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The Human Genome Project

 Human Genome Project (launched
1990, completed 2003)

» Generate the first sequence of the
human genome

» Reference genome: all base pairs
In human genome

 Map all genes — observed ~22K
protein-coding genes

Got the ball rolling in terms of genomic
sequencing



HapMap Project: Cataloguing variations in the
sequences of human DNA (2002-2010) (1,000 individuals)

DNA sequence of any two individuals is 99.5% similar, however the
0.5% difference drives differences in physiological traits and disease
risk.

HapMap catalogued variation across ~1,000 individuals.

Sites in the DNA sequence where individuals differ at a single DNA
base are called single nucleotide polymorphisms (SNPs).

SNPs were identified at phySical
specific chromosomal chrom. position (bp)
positions rs10910034 1 2165898

(what nomenclature to

use?) rs1713712 1 2166021



Genome wide
Association studies



Collecting genotype and phenotype data from many
many individuals ( order of 100, 000 individuals)

Large-scale retrospective studies (~100K-1M individuals)

ibiobank® 4% iosankJapan

Improving the health of future generations

All-Us - -

/u\
MILLION VETERAN PROGRAM

Disease-related prospective studies (~10K-100K)

The COVID-19

Host Genetics Initiative

Psychiatric Genomics Consortium

CARDIoGRAMplusC4D



Collecting genotype data from many many individuals (
order of 100, 000 individuals)

a Data collection b Genotyping c Quality control
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Collecting phenotype data from many many individuals
( order of 100, 000 individuals)

a Data collection

Quantitative phenotype

(red blood cell count, LDL
m b

Cases Controls

Alzheimers, Schizophrenia, Cancers



Mathematical model for Genome Wide association studies

a Data collection b Genotyping
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Sequencing strategies:

SNP array + imputation
Whole exome sequencing and
Whole Genome sequencing

Y vector of phenotype values for all N individuals
(for example: height or 1/0 for Type 2 diabetes status)

X, vector of genotype values for all N individuals at SNP s
(0/1/2 for unscaled: ore standardized)

W matrix of covariates (age, sex, ancestry PCs)
g — represents polygenic effect of other SNPs

e - random effect of residual errors
1) kinship or genetic relatedness matrix



Calculating statistics from Genome Wide association
studies

Estimates of the effect size

T -1 :
~ Xsnp Vi'y . A 1 Overall phenotypic
By = with var ( 8 = - '
snp T v 1 snp T -1 variance-covariance
Xsnp Xsnp Xsnp Xsnp matrix =

genetic + error
Obtain z scores and p-values of the effect based on this.

GCTA e SMR GSMR OSCA CTGforum  Yang Lab
a tool for Genome-wide Complex Trait Analysis
Overview N fastGWA
Download
fastGWA: A fast MLM-based Genome-Wide Association tool
FAQ
Basic Options fastGWA is an ultra-efficient tool for mixed linear model (MLM)-based GWAS analysis of biobank-scale data such
GREML as the UK Biobank (see Jiang et al. Nafure Genetics 2019 for details of the method). Credits: Longda Jiang
(method, simulation and analysis), Zhili Zheng (method, software and analysis) and Jian Yang (method and
GWAS Analysis .
overseeing).
MLMA
We have applied fastGWA to 2,173 traits on 456,422 array-genotyped and imputed individuals and 2,048 traits

nn AQ QRN whanla_avama_caniianrad NAEQ) individiiale in tha | IK Rinhanls All tha eiimman: etatictire ara auailahla

Jiang et al 2019 Nat Genet



Calculating statistics from Genome Wide association
studies

Estimates of the effect size

T -1 .
» XapV Y . A 1 Overall phenotypic
By = with var ( 8 = - '
snp T v-1 snp T -1 variance-covariance
Xsnp Xsnp Xsnp Xsnp matrix =

genetic + error
Obtain z scores and p-values of the effect based on this.

GCTA e SMR GSMR OSCA CTGforum  Yang Lab
a tool for Genome-wide Complex Trait Analysis
Overview I fastGWA
Download

fastGWA: A fast MLM-based Genome-Wide Association tool

FAQ
Basic Options fastGWA is an ultra-efficient tool for mixed linear model (MLM)-based GWAS analysis of biobank-scale data such
GREML as the UK Biobank (see Jiang et al. Nafure Genetics 2019 for details of the method). Credits: Longda Jiang

(method, simulation and analysis), Zhili Zheng (method, software and analysis) and Jian Yang (method and

GWAS Analysis .
overseeing).
MLMA
fastGWA We have applied fastGWA to 2,173 traits on 456,422 array-genotyped and imputed individuals and 2,048 traits

nn AQ QRN whanla_avama_caniianrad NAEQ) individiiale in tha | IK Rinhanls All tha eiimman: etatictire ara auailahla

Check more recent approaches:
SAIGE (Zhou et al 2018 Nat Genet ),

REGENIE (Mbatchou et al 2021 Nat Genet) Jiang et al 2019 Nat Genet



Standard visualization technique for GWAS results

Schizophrenia

15

~log1o(P)
10

chromosome

SCZ WG of PGC Consortium, 2014, Nature



Standard visualization technique for GWAS results
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What is common between these GWAS-es?

