

# Linking natural and artificial genomic perturbations to human disease risk

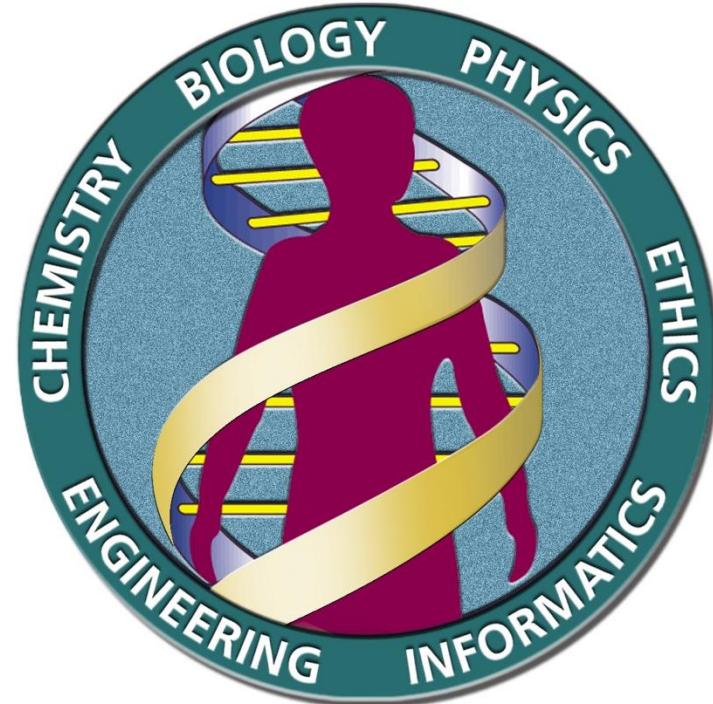
Kushal K. Dey

Assistant Member  
Computational and Systems Biology  
Memorial Sloan Kettering Cancer Center

# The Human Genome Project

---

- Human Genome Project (launched 1990, completed 2003)
- Generate the first sequence of the human genome
  - *Reference genome*: all base pairs in human genome
  - *Map all genes* – observed ~22K protein-coding genes



Got the ball rolling in terms of genomic sequencing

# HapMap Project: Cataloguing variations in the sequences of human DNA (2002-2010) (1,000 individuals)

---

DNA sequence of any two individuals is 99.5% similar, however the 0.5% difference drives differences in physiological traits and disease risk.

HapMap catalogued variation across ~1,000 individuals.

Sites in the DNA sequence where individuals differ at a single DNA base are called **single nucleotide polymorphisms (SNPs)**.

SNPs were identified at specific chromosomal positions  
(what nomenclature to use?)

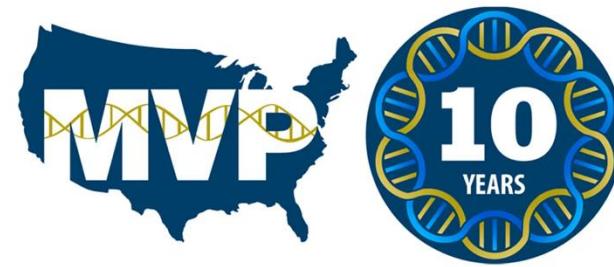
|  |            | chrom. | physical position (bp) |
|--|------------|--------|------------------------|
|  | rs10910034 | 1      | 2165898                |
|  | rs1713712  | 1      | 2166021                |

# Genome wide Association studies

# Collecting genotype and phenotype data from many many individuals ( order of 100, 000 individuals)

---

## Large-scale retrospective studies (~100K-1M individuals)

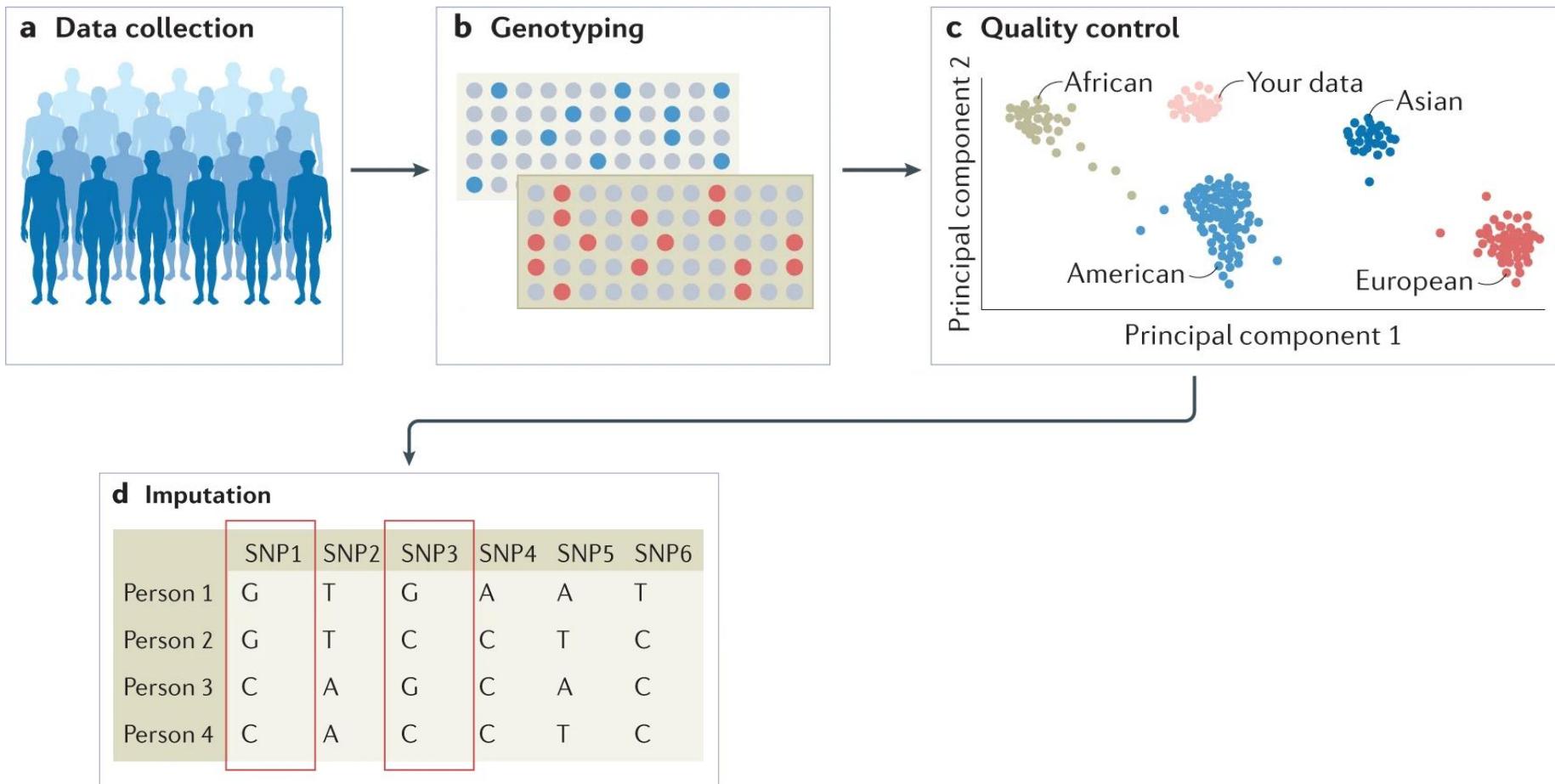


**MILLION VETERAN PROGRAM**

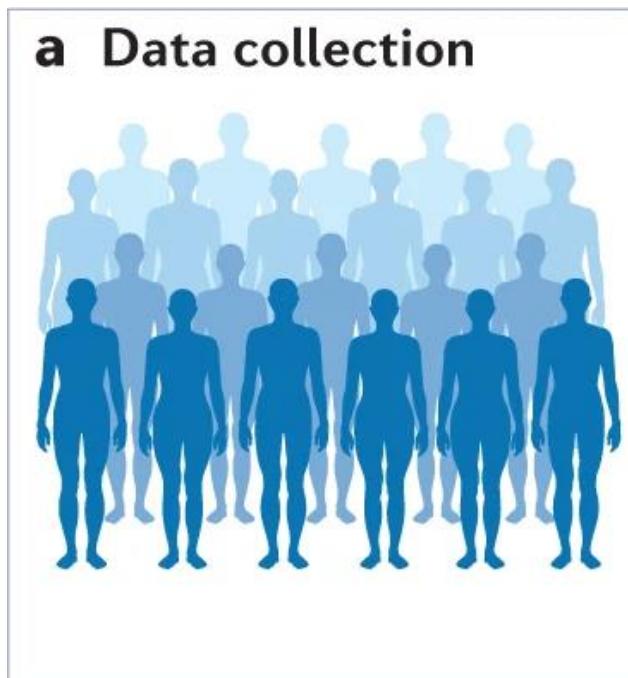
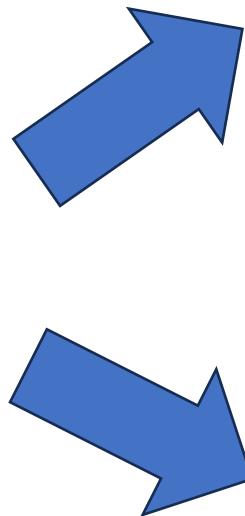
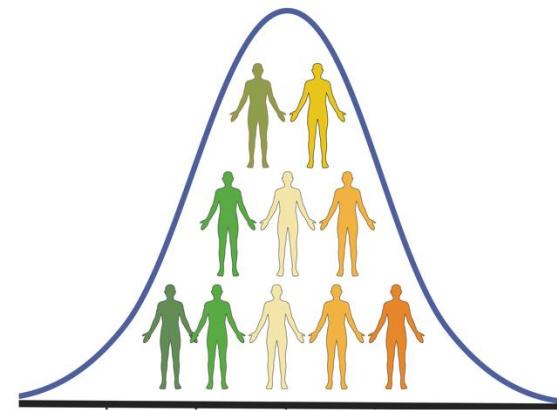
## Disease-related prospective studies (~10K-100K)



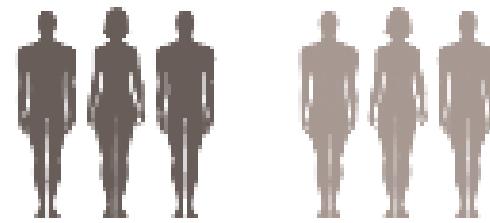
# Collecting genotype data from many many individuals (order of 100, 000 individuals)



# Collecting phenotype data from many many individuals ( order of 100, 000 individuals)



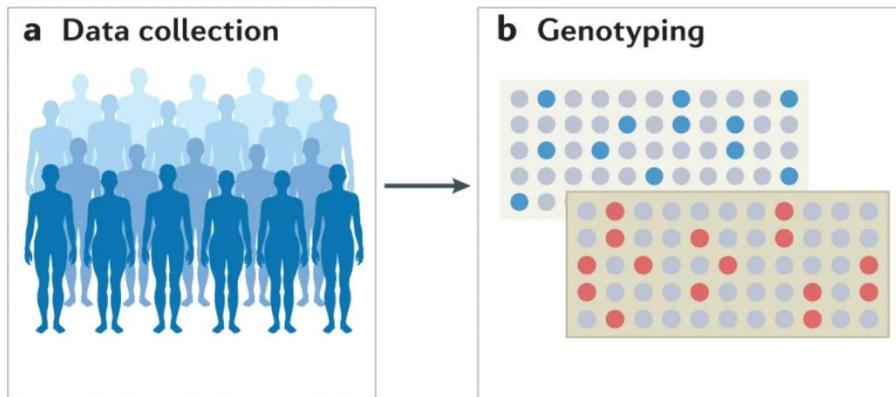
Quantitative phenotype  
(red blood cell count, LDL  
cholesterol)



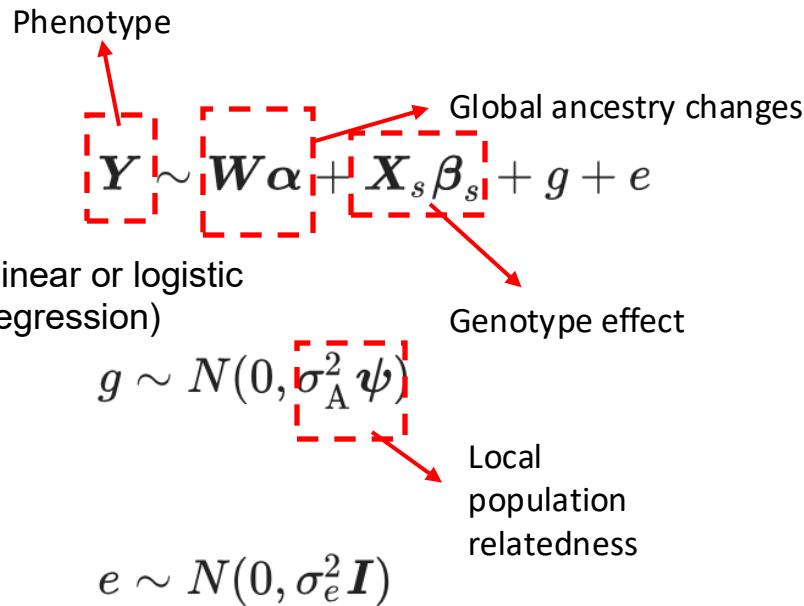
Cases      Controls

Alzheimers, Schizophrenia, Cancers

# Mathematical model for Genome Wide association studies



Sequencing strategies:  
SNP array + imputation  
Whole exome sequencing and  
Whole Genome sequencing



**Y** vector of phenotype values for all N individuals  
(for example: height or 1/0 for Type 2 diabetes status)

**X<sub>s</sub>** vector of genotype values for all N individuals at SNP s  
(0/1/2 for unscaled: or standardized)

**W** matrix of covariates (age, sex, ancestry PCs)

**g** – represents polygenic effect of other SNPs

**e** - random effect of residual errors

**ψ** kinship or genetic relatedness matrix

# Calculating statistics from Genome Wide association studies

## Estimates of the effect size

$$\hat{\beta}_{\text{snp}} = \frac{\mathbf{x}_{\text{snp}}^T \mathbf{V}^{-1} \mathbf{y}}{\mathbf{x}_{\text{snp}}^T \mathbf{V}^{-1} \mathbf{x}_{\text{snp}}} \text{ with } \text{var} \left( \hat{\beta}_{\text{snp}} \right) = \frac{1}{\mathbf{x}_{\text{snp}}^T \mathbf{V}^{-1} \mathbf{x}_{\text{snp}}}$$

$$\mathbf{V} = \sigma_g^2 \boldsymbol{\psi} + \sigma_e^2 \mathbf{I}$$

Overall phenotypic variance-covariance matrix = genetic + error

Obtain z scores and p-values of the effect based on this.

