal
evolutions

Ma D et al. Nature 2013



Fingerprint identification system

Database

Name
Phone number
Address




MR fingerprinting

O_SDatabase
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MR fingerprinting

Database
Measured signal

1 i i i . I
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MR fingerprinting acquisition

* Series of highly-
undersampled data

« Each frame has mixed
contrast

— Different FA and TR

Inversion (
FA( N
FA(2) FA(3) )
RF Pulse FA(1) A
A A
TR(1 TR(2
. < (1) > (2) > ,TR( N );;
Slice M M - M :
Selection U U g WA W | v g v u
Read Out AR R R

0.1

-0.05

0.1

~

0.15

\

0.1 0
kx

0.1




MR fingerprinting reconstruction

 Database entry that yields highest correlation with the
input temporal signal

i(r)=arg max<dl.,s(r)>

i(r) : database index for pixel r
d. : i-th database element

l

s(r) : temporal signal for pixel r



MR fingerprinting in the brain

13000

One spiral
readout

e

1 1200
—Signal
—MRF 1150
0.8+
2
2 0.6
3
£
04 |
2 lll
» l
“ 'l ||\|| |
I | ai

-100

-150

- L «d i
b 0 200 400 600 800 1000 d
TR Index

-200

1,000 time frames, scan time = 12.3 seconds



MR fingerprinting of prostate cancer

ADG

e 180
1 160

140
120
100
80
60
40
20

Lo W-C et al. MAGMA 2023



Metabolic MR fingerprinting (CEST-MRF)

 New contrast beyond T1 and T2 mapping: pH level of tumors
* Improved diagnosis and treatment monitoring of brain tumors

Standard CEST-MRF

Post Contrast T1 amide (pH)

Non-visible in
standard MRI

Cohen O et al. NMR in Biomed 2023



Review paper on compressed sensin

Compressfve
Sampling

i

©DIGITAL VISION

Compressed
Sensing MRI

A look at how CS can improve
on current imaging techniques

mpressed sensing (CS) aims to reconstruct signals and images from signifi-
cantly fewer measurements than were traditionally thought necessary.
David L. Donoho, 3 \ Magnetic resonance imaging (MRI) is an essential medical imaging tool with

an inherently slow data acquisition process. Applying CS to MRI offers
i potentially significant scan time reductions, with benefits for patients and

health care economics.

Michael Lustig,

Juan M. Santos, and
John M. Pauly




Questions

 What are the factors that limit the speed of conventional
MRI using magnetic field gradients?

— Gradient performance: amplitude and slew-rate

* Physical: power increases with the cube of the
acceleration factor

* Physiological: peripheral nerve stimulation due to
fast gradient switching



Questions

 What are the main ingredients for compressed sensing?

— Sparsity: image representation
— Incoherence: k-space undersampling pattern
— Non-linear reconstruction: promote sparsity



Questions

 Why is MRI a good candidate for application of
compressed sensing?

— Images are compressible (in general)

— Acquisition is in a transform domain (facilitates
incoherence)

» Software change to undersample k-space



Questions

* Is random k-space sampling the only way to achieve
incoherence?

— No, regular undersampling of non-Cartesian k-space
trajectories will also result in incoherence



Questions

« Can you apply compressed sensing to accelerate the
acquisition of dynamic MRI (videos)? Discuss the main
differences with respect to acceleration of anatomical
images

— Yes, in fact videos are more compressible than images
and therefore higher accelerations should be expected for
dynamic imaging. The main differences would be to have a
sparsifying transform that exploits temporal correlations
and to change the k-space undersampling pattern for each
time point to have spatial and temporal incoherence



 Hands-on exercise: compressed sensing in
Matlab

 Homework: deep learning reconstruction