—logy, (P)

GWAS hits occur in clusters of
variants all showing significant
effects in same region — this is
because of high linkage
disequilibrium.

~logso(P)

GWAS signals are highly
polygenic encompassing many
B | : genes.

30 4

| o ' We are likely missing out many
weaker GWAS effect signals
R R R R R res due to stringent p-value
IR R R R reete thresholds.




Can genotypes explain phenotypic variance across
individuals?

Heritability: Proportion of phenotypic variance that can be
attributed to genetic effects

Heritability of GWAS hits (h%,,,5): Squared correlation

between best fit linear model of all GWAS hits and the
phenotype

mME}X[ re (ZSEGWAS hits WsXns» Yn) ]

Heritability of all SNPs (hg): Squared correlation between
best fit linear model of all SNPs and the phenotype

mﬁx[ TZ(ZS WsXns Yn) |



There is a big gap between only focusing on GWAS hits
and looking at all of the GWAS association summary

—log1o(P)

Schizophrenia

0.07 < 0.24
héw as h

Hidden
Heritabllity

Lichtenstein et al 2009 Lancet
Lee et al. 2012 Nat Genet
Trubetskoy et al. 2022 Nature



This gap has been largely resolved for Adult height GWAS

A saturated map of common genetic variants
associated with human height

Loic Yengo &, Sailaja Vedantam, Eirini Marouli, Julia Sidorenko, Eric Bartell, Saori Sakaue, Marielisa

Graff, Anders U. Eliasen, Yunxuan Jiang, Sridharan Raghavan, Jenkai Miao, Joshua D. Arias, Sarah E.

Graham, Ronen E. Mukamel, Cassandra N. Spracklen, Xianyong Yin, Shyh-Huei Chen, Teresa Ferreira,

Heather H. Highland, Yingjie Ji, Tugce Karaderi, Kuang Lin, Kreete Lull, Deborah E. Malden, 23andMe

Research Team, VA Million Veteran Program, DiscovEHR (DiscovEHR and MyCode Community Health

Initiative), eMERGE (Electronic Medical Records and Genomics Network), Lifelines Cohort Study, The

PRACTICAL Consortium, Understanding Society Scientific Group, ... Joel N. Hirschhorn

<+ Show authors

Nature (2022) | Cite this article

“Here, using data from a genome-wide association study of
5.4 million individuals of diverse ancestries, we show that 12,111
independent SNPs that are significantly associated with height
account for nearly all of the common SNP-based heritability.”
Also see O’'Connor et al 2021 Nat Genet




The magnitude of GWAS significance depends on the LD
structure around variants

LD score regression
Intuition: SNPs in higher

LD with other SNPs tend .| Agc = 1.484 '
to have larger test Average ¥*>=1.613
statistics on average for i =1.066 : /
a polygenic trait,

because of more causal 20
variants being tagged.

Regression
weight
@ 0.2
® 04
® 0.6
® 0.8
® 1.0

Mean ;(2

LDscore (SNP x ) ¥2 =

= Ym7? (x,m) squared Z
score

ris the correlation between the . . | . .
50 100 150 200 250
genotypes X,,,, and X, LD Score bin



Mathematical overview of LD score regression

Chi-square GWAS Sample size
statistic of variant j
p 5 Narrow sense heritibility
E [Xz] p— 1 { g l . @ LD score of variant j
] M

Total number of variants

l J— § rz LD score: sum of squared Pearson's
] ]k correlation coefficient between SNP j
k#] and other (neighboring) SNPs

Bulik-Sullivan Loh et al, 2015, Nat Genet



Clinical and therapeutic
implications of GWAS



Is GWAS actually important? (GWAS hits to drugs)

GWAS hits Gene
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Gene with GWAS hits

Known or candidate drug

Type 2 Diabetes
Rheumatoid Arthritis

Ankylosing
Spondylitis(AS)

Psoriasis(Ps)