**GCTA**  
a tool for Genome-wide Complex Trait Analysis

GCTA   SMR   GSMD   OSCA   CTG forum   Yang Lab

[Overview](#)

[Download](#)

[FAQ](#)

[Basic Options](#)

[GREML](#)

[GWAS Analysis](#)

[MLMA](#)

[fastGWA](#)

### fastGWA

#### fastGWA: A fast MLM-based Genome-Wide Association tool

fastGWA is an ultra-efficient tool for mixed linear model (MLM)-based GWAS analysis of biobank-scale data such as the UK Biobank (see Jiang et al. *Nature Genetics* 2019 for details of the method). Credits: [Longda Jiang](#) (method, simulation and analysis), [Zhili Zheng](#) (method, software and analysis) and [Jian Yang](#) (method and overseeing).

We have applied fastGWA to 2,173 traits on 456,422 array-genotyped and imputed individuals and 2,048 traits on 19,960 whole-exome-sequenced (WES) individuals in the LK Biobank. All the summary statistics are available

# Calculating statistics from Genome Wide association studies

## Estimates of the effect size

$$\hat{\beta}_{\text{snp}} = \frac{\mathbf{x}_{\text{snp}}^T \mathbf{V}^{-1} \mathbf{y}}{\mathbf{x}_{\text{snp}}^T \mathbf{V}^{-1} \mathbf{x}_{\text{snp}}} \text{ with } \text{var} \left( \hat{\beta}_{\text{snp}} \right) = \frac{1}{\mathbf{x}_{\text{snp}}^T \mathbf{V}^{-1} \mathbf{x}_{\text{snp}}}$$

$$\mathbf{V} = \sigma_g^2 \boldsymbol{\psi} + \sigma_e^2 \mathbf{I}$$

Overall phenotypic variance-covariance matrix = genetic + error

Obtain z scores and p-values of the effect based on this.

**GCTA**  
a tool for Genome-wide Complex Trait Analysis

GCTA   SMR   GSMD   OSCA   CTG forum   Yang Lab

[Overview](#)

[Download](#)

[FAQ](#)

[Basic Options](#)

[GREML](#)

[GWAS Analysis](#)

[MLMA](#)

[fastGWA](#)

### fastGWA

#### fastGWA: A fast MLM-based Genome-Wide Association tool

fastGWA is an ultra-efficient tool for mixed linear model (MLM)-based GWAS analysis of biobank-scale data such as the UK Biobank (see Jiang et al. *Nature Genetics* 2019 for details of the method). Credits: [Longda Jiang](#) (method, simulation and analysis), [Zhili Zheng](#) (method, software and analysis) and [Jian Yang](#) (method and overseeing).

We have applied fastGWA to 2,173 traits on 456,422 array-genotyped and imputed individuals and 2,048 traits on 19,960 whole-exome-sequenced (WES) individuals in the LK Biobank. All the summary statistics are available

Check more recent approaches:

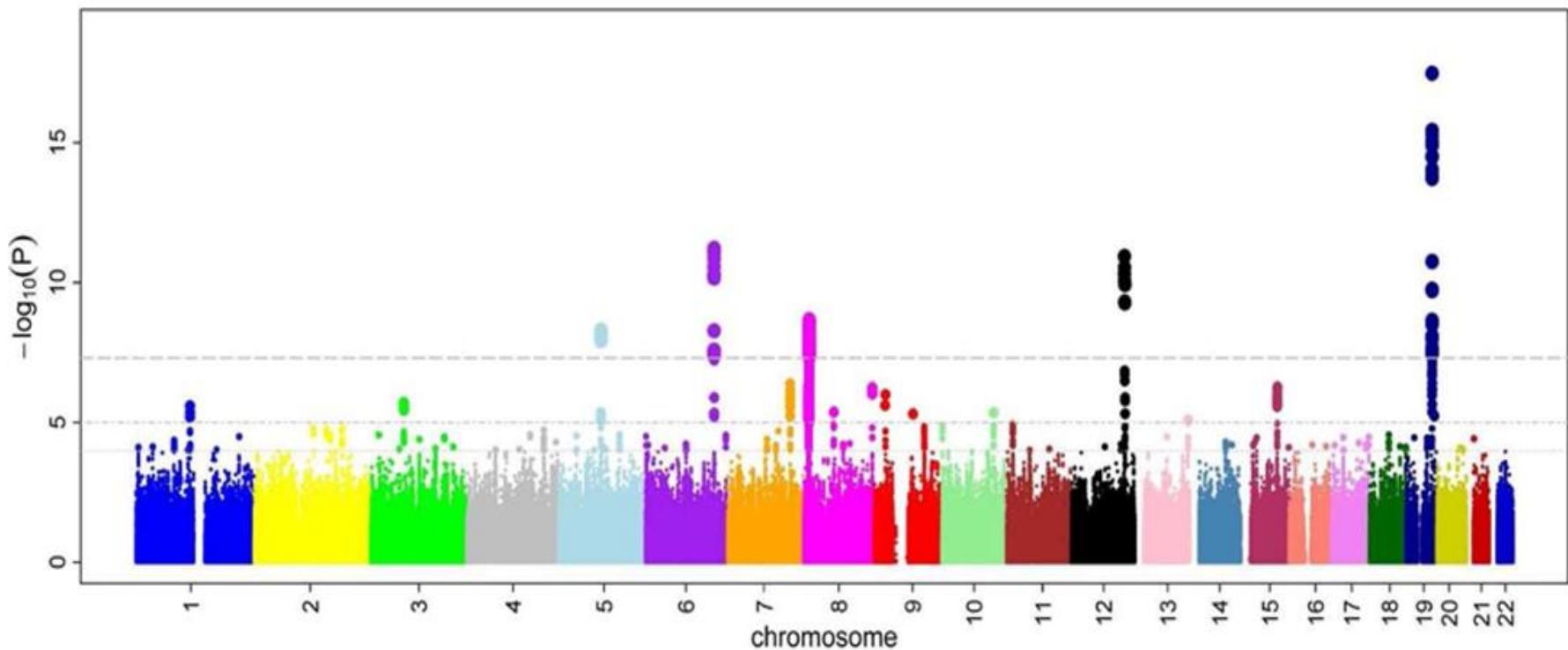
**SAIGE** (Zhou et al 2018 *Nat Genet* ),

**REGENIE** (Mbatchou et al 2021 *Nat Genet* )

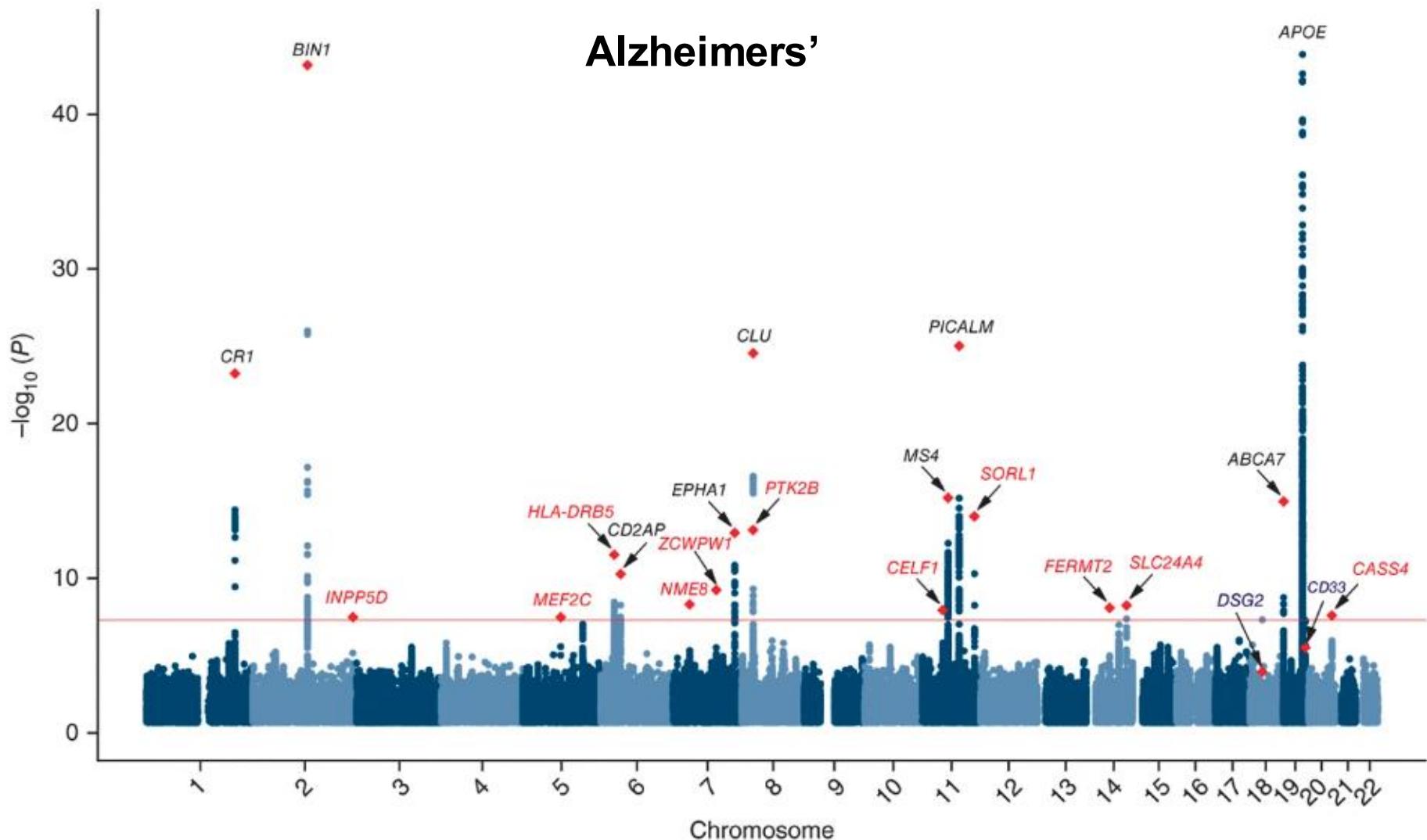
Jiang et al 2019 *Nat Genet*

# Standard visualization technique for GWAS results

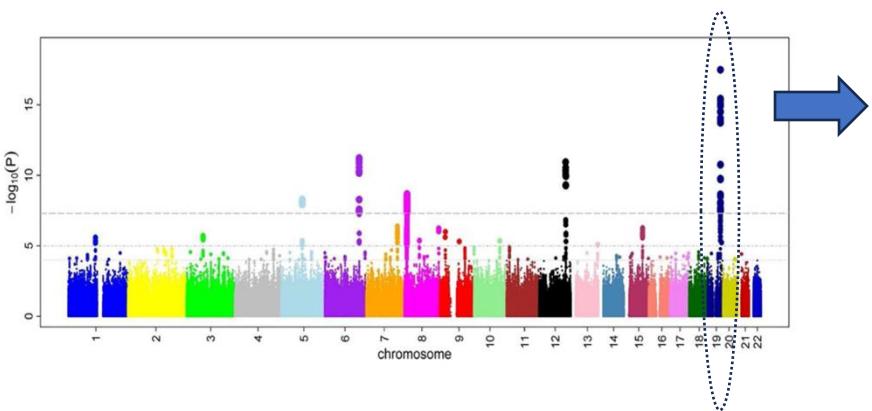
## Schizophrenia



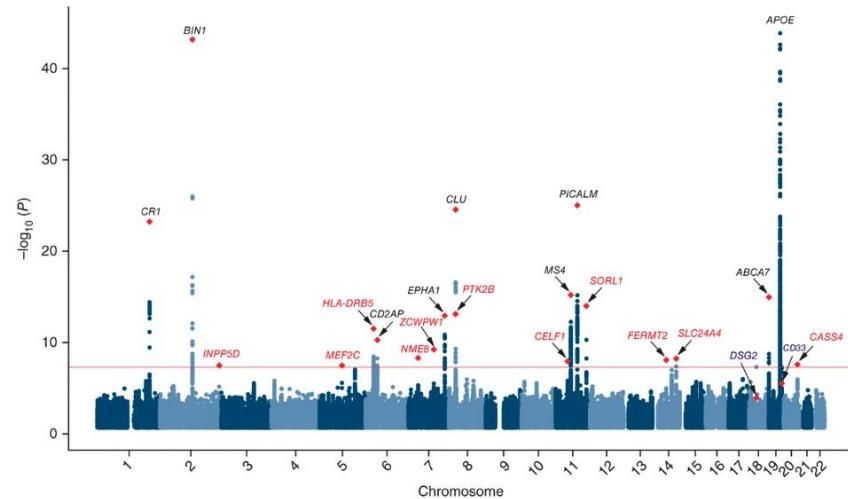
# Standard visualization technique for GWAS results



# What is common between these GWAS-es?



GWAS hits occur in clusters of variants all showing significant effects in same region – this is because of high linkage disequilibrium.



GWAS signals are highly polygenic encompassing many genes.

We are likely missing out many weaker GWAS effect signals due to stringent p-value thresholds.

# Can genotypes explain phenotypic variance across individuals?

---

**Heritability:** Proportion of phenotypic variance that can be attributed to genetic effects

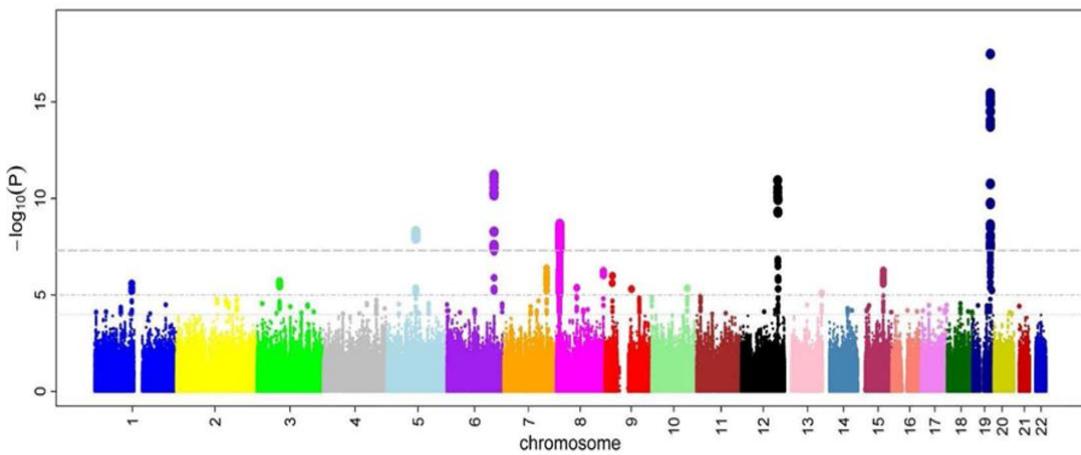
**Heritability of GWAS hits ( $h_{GWAS}^2$ ):** Squared correlation between best fit linear model of all GWAS hits and the phenotype

$$\max_w [ r^2 (\sum_{s \in GWAS \text{ hits}} w_s X_{ns}, Y_n) ]$$

**Heritability of all SNPs ( $h_g^2$ ):** Squared correlation between best fit linear model of all SNPs and the phenotype

$$\max_w [ r^2 (\sum_s w_s X_{ns}, Y_n) ]$$

There is a *big gap* between only focusing on GWAS hits and looking at all of the GWAS association summary



Schizophrenia

$0.07 < 0.24$

$h_{GWAS}^2$   $h_g^2$

Hidden  
Heritability

Lichtenstein et al 2009 *Lancet*  
Lee et al. 2012 *Nat Genet*  
Trubetskoy et al. 2022 *Nature*

# This gap has been largely resolved for Adult height GWAS

## A saturated map of common genetic variants associated with human height

[Loïc Yengo](#) , [Sailaja Vedantam](#), [Eirini Marouli](#), [Julia Sidorenko](#), [Eric Bartell](#), [Saori Sakaue](#), [Marielisa Graff](#), [Anders U. Eliasen](#), [Yunxuan Jiang](#), [Sridharan Raghavan](#), [Jenkai Miao](#), [Joshua D. Arias](#), [Sarah E. Graham](#), [Ronen E. Mukamel](#), [Cassandra N. Spracklen](#), [Xianyong Yin](#), [Shyh-Huei Chen](#), [Teresa Ferreira](#), [Heather H. Highland](#), [Yingjie Ji](#), [Tugce Karaderi](#), [Kuang Lin](#), [Kreete Lüll](#), [Deborah E. Malden](#), [23andMe Research Team](#), [VA Million Veteran Program](#), [DiscovEHR \(DiscovEHR and MyCode Community Health Initiative\)](#), [eMERGE \(Electronic Medical Records and Genomics Network\)](#), [Lifelines Cohort Study](#), [The PRACTICAL Consortium](#), [Understanding Society Scientific Group](#), ... [Joel N. Hirschhorn](#) 

+ Show authors

[Nature](#) (2022) | [Cite this article](#)

“Here, using data from a genome-wide association study of **5.4 million individuals** of diverse ancestries, we show that **12,111** independent SNPs that are significantly associated with height account for **nearly all of the common SNP-based heritability**.”

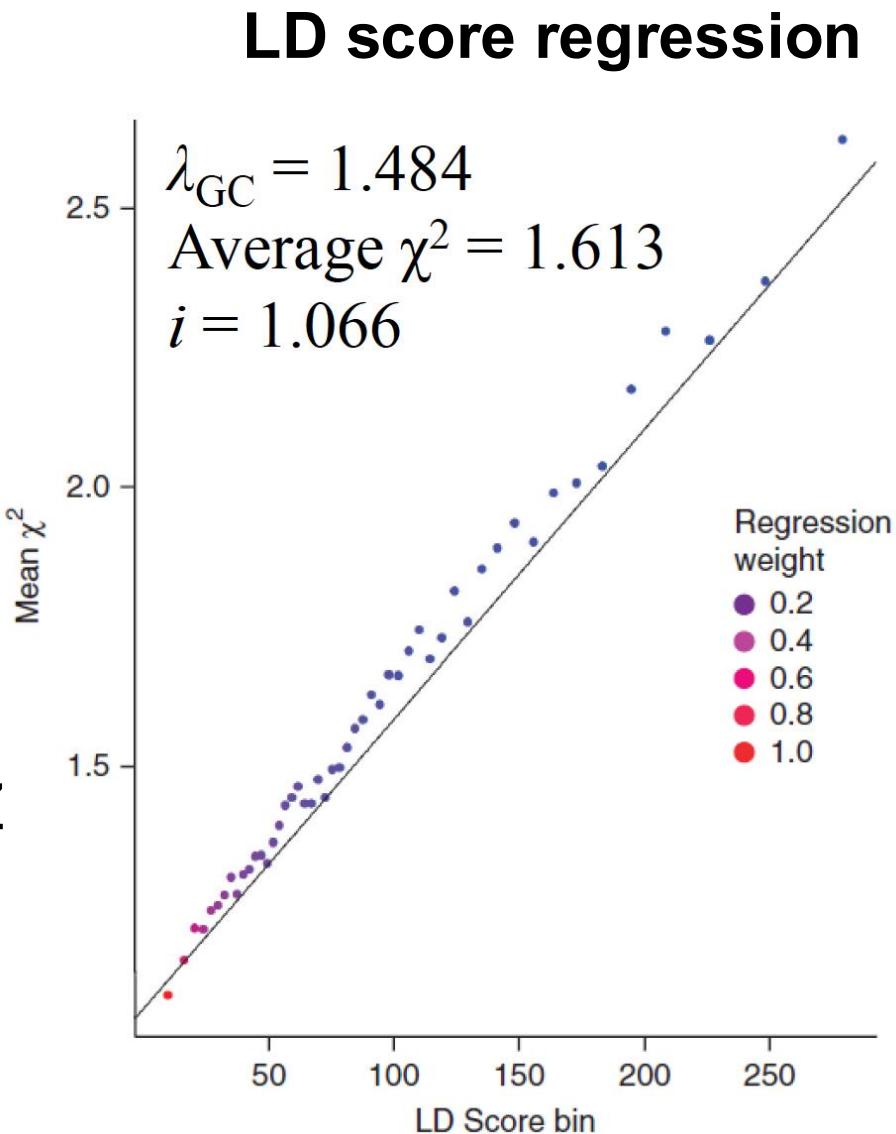
Also see O'Connor et al 2021 *Nat Genet*

# The magnitude of GWAS significance depends on the LD structure around variants

Intuition: SNPs in higher LD with other SNPs tend to have larger test statistics on average for a polygenic trait, because of more causal variants being tagged.

$$\text{LDscore (SNP } x \text{ )} = \sum_m r^2 (x, m) \quad \chi^2 = \text{squared Z score}$$

$r$  is the correlation between the genotypes  $X_{nm}$  and  $X_{nx}$



# Mathematical overview of LD score regression

**Chi-square GWAS  
statistic of variant j**

$$E[\chi_j^2] = 1 + \frac{Nh_g^2}{M} l_j$$

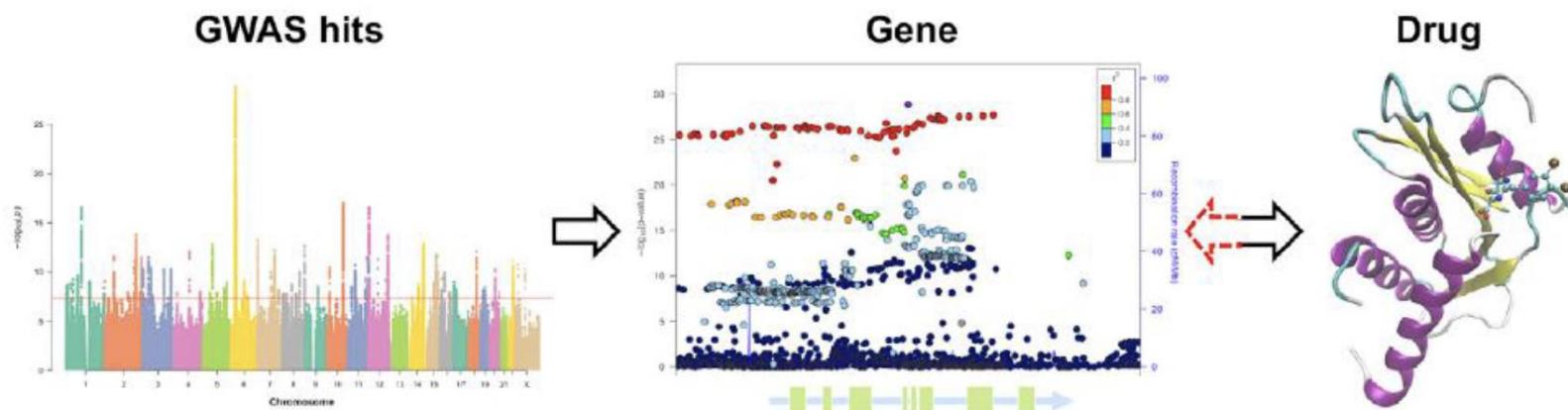
Sample size  
Narrow sense heritability  
LD score of variant j  
Total number of variants

$$l_j = \sum_{k \neq j} r_{jk}^2$$

**LD score: sum of squared Pearson's correlation coefficient between SNP j and other (neighboring) SNPs**

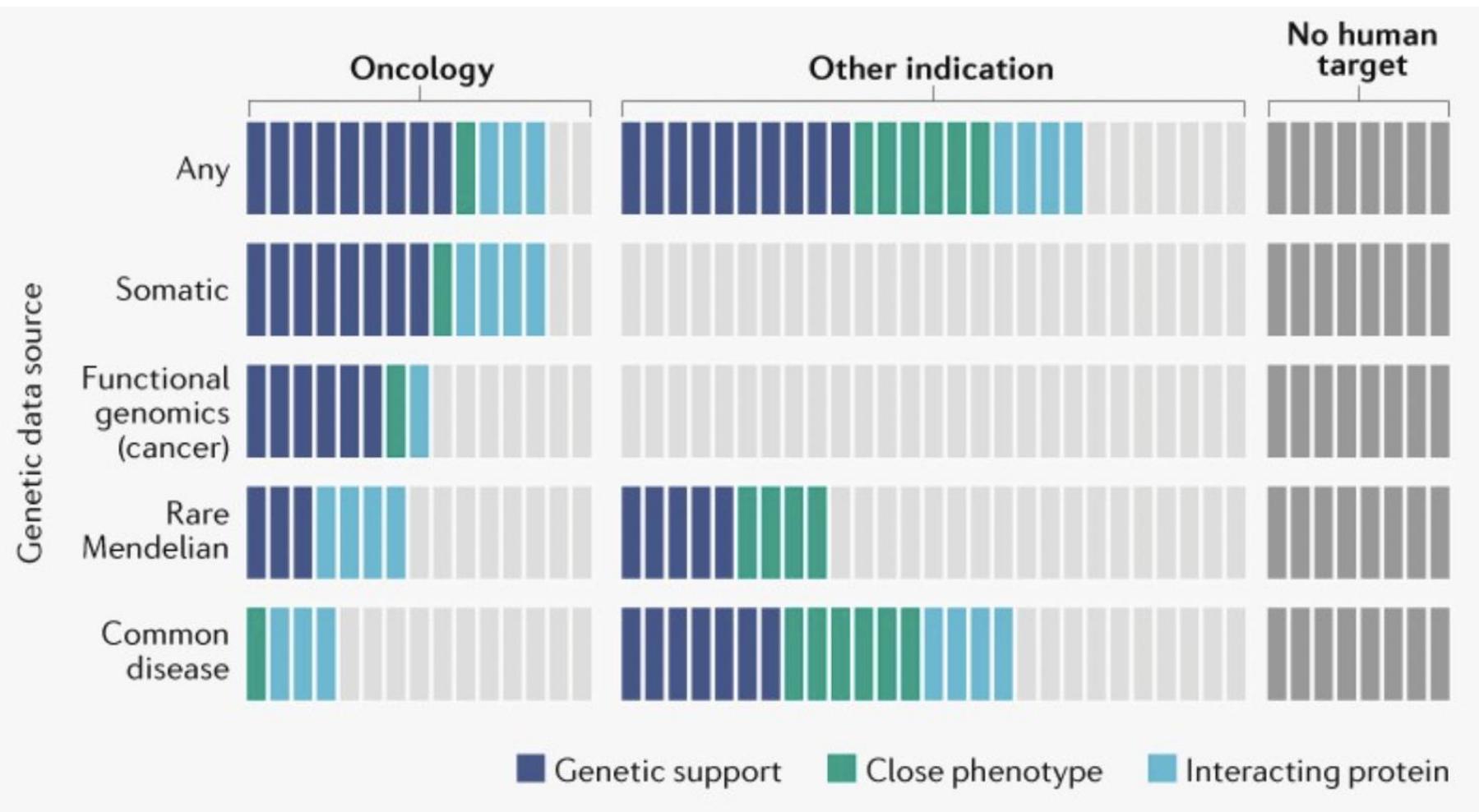
# Clinical and therapeutic implications of GWAS

# Is GWAS actually important? (GWAS hits to drugs)



| Trait                       | Gene with GWAS hits      | Known or candidate drug            |
|-----------------------------|--------------------------|------------------------------------|
| Type 2 Diabetes             | <i>SLC30A8/KCNJ11</i>    | ZnT-8 antagonists/Glyburide        |
| Rheumatoid Arthritis        | <i>PADI4/IL6R</i>        | BB-Cl-amidine/Tocilizumab          |
| Ankylosing Spondylitis(AS)  | <i>TNFR1/PTGER4/TYK2</i> | TNF-inhibitors/NSAIDs/fostamatinib |
| Psoriasis(Ps)               | <i>IL23A</i>             | Risankizumab                       |
| Osteoporosis                | <i>RANKL/ESR1</i>        | Denosumab/Raloxifene and HRT       |
| Schizophrenia               | <i>DRD2</i>              | Anti-psychotics                    |
| LDL cholesterol             | <i>HMGCR</i>             | Pravastatin                        |
| AS, Ps, Psoriatic Arthritis | <i>IL12B</i>             | Ustekinumab                        |