Osteoporosis
Schizophrenia
LDL cholesterol

AS, Ps, Psoriatic Arthritis

SLC30A8/KCNJ11
PADI4/IL6R

TNFR1/PTGER4/TYK2

IL23A
RANKL/ESR1
DRD2
HMGCR
IL12B

ZnT-8 antagonists/Glyburide
BB-Cl-amidine/Tocilizumab

TNF-
inhibitors/NSAIDs/fostamatinib

Risankizumab
Denosumab/Raloxifene and HRT
Anti-psychotics
Pravastatin

Ustekinumab

Visscher et al 2017 AJHG
Fang et al 2019 Nat Genet



Is GWAS actually important? (GWAS hits to drugs)

No human
Onc?logy Other inldication tarlget

[ | B | || |
Functional
genomics
(cancer)
Rare
Mendelian
Common
disease

M Genetic support M Close phenotype M Interacting protein

Genetic data source

33 of 50 FDA approved drugs in 2021 have genetic support, with highest
implicated from common disease GWAS.
Ochoa et al 2022 Nat Rev Drug Disc.



Is GWAS actually important? (Genetic risk score)

|dentify the genetic risk for any individual for diseases and
traits based on their genetic make-up (genotypes across

all SNPs). Are they at risk for a specific disease?

High Risk

Low Risk



How to calculate polygenic risk scores?

@ GWAS summary statistics
Allele A C T A

Effect +1.5 -0.5 +2.0 -1.5

SNP3

@ Genotype data

SNP3

Individual 1 AT €a i o
Individual 2 TA GG GT CA
Individual 3 TT CC GT CA
Individual 4 TT CC GG AA



How to calculate polygenic risk scores?

@ GWAS summary statistics (3) Polygenic risk score
Allele A C T A Individual1 1.5 - 05 + 40 -
Effect 15 0.5 +2.0 =15 Individual2z 1.5 - 00 + 20 -
Individual3 00 - 10 + 20 -
I I | Individual4 00 - 10 + 00 -

SNP3 SNP4

(4) PRS distribution

@ Gty Individual4  Individual 3 Individual 2
SNP3 SNP4

Individual 1 AT cG i i § N

Individual 2 TA GG GT CA

Individual3 TT CC GT CA

Individual 4 TT CcC GG AA

PRS

0.0 = 5.0
1.5 = 2.0
1.5 = -0.5
3.0 = -4.0
Individual 1




A big challenge in polygenic risk scores (representation)
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GWAS-to-function
(Overview)



Understanding the functional basis of GWAS variants

Cases Controls

WM B cwas

4

Gene network in
causal cell types
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Claussnitzer et al 2021, Trends Genet; Mathieson et al 2021, AJHG



Linkage disequilibrium can hinder identification of causal
variant for both GWAS and eQTL studies

| , «| ¢
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Figure: UK Biobank height GWAS,
http://nealelab.is/uk-biobank



Linkage disequilibrium can hinder identification of causal
variant for both GWAS and eQTL studies

A
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Figure: UK Biobank height GWAS,
http://nealelab.is/uk-biobank

Simply pick the top association in an LD block? Maybe? Simply pick the top association in an LD block? ... or not!
A A

observed effect B
observed effect B




SuSIE: Method to perform Bayesian variable selection to identify independent
causal GWAS variants or sets of variants when it is not sure

Computes Posterior Inclusion Probability (PIP) Computes Posterior Inclusion Probability (PIP)
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(il @ @ PIP = 0.85 PIP =05
8 "b'dh‘
< X TR Y
<5) ' | i
3 BVSR 3 BVSR
> 7 PIP = 0.15 J g
g * ‘ / ‘
= 3

o . ] = )
s T - y 2 -
(a»] —
EGD_ & — @
S v - a 24 ®
7 Q—_#_
o

0 200 400 600 800 1000

3 colors correspond to 95% credible sets: A
credible set says a causal variant is within this

set with 95% probability
SuSIE: Wang et al 2020 JRSS-B



Making sense of the function of GWAS variants

GWAS Catalog

Regulatory Noncoding
region transcripts

Downstream
5%

3%

Intergenic

Intron
54%

Lee et al 2018 Human Genetics



GWAS signals can be confounded by LD. Can we use
underlying function to find the causal variant?