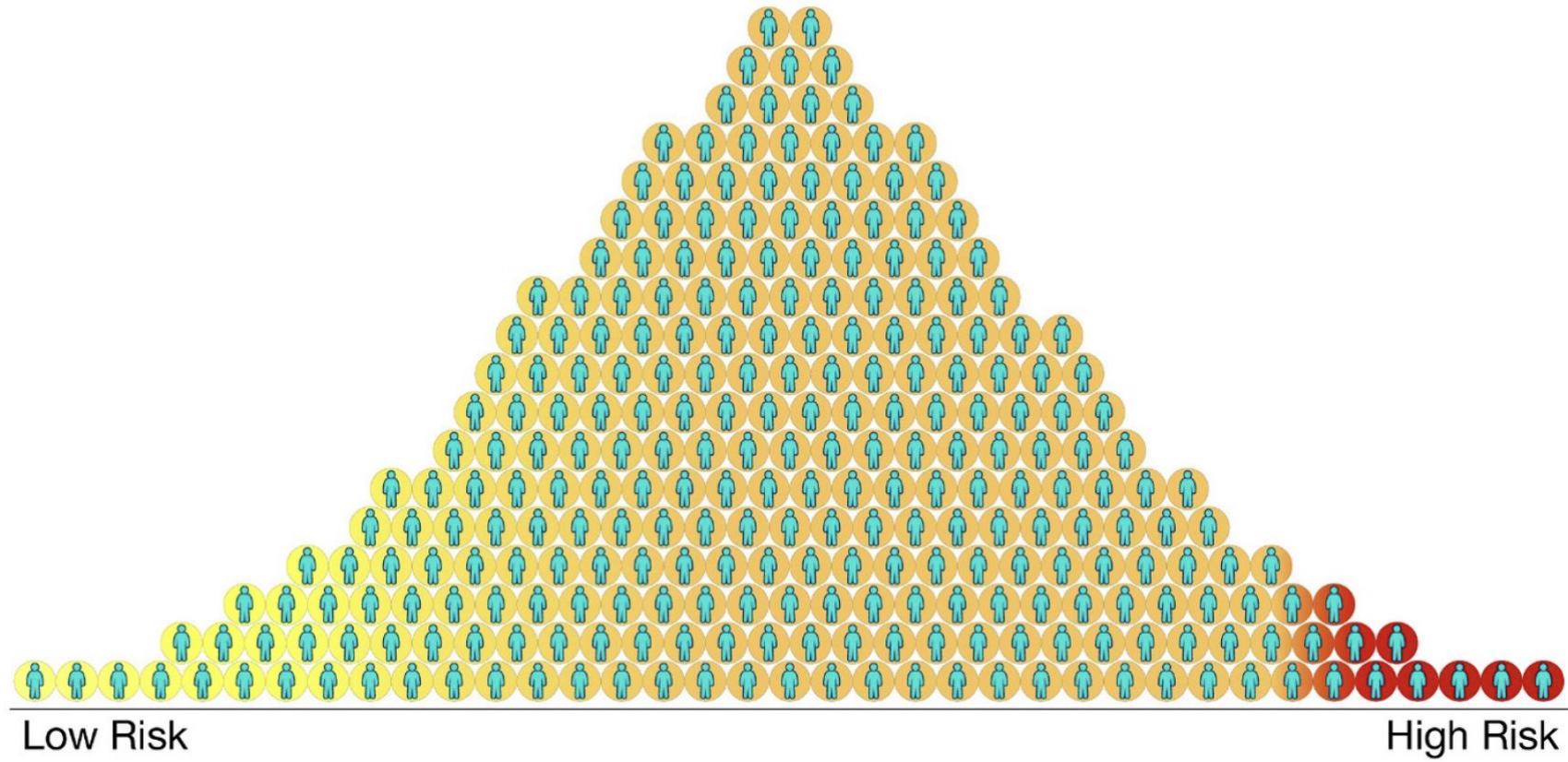
# Is GWAS actually important? (GWAS hits to drugs)



33 of 50 FDA approved drugs in 2021 have genetic support, with highest implicated from common disease GWAS.

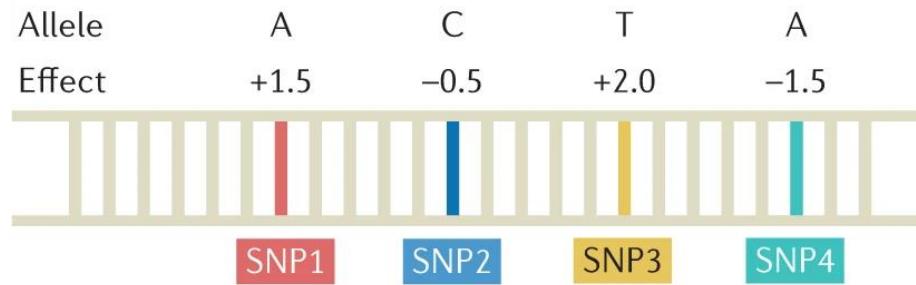
# Is GWAS actually important? (Genetic risk score)

Identify the genetic risk for any individual for diseases and traits based on their genetic make-up (genotypes across all SNPs). Are they at risk for a specific disease?



# How to calculate polygenic risk scores?

## ① GWAS summary statistics

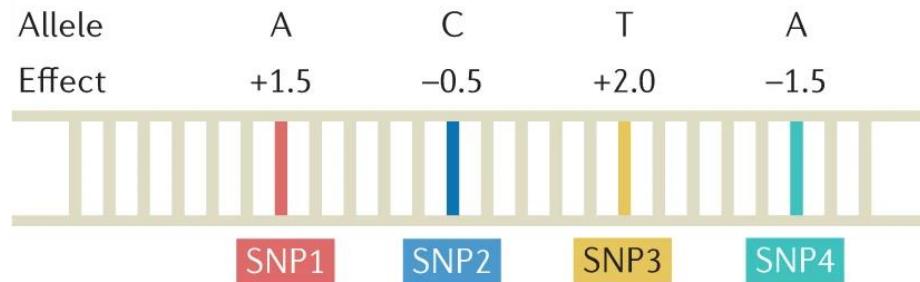


## ② Genotype data

|              | SNP1 | SNP2 | SNP3 | SNP4 |
|--------------|------|------|------|------|
| Individual 1 | AT   | CG   | TT   | CC   |
| Individual 2 | TA   | GG   | GT   | CA   |
| Individual 3 | TT   | CC   | GT   | CA   |
| Individual 4 | TT   | CC   | GG   | AA   |

# How to calculate polygenic risk scores?

## ① GWAS summary statistics



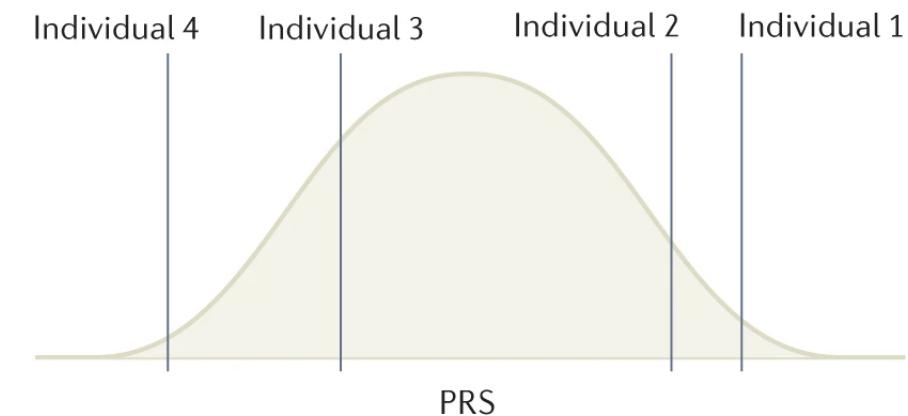
## ③ Polygenic risk score

|              |     |   |     |   |     |   |     |   |      |
|--------------|-----|---|-----|---|-----|---|-----|---|------|
| Individual 1 | 1.5 | - | 0.5 | + | 4.0 | - | 0.0 | = | 5.0  |
| Individual 2 | 1.5 | - | 0.0 | + | 2.0 | - | 1.5 | = | 2.0  |
| Individual 3 | 0.0 | - | 1.0 | + | 2.0 | - | 1.5 | = | -0.5 |
| Individual 4 | 0.0 | - | 1.0 | + | 0.0 | - | 3.0 | = | -4.0 |

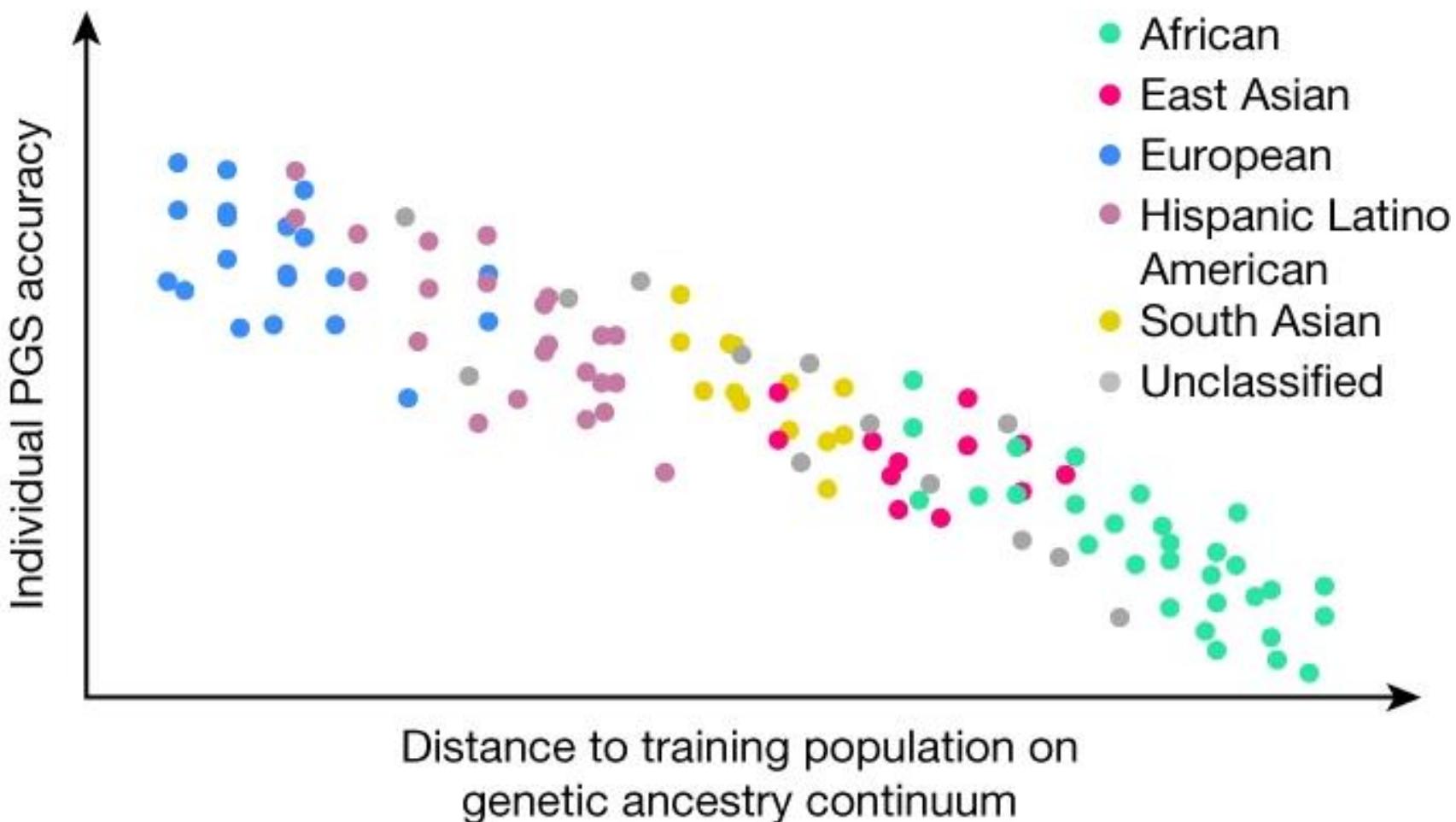
## ② Genotype data

|              | SNP1 | SNP2 | SNP3 | SNP4 |
|--------------|------|------|------|------|
| Individual 1 | AT   | CG   | TT   | CC   |
| Individual 2 | TA   | GG   | GT   | CA   |
| Individual 3 | TT   | CC   | GT   | CA   |
| Individual 4 | TT   | CC   | GG   | AA   |

## ④ PRS distribution

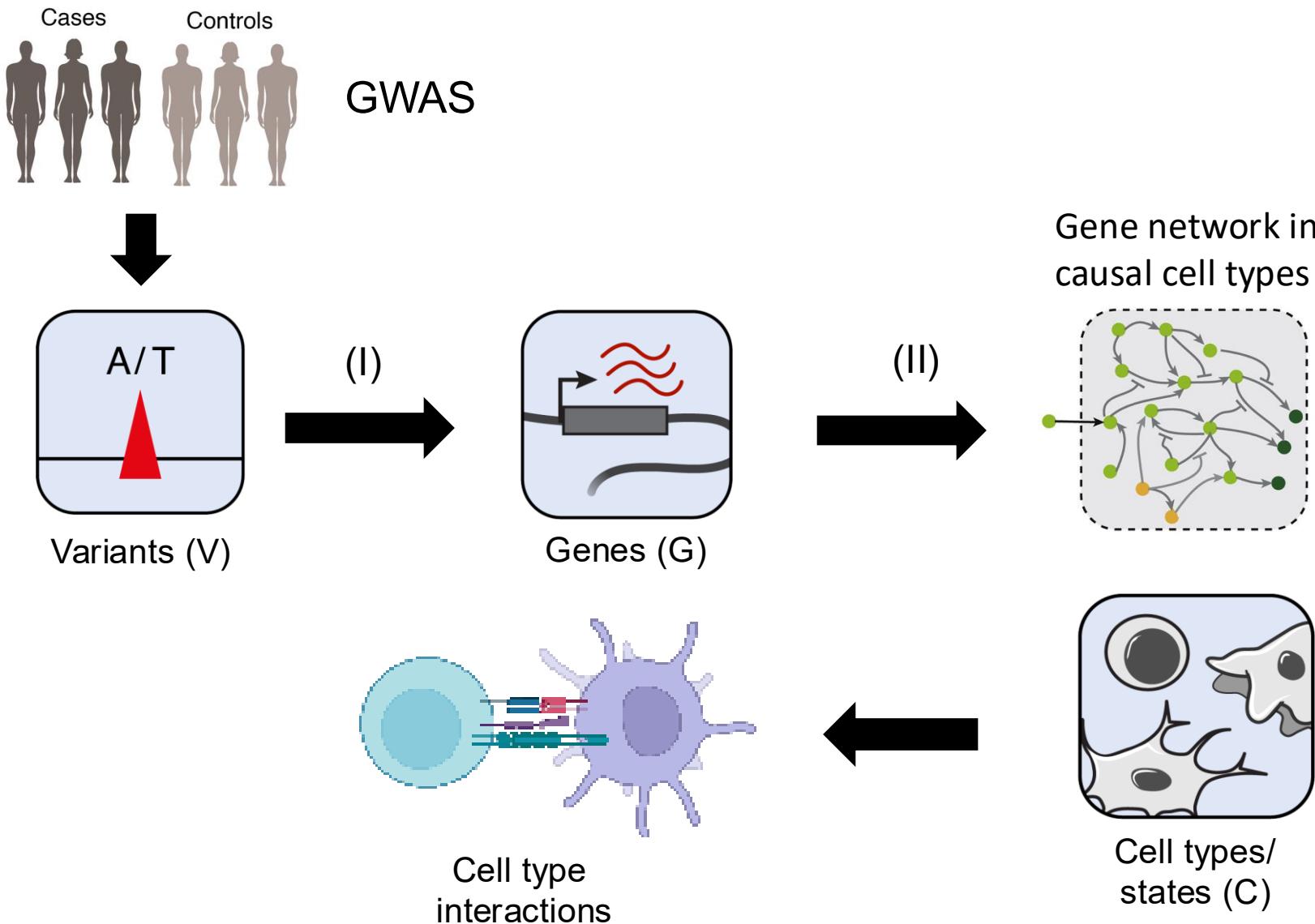


# A big challenge in polygenic risk scores (representation)

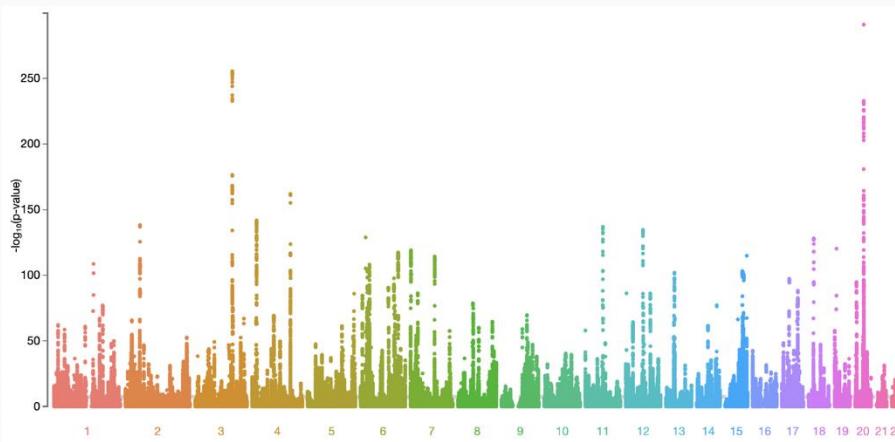


# GWAS-to-function (Overview)

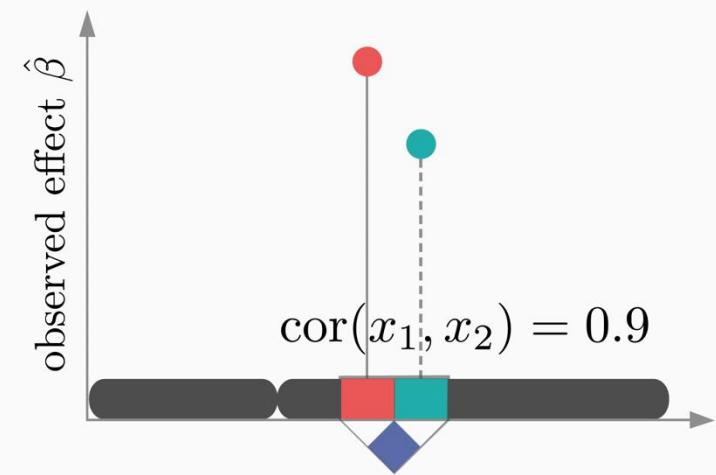
# Understanding the functional basis of GWAS variants



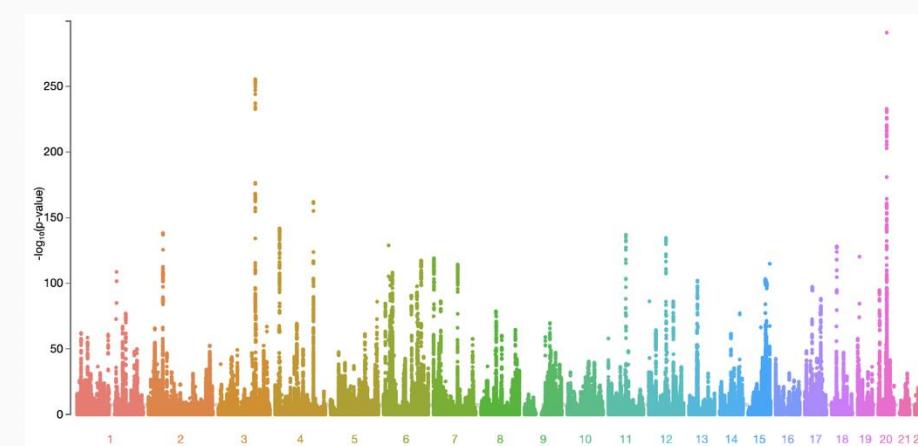
# Linkage disequilibrium can hinder identification of causal variant for both GWAS and eQTL studies



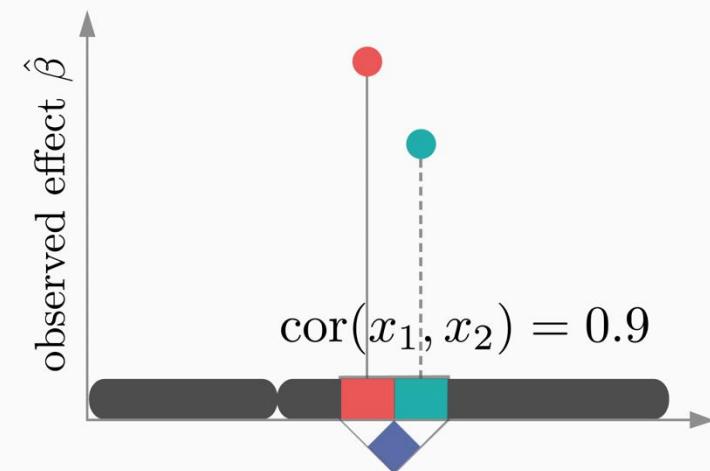
**Figure:** UK Biobank height GWAS,  
<http://nealelab.is/uk-biobank>



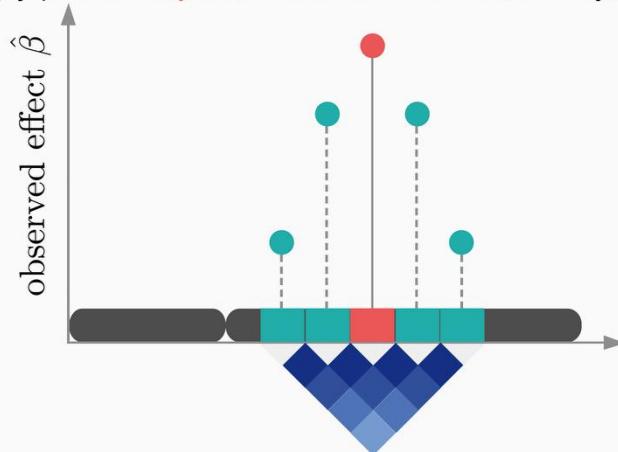
# Linkage disequilibrium can hinder identification of causal variant for both GWAS and eQTL studies



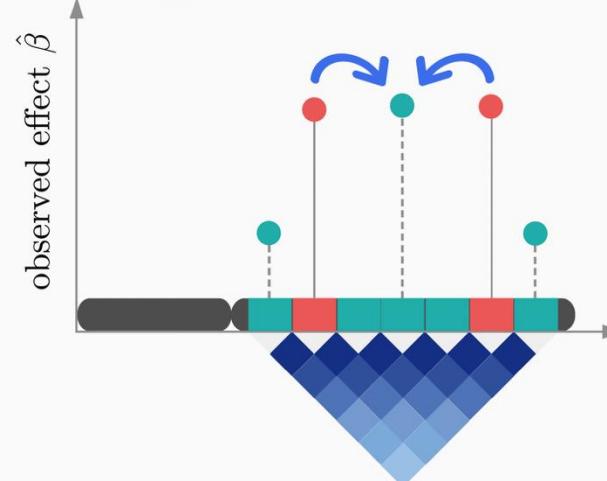
**Figure:** UK Biobank height GWAS,  
<http://nealelab.is/uk-biobank>



Simply pick the **top** association in an LD block? Maybe?

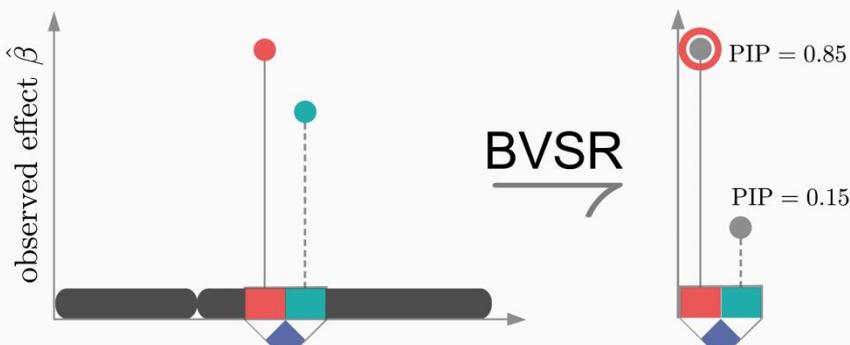


Simply pick the **top** association in an LD block? ... or not!

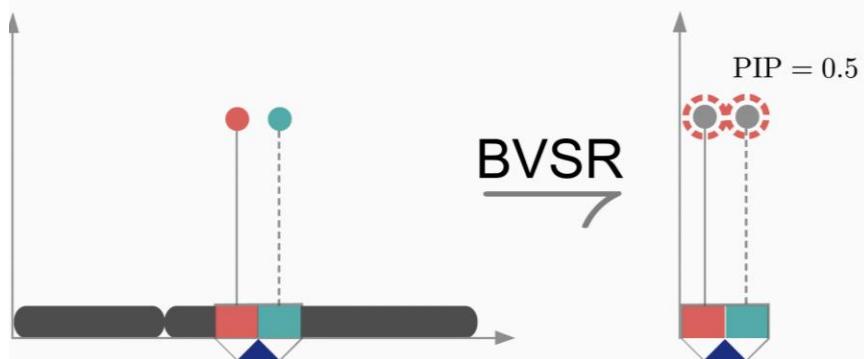
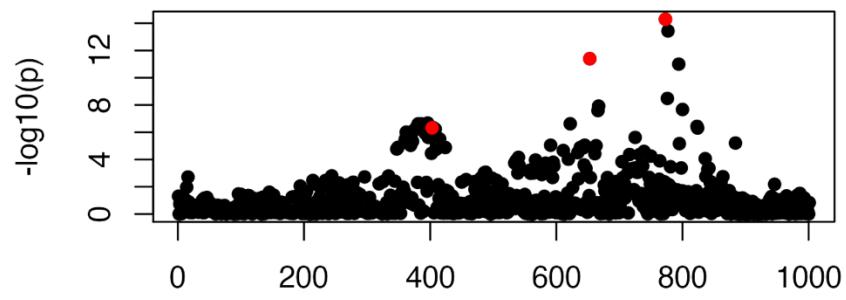
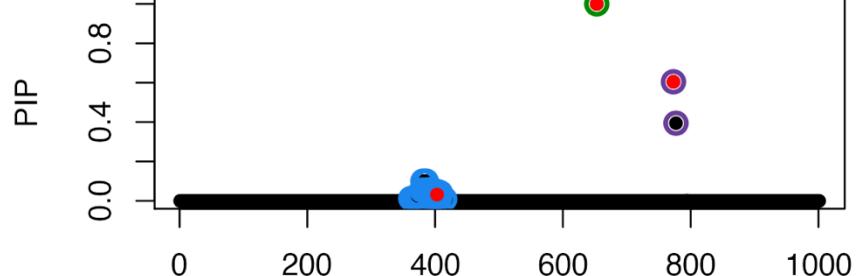


# SuSIE: Method to perform Bayesian variable selection to identify independent causal GWAS variants or sets of variants when it is not sure

Computes **Posterior Inclusion Probability** (PIP)

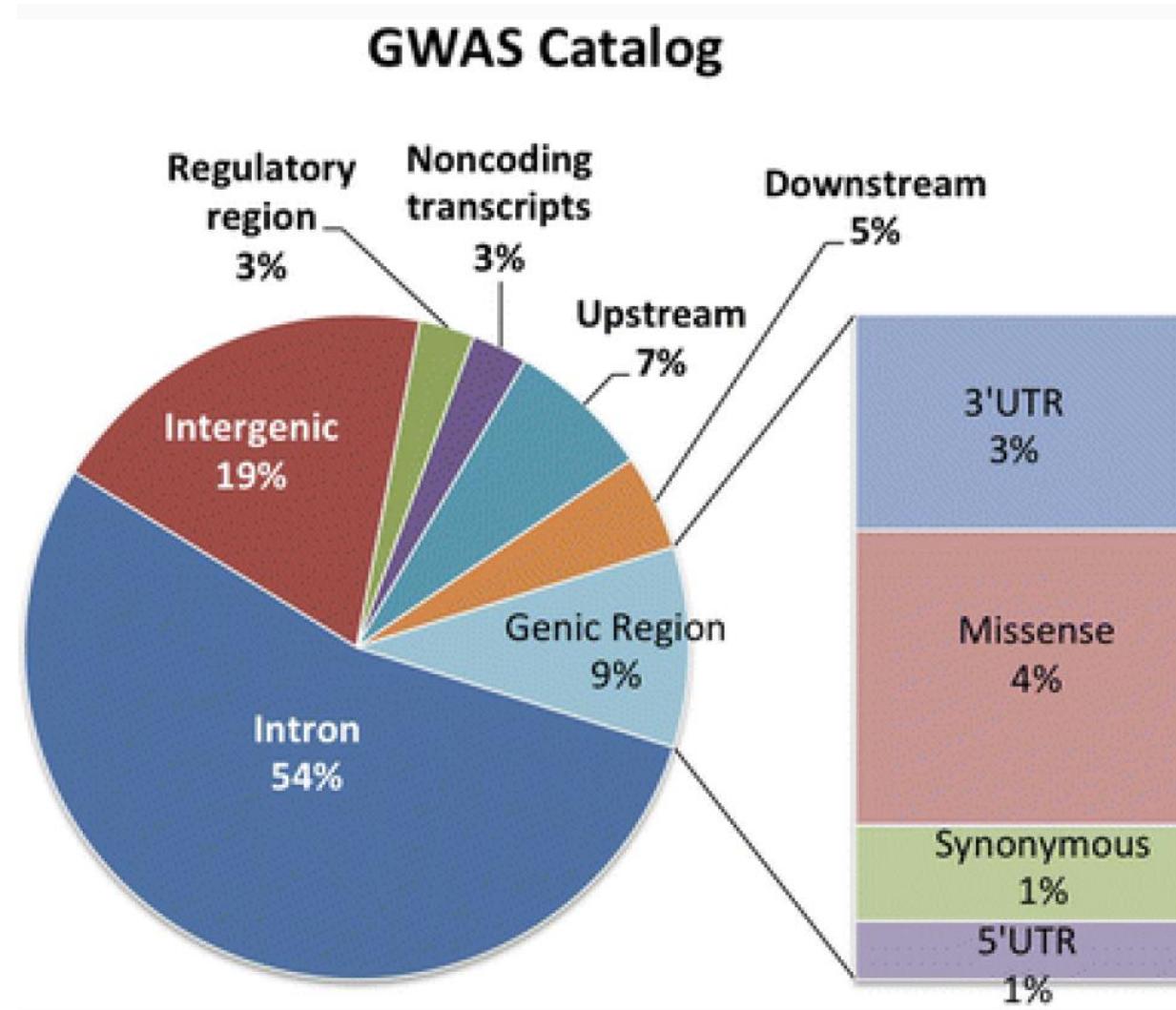


Computes **Posterior Inclusion Probability** (PIP)