( , | . ™
fine-mapping

causal

GWAS ® variant
variants

GWAS signal

genomic locus




Overlapping genome-wide functional annotation tracks
against GWAS disease-associated variants

c : Human Feb. 2009 (GRCh37/hg19) Chr5: 39274501-40819500 (1,545,000 bp)
Chrs:  29500000| 40000000 40500000
PTGER4 |
Co HHF
Hhit- =i 8
BC026261 |
PRKAAT IH
GWAS catalogue | | - |
® Crohn’s disease rs4613763 rs17234657 rs11742570 rs6896969 rs1373692 rs9292777

Ulcerative colitis f f T rs1992660 ? r ’

® Multiple sclerosis ?

rs6451493 |
HUVEC GATA2 I 1
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ENCODE consortium 2012, Nature



Sequence-based deep learning models trained on
epigenomic features

DNA sequences
(1-hot encoding DNA)

CTCF Enhancer Promoter Enhancer CTCF

A = > n_

For each sequence,
generates a prediction
of affinity for each
feature f at the site of
the sequence.

DNase-
T cells

——t - il el

H3K4me1-
Monocytes

H3K4me3-
B cells



Sequence-based deep learning models trained on
epigenomic features

DNA sequences
(1-hot encoding DNA)
CTCF Enhancer Promoter Enhancer CTCF
1 l i > 8 ACCG
T I

G

TcycC
Variant

...TCACCG... ...TCTCCG...

Lo

DNase- | pf q f
T cells . P L | %_m_.LJ_J; Af:|pf_qf|
H3K4me1- ‘

Monocytes = s D W o

H3K4me3-
B cells



ChromBPNet deep learning model captures
sequence mediated function at GWAS variants

Coronary Artery Disease GWAS variant

Bias-factorized ChromBPNet

Convolution
Convolution Residual Block x8
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Enformer: Avsec et al 2021 Nat Methods ) ) .
BPNet: : Avsec et al 2021 Nat Genet Pampari et al 2024 bioRxiv
o Courtesy: Anshul Kundaje, Stanford


http://github.com/kundajelab/chrombpnet
http://github.com/kundajelab/chrombpnet

Defining functional annotations at the level of variants

« Assigning a score to each SNP based on

Binary: Presence or absence of a specific functional
element at or around the SNP (example: SNP gets a
score of 1 if there is a H3K4me1 peak at or around it)

| S W W

Continuous value (often probabilistic scale between 0
and 1) measuring the strength of a specific function at or
around the SNP (example: SNP is assigned the score
equalling to the H3K4me1 peak intensity

U G S




Using 97 functional annotations as prior improves the
detection of causal variants

Posterior causal probability

Article | Published: 16 November 2020

Functionally informed fine-mapping and polygenic
localization of complex trait heritability

Omer Weissbrod ™, Farhad Hormozdiari, Christian Benner, Ran Cui, Jacob Ulirsch, Steven Gazal, Armin

P. Schoech, Bryce van de Geijn, Yakir Reshef, Carla Marquez-Luna, Luke O'Connor, Matti Pirinen, Hilary

K. Finucane & Alkes L. Price &3

Nature Genetics 52, 1355-1363 (2020) \ Cite this article
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Mathematical overview of LD score regression

Chi-square GWAS Sample size
statistic of variant j
p 5 Narrow sense heritibility
E [Xz] p— 1 { g l . @ LD score of variant j
] M

Total number of variants

l J— § rz LD score: sum of squared Pearson's
] ]k correlation coefficient between SNP j
k#] and other (neighboring) SNPs

Bulik-Sullivan Loh et al, 2015, Nat Genet



Stratified LD score regression : Heritability enrichment
due to functional categories of SNPs

Intuition: A category fis enriched for heritability if SNPs with
high LD to that category have higher y? statistics.

2 = ;4 Nt. LD LDscores (SNP x) =
xX° =i Z T LDscores Smes 2 (X, m)
f

Define heritability due to a functional category f

B = Y >,
{kef} {g contains k}

Heritability enrichment () :=. (hs(f)/ hs)/(M(f)/M

Finucane et al, 2015, Nat Genet



Naturally occurring
perturbations for human
molecular phenotypes

(QTLS)



Tracking genetic variation of gene expression phenotype
(eQTL : expression quantitative trait loci)

a Data collection

Gene expression for gene G
in tissue/cell-type T

Cano-Gomez & Trynka 2020 Front Genet



Tracking genetic variation of gene expression phenotype
(eQTL : expression quantitative trait loci)

"a Data collection
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Statistical colocalization: Identifying shared causal variants
between a disease trait and an eQTL

Typically performed for one gene and for one tissue separately
against one focal disease GWAS.

A GWAS association A Non-colocalizing signals
GWAS lead SNP
lead SNP
_ S . / 4 eQTLlead SNP
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Coloc: standard method for colocalization.