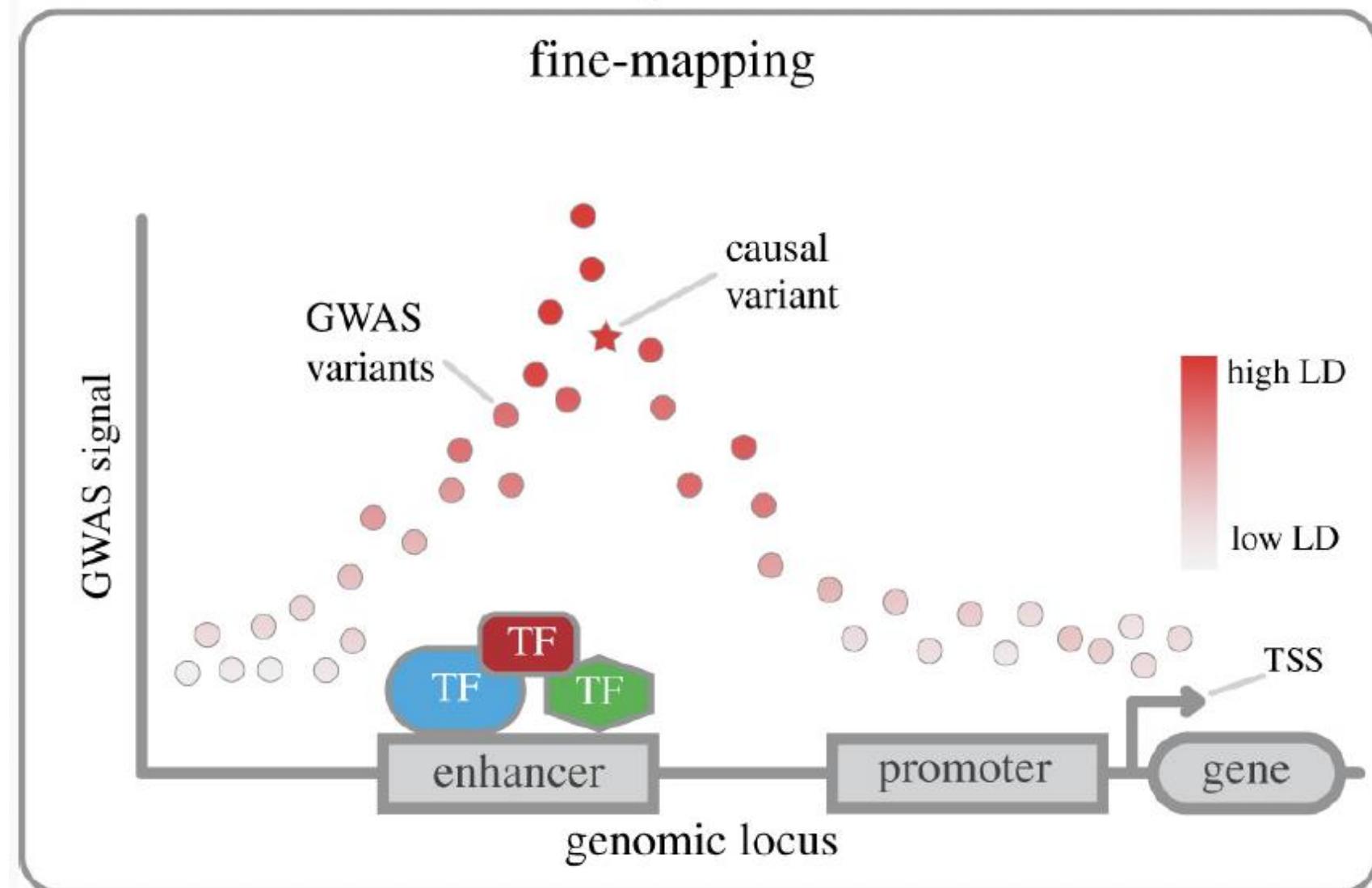


3 colors correspond to 95% **credible sets**: A credible set says a causal variant is within this set with 95% probability

# Making sense of the function of GWAS variants

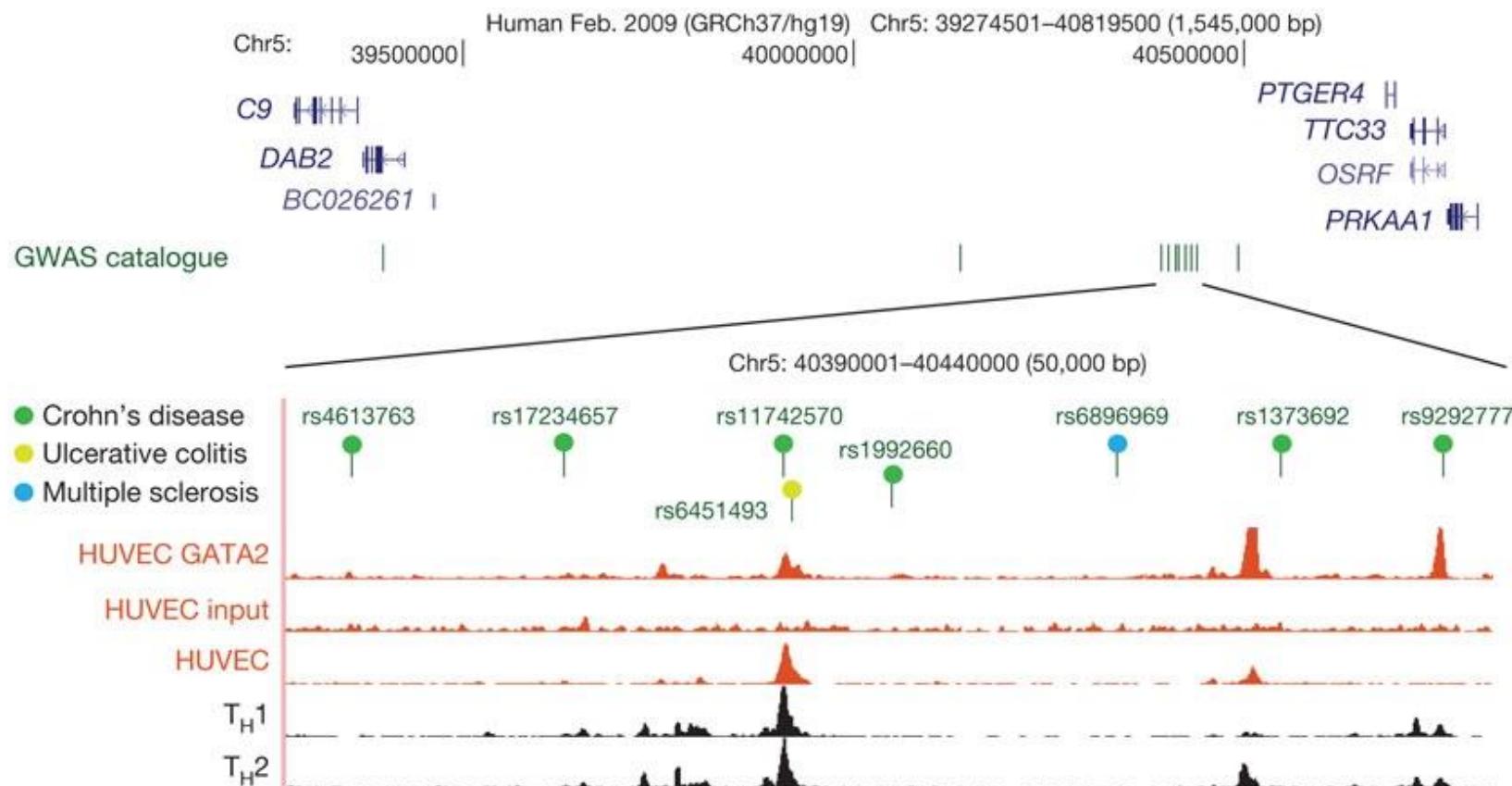


# GWAS signals can be confounded by LD. Can we use underlying function to find the causal variant?



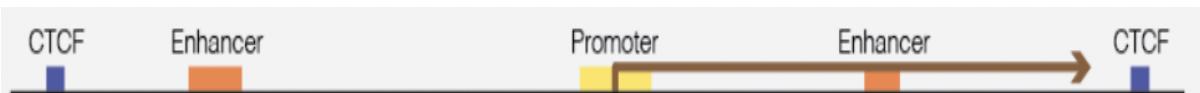
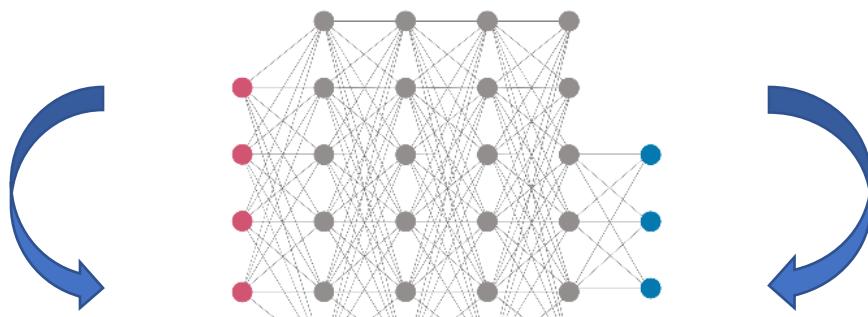
# Overlapping genome-wide functional annotation tracks against GWAS disease-associated variants

c

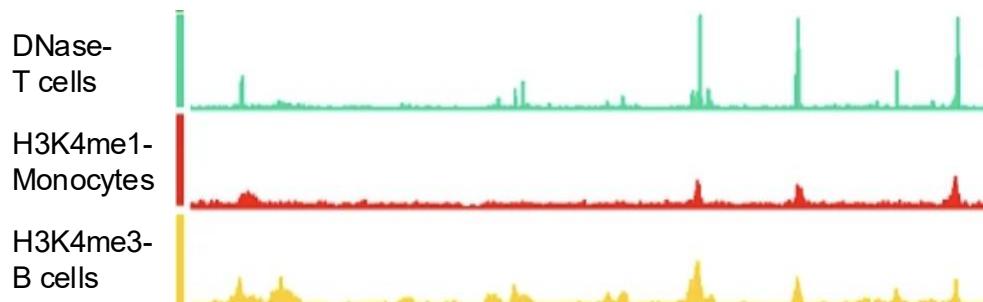


# Sequence-based deep learning models trained on epigenomic features

DNA sequences  
(1-hot encoding DNA)

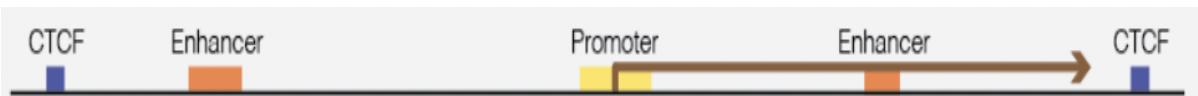
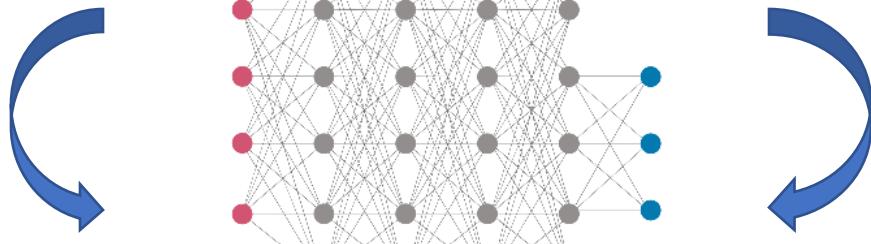
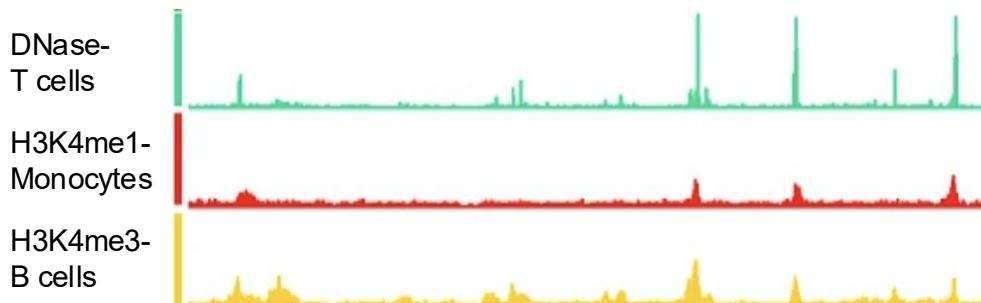
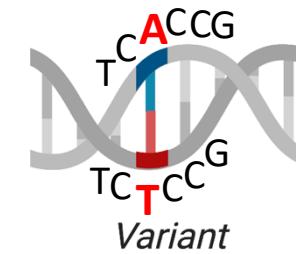


For each sequence, generates a prediction of affinity for each feature  $f$  at the site of the sequence.



# Sequence-based deep learning models trained on epigenomic features

DNA sequences  
(1-hot encoding DNA)

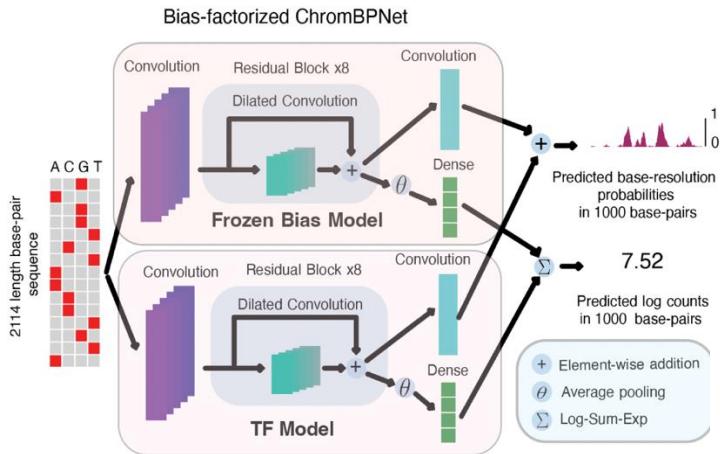


...TCACCG...      ...TCTCCG...

Two arrows point downwards from the DNA sequence variants to the labels  $p^f$  and  $q^f$ . Below these labels is the equation  $\Delta^f = |p^f - q^f|$ .

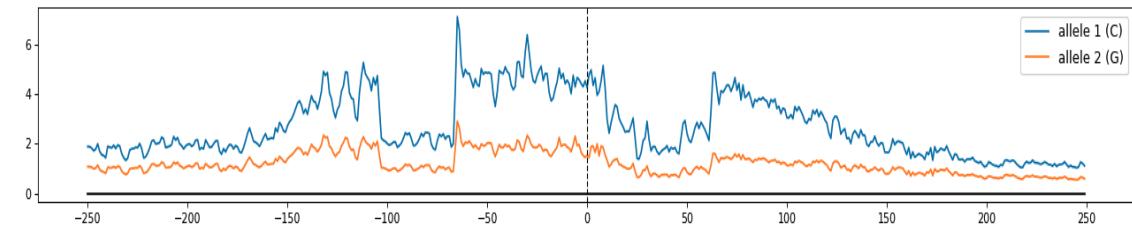
$$\Delta^f = |p^f - q^f|$$

# ChromBPNet deep learning model captures sequence mediated function at GWAS variants

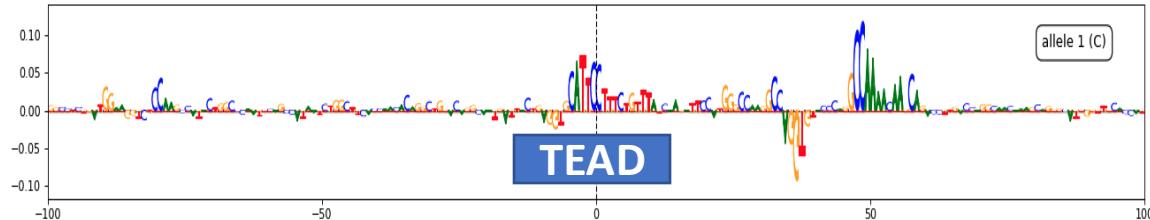
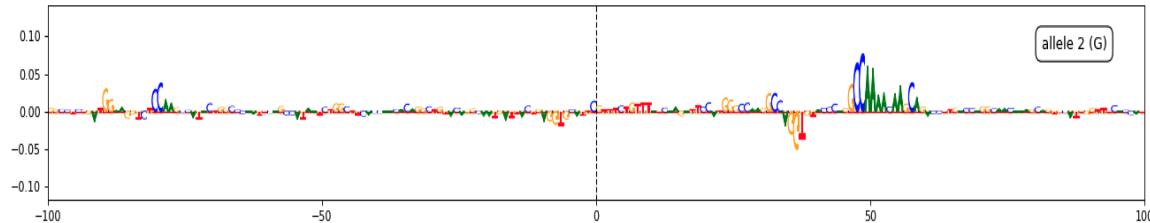


Coronary Artery Disease GWAS variant

**rs4266144 (C/G): Human Quiescent SMCs**



<https://github.com/kundajelab/chrombpnet>



Also see

**Enformer**: Avsec et al 2021 *Nat Methods*

**BPNet**: Avsec et al 2021 *Nat Genet*

Pampari et al 2024 *bioRxiv*  
Courtesy: Anshul Kundaje, Stanford

# Defining functional annotations at the level of variants

---

- Assigning a score to each SNP based on

**Binary:** Presence or absence of a specific functional element at or around the SNP (example: SNP gets a score of 1 if there is a H3K4me1 peak at or around it)



**Continuous** value (often probabilistic scale between 0 and 1) measuring the strength of a specific function at or around the SNP (example: SNP is assigned the score equalling to the H3K4me1 peak intensity)



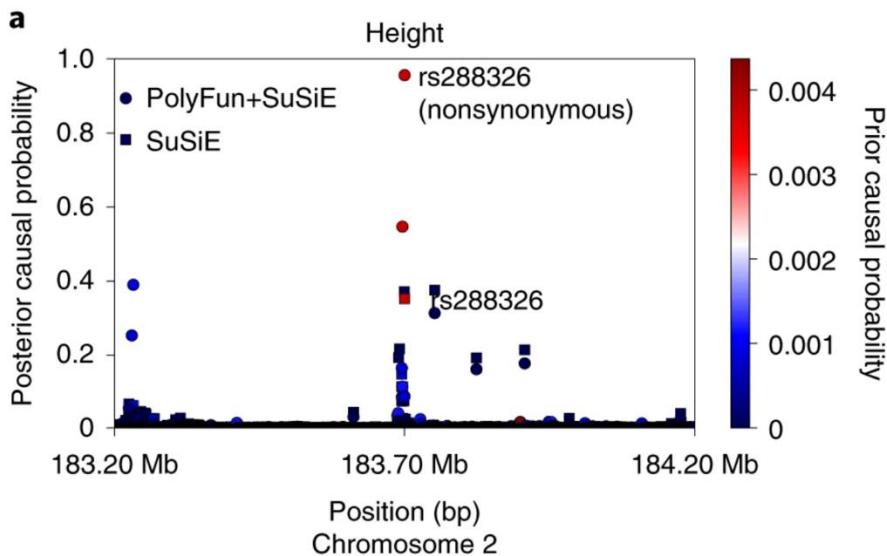
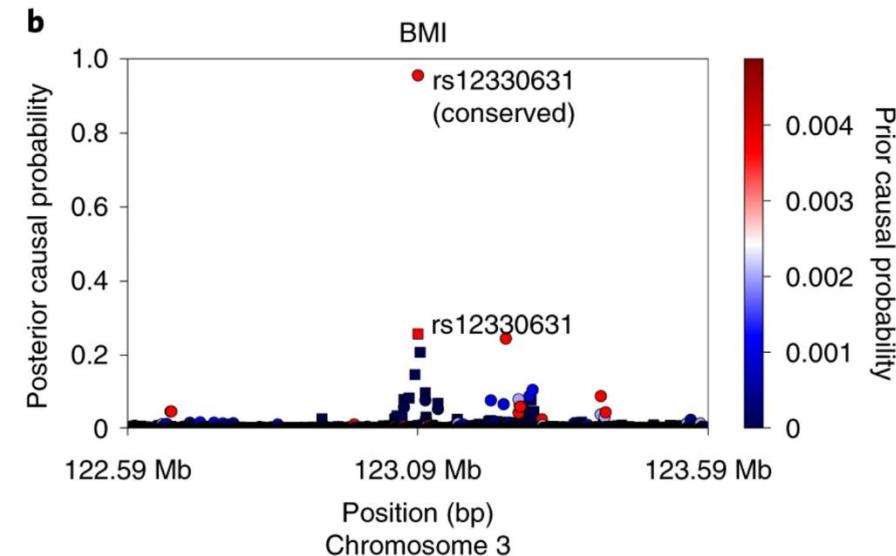
# Using 97 functional annotations as prior improves the detection of causal variants

Article | Published: 16 November 2020

## Functionally informed fine-mapping and polygenic localization of complex trait heritability

[Omer Weissbrod](#) , [Farhad Hormozdiari](#), [Christian Benner](#), [Ran Cui](#), [Jacob Ulirsch](#), [Steven Gazal](#), [Armin P. Schoech](#), [Bryce van de Geijn](#), [Yakir Reshef](#), [Carla Márquez-Luna](#), [Luke O'Connor](#), [Matti Pirinen](#), [Hilary K. Finucane](#) & [Alkes L. Price](#) 

[Nature Genetics](#) **52**, 1355–1363 (2020) | [Cite this article](#)



# Mathematical overview of LD score regression

**Chi-square GWAS  
statistic of variant j**

$$E[\chi_j^2] = 1 + \frac{Nh_g^2}{M} l_j$$

Sample size  
Narrow sense heritability  
LD score of variant j  
Total number of variants

$$l_j = \sum_{k \neq j} r_{jk}^2$$

**LD score: sum of squared Pearson's correlation coefficient between SNP j and other (neighboring) SNPs**

# Stratified LD score regression : Heritability enrichment due to functional categories of SNPs

---

Intuition: A category  $f$  is enriched for heritability if SNPs with high LD to that category have higher  $\chi^2$  statistics.

$$\chi^2 = i + \sum_f N \tau_f \text{LDscore}_f \quad \text{LDscore}_f(\text{SNP } x) = \sum_{m \in f} r^2(x, m)$$

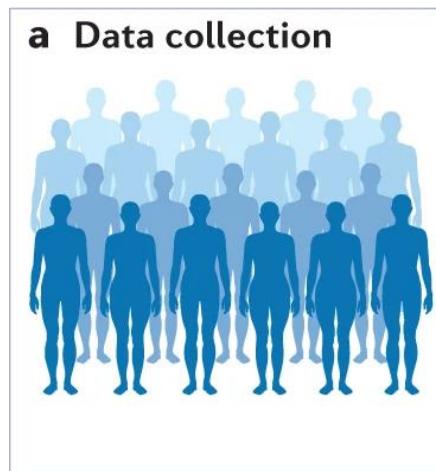
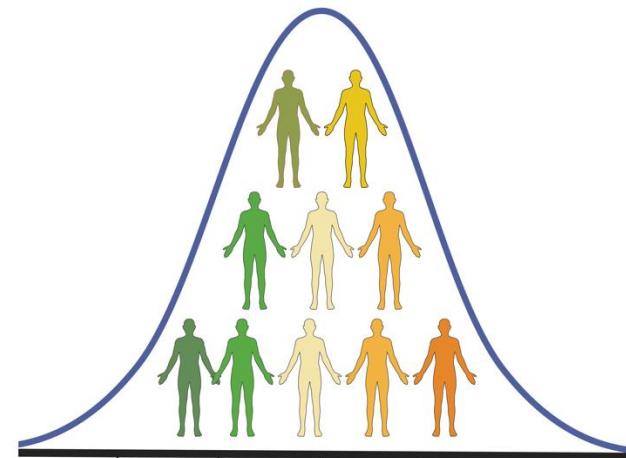
Define heritability due to a functional category  $f$

$$h_g^2(f) := \sum_{\{k \in f\}} \sum_{\{g \text{ contains } k\}} \tau_g$$

Heritability enrichment ( $f$ ) :=  $(h_g^2(f) / h_g^2) / (M(f) / M)$

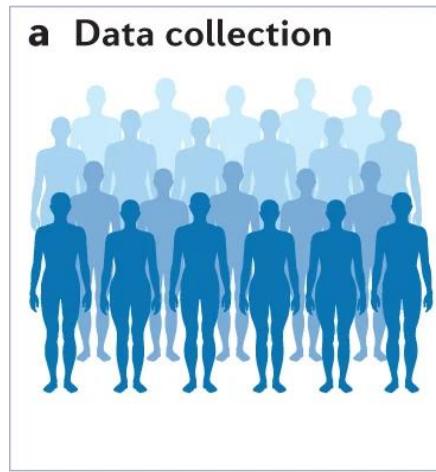
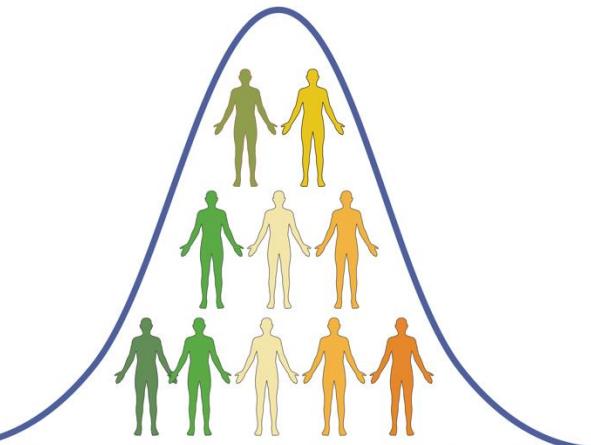
Naturally occurring  
perturbations for human  
molecular phenotypes  
(QTLs)

# Tracking genetic variation of gene expression phenotype (eQTL : expression quantitative trait loci)

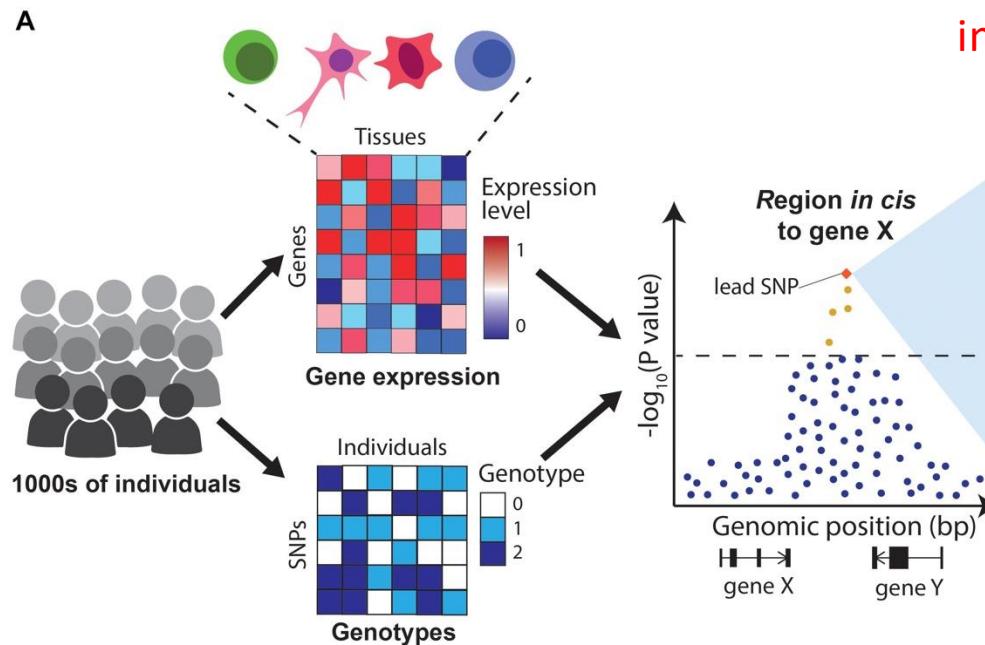
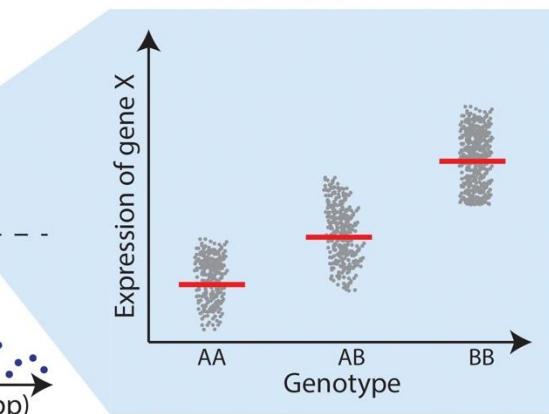