Does not scale well to more than 2 phenotypes. Giambartolomei et al 2014 PLoS Gen



ColocBoost model to perform multimodal molecular
phenotype QTL colocalization

Recent advances in technology has made it easier to use other molecular
phenotypes outside of gene expression, and also assess eQTL at cell type

resolution for different cell types in a tissue
Expression QTL (eQTL)
Genome-wide association (GWAS) s
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Aguet et al. 2020. Nature Reviews Methods Primers



Understanding colocalization: enhancing GWAS
iInsights through shared genetic signals
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ColocBoost: Cao et al 2025 medRxiv, in rev Nat Genet

HyPrColoc: Foley et al 2021 Nat Commun



Shared genetic regulation across

cell types observed for many

disease risk variants are not indicative of cell-cell crosstalk

37.3% of AD causal risk variants show genetic regulation shared across multiple cell

types in brain.
AD GWAS

Excitatory eQTL

CD2AP
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Inhibitory eQTL

Alzheimer’s disease risk gene CD2AP is a dose-sensitive determinant of
synaptic structure and plasticity

Matea Paveskovi¢ 123, Ruth B De-Paula %8, Shamsideen A Ojelade %, Evelyne K Tantry >!?, Mikhail Y Kochukov

1112 suyang Bao 314, Surabi Veeraragavan 1516, Alexandra R Garza 1718, Snigdha Srivastava %2921, Si-Yuan Song
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Paveskovic et al 2024 HMG
Zhang et al 2024 Mol Neurodeger.

Microglia eQTL

Microglial CD2AP deficiency exerts protection in an
Alzheimer's disease model of amyloidosis

Lingliang Zhang # 7, Lingling Huang # ', Yuhang Zhou ', Jian Meng ", Liang Zhang ',
Yungiang Zhou 1, Naizhen Zheng 1, Tiantian Guo 1, Shanshan Zhao !, Zijie Wang ',

Yuanhui Huo ', Yingjun Zhao ', Xiao-Fen Chen ', Honghua Zheng 1, David M Holtzman 2,
Yun-Wu Zhang 3

ColocBoost: Cao et al 2025 medRxiv, in rev Nat Genet
HyPrColoc: Foley et al 2021 Nat Commun



Systemic differences between eQTLs and GWAS

> Nat Genet. 2023 Nov;55(11):1866-1875. doi: 10.1038/s41588-023-01529-1. Epub 2023 Oct 19.

Systematic differences in discovery of genetic effects
on gene expression and complex traits

Hakhamanesh Mostafavi 1, Jeffrey P Spence 2, Sahin Naqvi 2 2, Jonathan K Pritchard 4 °

Affiliations + expand
PMID: 37857933 DOI: 10.1038/s41588-023-01529-1

“GWAS and cis-eQTL hits are systematically different: eQTLs cluster strongly near
transcription start sites, whereas GWAS hits do not. Genes near GWAS hits are
enriched in key functional annotations, are under strong selective constraint and
have complex regulatory landscapes across different tissue/cell types, whereas
genes near eQTLs are depleted of most functional annotations, show relaxed
constraint, and have simpler requlatory landscapes. ”



Cis and trans-eQTLs can identify proximal and distal
genes of action

Cis-eQTL

SNP X has an effect on local Gene A

3 a eQTLGen Consortium
3 .
5 ,1‘ 31,684 blood samples r:r 10,317 trait-associated SNPs
o i<
w
A
T : A —
x
)
SNP X Gene A <
located in transcription factor &
: SEVAN AB BB
promoter region located on b c d
SNP X Genotype
chromosome 1 : . . .
cis-eQTL analysis: trans-eQTL analysis: eQTS analysis:
11M SNPs studied 10,317 trait-associated 1,263 traits studied
Altered Protein A levels (window size 1Mb, MAF = 1%) Esstudied
’
effect on the t?lndlng to Digass — i
the transcription factor SNP SNP
binding sites of aod@m
downstream genes trans-eQTL effect

Trans-eQTL ,
cis-eQTL effect

SNP X has an effect on distant Gene B through an CIQIJ C&ﬁ [:e:]

intermediary factor (such as a transcription factor)

Gene expression @

§ Gene A Gene B Gene C Polygenic score for disease B
v
c
2
4-—|—_)-:-7 g cis-eQTL analysis results: trans-eQTL analysis results: eQTS analysis results:
§ 16,987 (88.2%) cis-eQTL genes 6,298 (32%) trans-eQTL genes 2,568 (13%) eQTS genes
Protein A Gene B Q) 3,853 (37%) trait-associated SNPs 689 (55%) traits affect gene expression
binding site located on 5
chromosome 2 - AA AB BB

SNP X Genotype

Westra and Franke 2014 BBA.
Vosa et al 2021 Nat Genet



Cis and trans-eQTLs can identify proximal and distal

genes of action
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Cis and trans-eQTLs can identify proximal and distal

genes of action

1025.3

NCF2 rs17849501
IKZF1

7 7p122
OASL rs4917014

IFIH1

Interferon 2g24.2

response 1990760

genes

rs2111485

16p11.2
12g24.12 rs7197475
rs10774625
ANKRD55
rs597808
rs849142
rs12531540
7p15.1

= o

rs35472514

@ IFI44L
rs34572943 -

ITGAM/ rs11574637 rs2663052
ITGAX/ rs877819
rs7097397
ITGAD T rs1143679 B0 0588739
rs1913517 WDFY4/
16p11.2 pRc1e
10g11.23
trans-eQTL
Z-score:
m 15
Legend: 10
Trans-eQTL 5
Co-expression (R?>0.1)
rs1143679 SLE risk variant .
IFI44L Trans-eQTL gene -5

rs12531540
rs849142
rs7197475
rs10774625
rs597808
rs4917014
rs1990760
rs2111485
rs11574637
rs35472514
rs9888739
rs1143679
rs34572943
rs17849501
rs1913517
rs2663052
rs7097397
rs877819

-70-09-06 02 -0.1 1.1 -0.3 0.3 -0.3-1.0 0.3 -0.3

-75-09-05 03 -04 1.0 -0.2 0.5 -06-06 0.1 0.0
47 04 -04 00 -03-14-21-1.0 0.8 -0.7-0.6 -0.2
64 -21-17-11-44-40-24 NA 6.0 -26 NA -2.1
64 -23-20-14-47-43-26 NA 6.0 -28 NA -23

2748115128 6.1 7.7 75 100 82
0.4 [145811.3 108128114109 65 56 63 69 56
0.5 1414112106 127 11.0 104 58 54 60 68 57
0.3 28 33 31 45 46 40 36 38 27 43 52
14 34 34 30 45 45 46 42 38 24 42 55
15 33 34 30 45 47 46 41 38 25 43 57
20 35 32 34 42 41 44 40 39 23 40 51
17 37 36 34 43 42 44 41 40 23 42 50
05 51 46 55 41 43 47 26 25 26 37 36
06 57 55 43 44 38 40 35 29 38 31 39
039290 59 73 72 70 52 39 35 62 60
0780 74 53 62 65 59 45 23 45 44 58
0.3 66 7.1 50 58 59 57 36 38 29 48 55



Omnigenic model hypothesis in genetics
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Other approaches of
mapping GWAS
Variants to Genes (V20G)



Broadening the scope of approaches to link variants to genes

%‘ H K ]=] 5kb SNPs in 5kb window around gene
%‘ T ]=] 100kb SNPs in 100 kb window around gene
H L )= Promoter SNPs in promoter region of the gene

H:H:]:[:): TSS SNPs in and around Transcription start sites
.=[:]=' ,[:]=. Coding SNPs in coding regions of the gene

Dey et al 2022, Cell Genomics,
Gazal..Dey et al 2022 Nat Genet



Broadening the scope of approaches to link variants to genes

%‘ H K ]=] 5kb SNPs in 5kb window around gene
%‘ T ]=] 100kb SNPs in 100 kb window around gene
H L )= Promoter SNPs in promoter region of the gene

H:H:]:[:): TSS SNPs in and around Transcription start sites
.=[:]=' ,[:]=. Coding SNPs in coding regions of the gene

Dey et al 2022, Cell Genomics,
Gazal..Dey et al 2022 Nat Genet



The Activity-By-Contact element-gene linking method

DHS
peaks

Hi-C

el e2

_._» . Activity x contact = A x C . ABC score
b i |
A et: 1 x 12 = 12 ' 075
e 4 x 1 = 4 , 025
AE X CE,G
ABCscoreg ¢ =
E Ae X Ce,G

all elements e within 5 Mb of G

Operationally, we estimated Activity (4) as the geometric mean of the read counts of DHS and
H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) at element £, and Contact
(C) as the KR-normalized Hi-C contact frequency between E and the promoter of gene G at 5-

kb resolution (see Supplementary Note 4 and Supplementary Figs. 4 and 5).

Fulco et al 2019 Nat Genet
Nasser et al 2021 Nature



The Activity-By-Contact element-gene linking method
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Promoter-capture Hi-C to link elements to genes
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Broadening the scope of approaches to link variants to genes

Naive S2G Expression S2G Hi-C S2G

[:( = H ]=] Skb SNPs in 5kb window around gene

%{ N ]=] 100kb SNPs in 100 kb window around gene

H L H )= Promoter SNPs in promoter region of the gene

il T5S SNPs in and around Transcription start sites
:=[j=[:]=[:]= Coding SNPs in coding regions of the gene

eQTL Max. post. causal probability in GTEx blood?2

Q L H = ATAC Correlated ATAC-seq peaks and gene expression in blood?
Q - — Roadmap Correlated enhancers and gene expression in blood4>®
Q L@@ PCHiC Promoter Capture Hi-C’

Q L = ABC DHS N H3K27ac N Hi-C in blood?®

Dey et al 2022, Cell Genomics,
Gazal..Dey et al 2022 Nat Genet



Benchmarking different element-gene linking approaches

1. Building ENCODE-rE2G predictive models
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Visualizing the element-gene links underlying rs875741: fine-
mapped variant PIP = 0.50 for mean corpuscular hemoglobin.
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Artificial perturbation
screens for human

molecular phenotypes
(CRISPR)



Functional characterization targeting GWAS risk variants
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Functional characterization targeting GWAS risk variants

Bayesian fine-mapping

Genomic annotation
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Functional characterization targeting GWAS risk variants

Bayesian fine-mapping
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CRISPRI perturbation screen in K662 mimic-ing cis eQTLs
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CRISPRI perturbation screen in K662 mimic-ing cis eQTLs
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Large scale genome-wide enhancer perturbation screen to
mimic cis and trans eQTLs

CRISPRI Perturb-seq (TSS-targeted or enhancer—targeted): dCas9-KRAB,
can assess global changes in transcriptomic profile owing to one or sets of
perturbations.

By introducing gRNAs at a high MOI (~30), each individual cell acquires a
unique combination of perturbations, which markedly increases statistical
power.

Incorporating in low MOI (<= 1~2) however enables more accurate
understanding of a single pertiirhatinn affect
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Large scale genome-wide enhancer perturbation screen to
mimic cis and trans eQTLs

Map cis and frans effects by comparing gene expression in the subset of
cells that contain a given gRNA to those that lack that guide (similar to eQTL)
(crisprQTL mapping).

Unlike eQTL studies, the resolution of our screen is not constrained by
linkage disequilibrium, nor is it limited to studying sites in which common
genetic variants happen to exist.
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STING-seq: CRISPRi and CRISPR base-editing efforts
targeting variants fine-mapped from immune traits
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STING-seq: CRISPRI trans-effect hubs similar to trans-eQTL
programs of genes
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Defining programs of genes underlying CRISPR perturbations
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Contrastive embedding approaches often find interesting
structure among genes modulated by a perturbation
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Contrastive embedding approaches often find interesting
structure among genes modulated by a perturbation
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Linking Gene Programs
to Disease (G2D) from
perturbation screens



Prioritizing genes for a complex disease (MAGMA and PoPS)

|

Two types of gene test statistics

have been implemented in
MAGMA:

(a) The mean of the y? statistic for
the SNPs in a gene,

(b) The top x? statistic among the
SNPs in a gene.

For the mean y? statistic, a gene p-
value is then obtained by using a
known approximation of the
sampling distribution



Prioritizing genes for a complex disease (MAGMA and PoPS)

Weeks et al 2024 Nat Genet
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Disease information in Perturb-seq co-regulated

gene programs

{Perturb-Seq

trans-perturb
effect

TIID
gy ..

Y, Target Gene %,

+ Cell Death

immunologic
disorders

» Signal Transducti
« Cell-cell signaling
+ Membrane organizati

+ Autophagy

o
0|0 © 60

@
o —>

Step 3: Disease enrichment

Step 1: Gene programs

» Cell cycle control
Chromosome
organization
Genome Integrity

Proteasomal
degradation
» Proteostasis
+ Stress Response

Geiger-Schuller, Eraslan et al bioRxiv 2023, in rev Cell

Enrichment of
PoPS/MAGMA or any score
in your perturbation program
compared to similar-sized
program drawn from genes
affected by >=1 perturbation

Large-scale Perturb-seq
assay targeting 1031
E3ligase genes in bone
marrow dendritic cells



GeneBoost approach to score perturbation programs
for disease
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PoPs gene-level scores of knockouts and PoPs enrichment of
their perturbation profiles are moderately correlated

PolyPerturb scores

PolyGene scores

Each point is a (KO
gene, immune
disease) pair in
E3ligase Perturb-seq
experiment

We consider 1,030
genes and 9 immune
related traits.



In-vivo Perturbation programs across multiple cell types
(Jin et al Science 2020)

UMAP2

Lentiviral gRNA library In utero infection at E12.5

targeting ASD/ND risk genes
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genes targeted

Perturbation program
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Of 175 perturbation
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Jin et al Science 2020



Some Astroglia perturbation programs are specifically disease
informative for autism compared to other brain related diseases
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sc-linker heritability analysis of Perturb-seq co-regulated
gene programs
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Step 2: SNP-gene maps to

v .
3 % Step 1: Gene programs generate SNP annotation

Step 3: Disease herltability enrichment

Activity-By-Contact (ABC) U Roadmap enhancer-gene

» Cell cycle control

o B e X A iy Large-scale Perturb-seq assay
{8l \ Genome Integrity . . .
targeting 1031 E3ligase genes in
inmunciogc SR bone marrow dendritic cells
PioWesial Geiger-Schuller, Eraslan et al bioRxiv 2023, in rev Cell
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We observe specific immune disease heritability

enrichment using sc-linker in various Perturb-seq programs

sclinker ABC+Roadmap
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(Program GP 5: Protein homeostasis and phagocytosis

Program GP 1: Response to oxidative stress
itgam, ligh2, Acod1, Cd36, Mmpé8, Thbs1, Srxn1, Prdx1, Txnrdf, Tom1, Cat, Gsr, Hmox1, Prax6, Csffr,
Cxcl3, Gsn(ma}rbeatype 'Gsr'), ClecSa, Msri, Bst

)

Program GP 2: Response to ER stress
Selenos, Surfd, Sect1c/22b/61b/61g, Pdiad/4/6, Herpud1, Hsp30b1

Program GP 3: Pyruvate metabolism
Tpit1, Pgam{, Enod, Hk2, Hi1, Pfil, Laha, Pkm, Bsg, Pgk1 Aldoc, Aldoa, Gapdh, Slc16a3

)

Program GP 4: Motility and cell maintenance
C3art, Cel2/7, Cdhi, Map1le3b, Pdlim?, Pixnb2, Spatal3, Swap70, Vim, Snipf, Snrpd?2, Nep58, Eif3e/fik,
Trem1/2, Hnmpat

Hep90ab1, Hspa8, Ubb, Nedd8, Ube2m, Vep, Psmad/56/7 Acth1/g1, Actg1, Ametb, Coroad, Tubbia/tb/s,
Ppia, Tyrobp, Alp5/Cox/Uger family genes, Erp29, Reeph, Ssrd, Kitcap?

Program GP 6: Ribosome / translation
Rpl3, Rps26, Rps20, many other RplRps genes Rack1, Npm{, Tpt!, Naca

Program GP 7: mDC
b2 1112b,Cd83, lcosl, Icam1, Jak2, AtfS, Ccl2Z, Cel5, Marcks, Nfat5, Stat5a, Nfibia/z, Rel, ffgal, Ikbke,

Program GP 8: TNF / LPS response
Cd33, Ca38, Cxelt/2, Cybb, Gas?, Gng12, Gpréd, Ma, Iith, Nirp3, Sirpa, Syk, TIe2, Tnf, 118

)

Program GP 9: Regulation of autophagy and inflammation
Cd34 L)f?ﬁ Ccl6, Cd63, Cd68, Ctsa/bicidiz, FIk2, Psap, Gpr137b, Mcl1, Cd44, Gpnmd, Mt1/2, Fth1, IITr,

)

Program GP 10: MHC-| Ag presentation
B2m, Tapbp, Gm, Hifta, H2.D1, H2.K1, H2.T23, Lamp1/2, Irf8, Cst3, Ctskil's, Mdm?2

Program GP 11: DC2 MHC-II Ag presentation

H2.Aa, H2 Ab1, H2.DMa, H2.DMb1, H2.Eb1, Gd74, Irf4,Cor1/5, Col17, SocsZ, Dostamp, Slamf9, ltgax,
Mgl2, Axi, Anxaf

)

Geiger-Schuller, Eraslan et al bioRxiv 2023, in rev Cell



Assignment Problem

Whole genome CRISPRI Perturb-seq data :

Map fine-mapped GWAS variants for K562-related traits to genes using cS2G
method and the nearest TSS distance.

Find genes that are significantly affected downstream of the CRISPR perturbations
(https://gwps.wi.mit.edu/)

Group co-regulated genes and co-functional perturbations into groups of genes
based on a chosen clustering or dimension reduction (PCA) + clustering algorithm.

Perform enrichment of the PoPS scores foe 120 traits in the genes that are in each
program against a background set of random genes selected from the pool of all
perturbations.

Perform Stratified LD score regression of the genes in the gene program
connected to variants by the cS2G method
(https://github.com/bulik/ldsc/wiki)



https://gwps.wi.mit.edu/
https://github.com/bulik/ldsc/wiki
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