Gene expression for gene G  
in tissue/cell-type T

# Tracking genetic variation of gene expression phenotype (eQTL : expression quantitative trait loci)

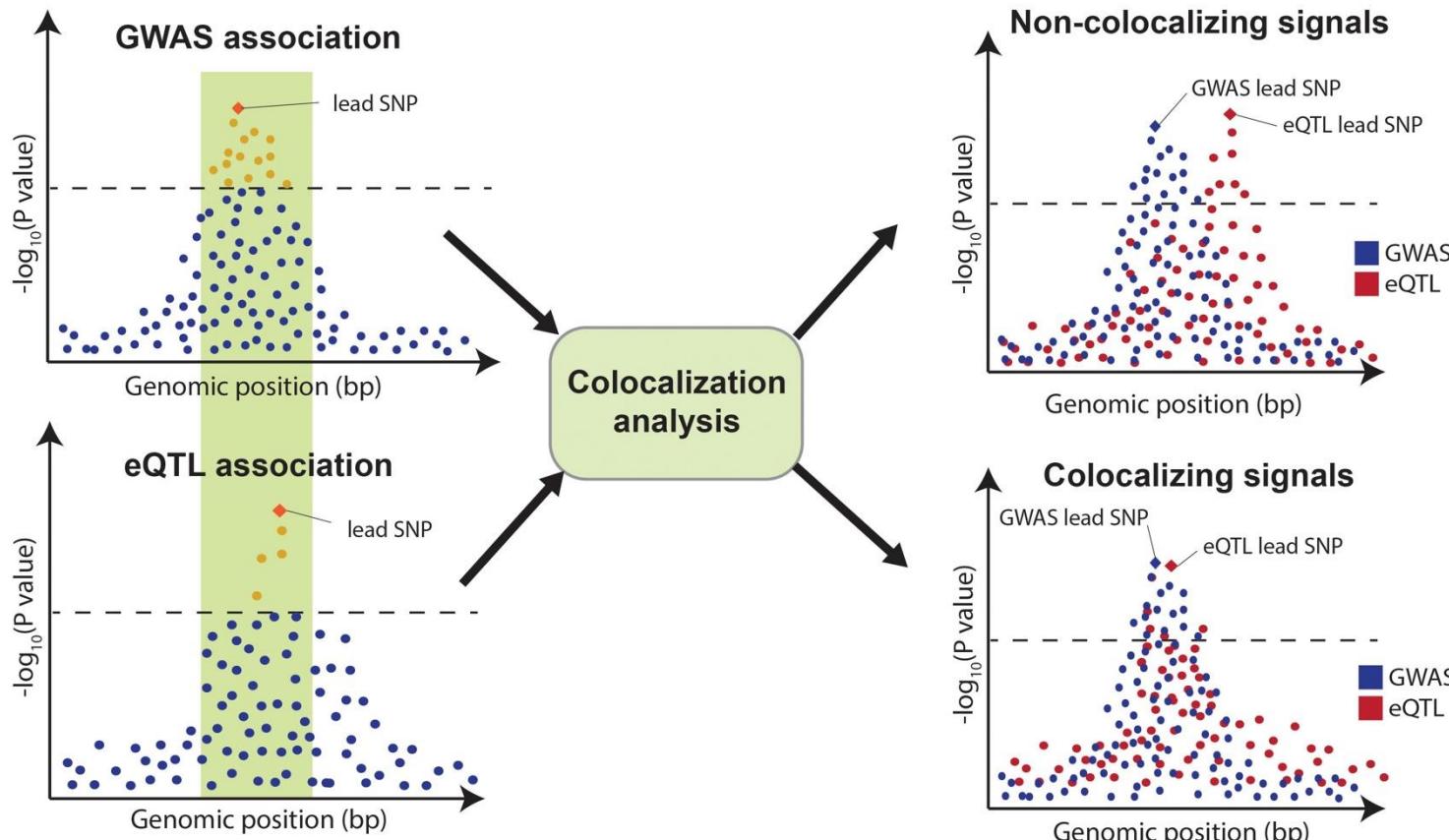


Gene expression for gene G  
in tissue/cell-type T



# Statistical colocalization: Identifying shared causal variants between a disease trait and an eQTL

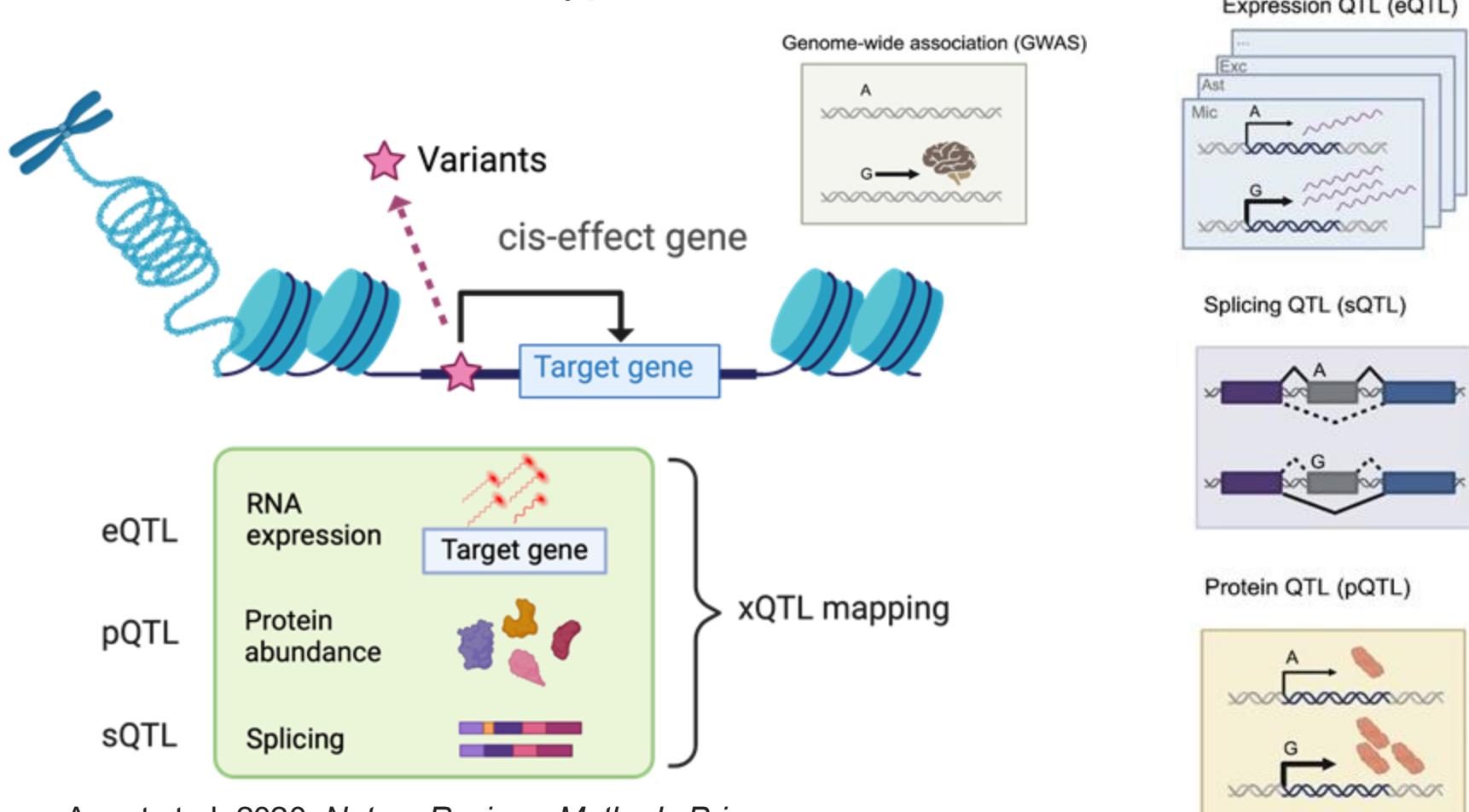
Typically performed for one gene and for one tissue separately against one focal disease GWAS.



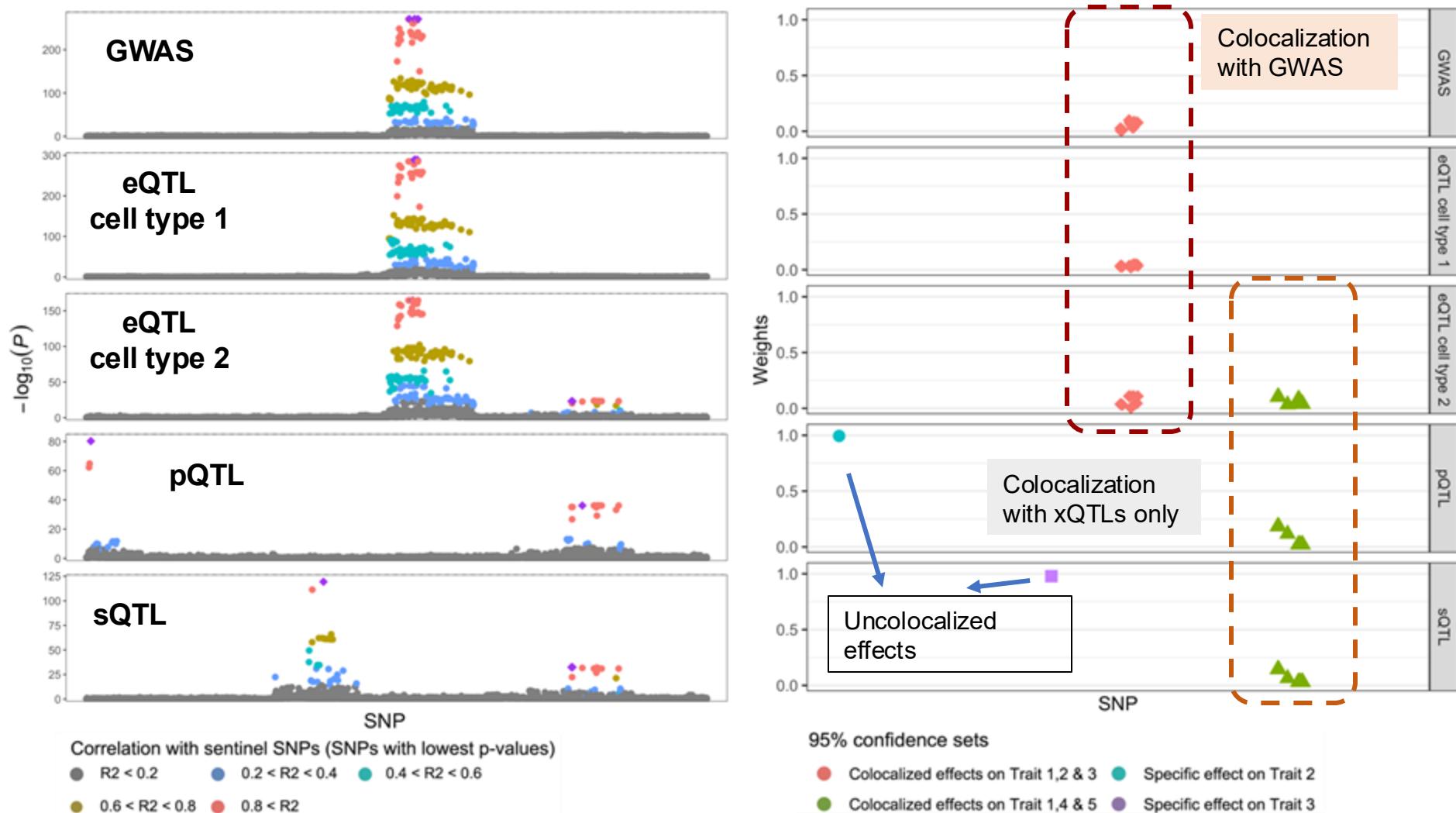
**Coloc**: standard method for colocalization.  
Does not scale well to more than 2 phenotypes.

# ColocBoost model to perform multimodal molecular phenotype QTL colocalization

Recent advances in technology has made it easier to use other molecular phenotypes outside of gene expression, and also assess eQTL at cell type resolution for different cell types in a tissue



# Understanding colocalization: enhancing GWAS insights through shared genetic signals

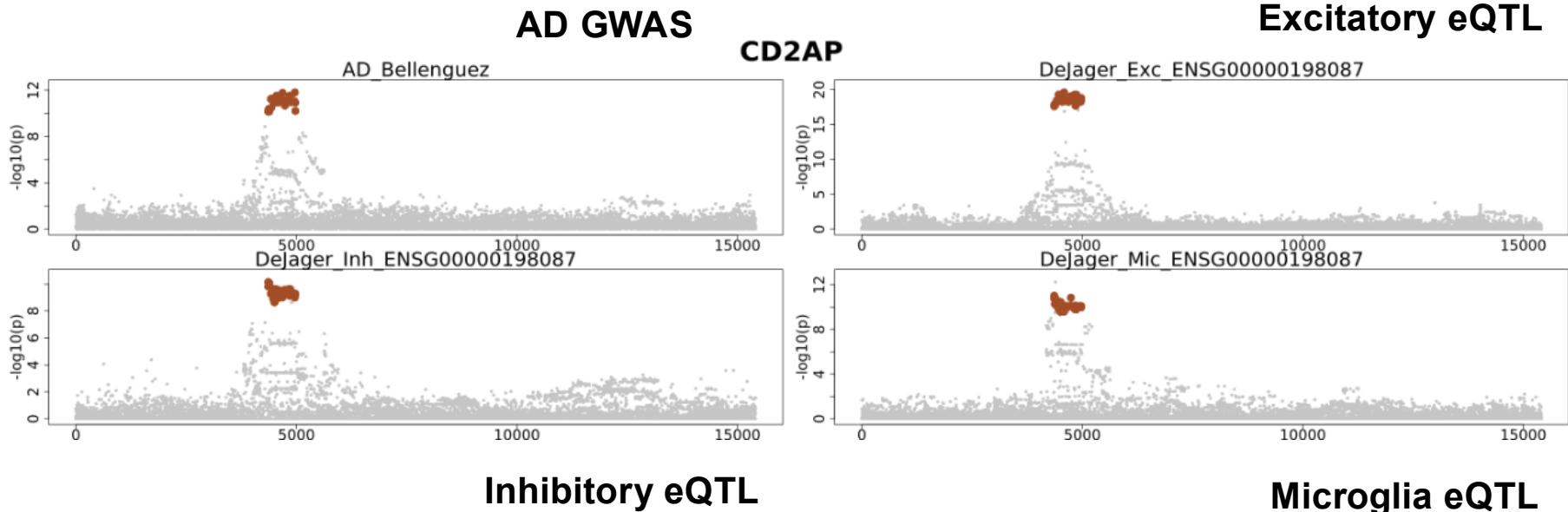


Memorial Sloan Kettering  
Cancer Center

ColocBoost: Cao et al 2025 medRxiv, in rev *Nat Genet*  
HyPrColoc: Foley et al 2021 *Nat Commun*

# Shared genetic regulation across cell types observed for many disease risk variants are not indicative of cell-cell crosstalk

37.3% of AD causal risk variants show genetic regulation shared across multiple cell types in brain.



**Alzheimer's disease risk gene CD2AP is a dose-sensitive determinant of synaptic structure and plasticity**

Matea Pavešković <sup>1,2,3</sup>, Ruth B De-Paula <sup>4,5,6</sup>, Shamsideen A Ojelade <sup>7,8</sup>, Evelyne K Tantry <sup>9,10</sup>, Mikhail Y Kochukov <sup>11,12</sup>, Suyang Bao <sup>13,14</sup>, Surabi Veeraraghavan <sup>15,16</sup>, Alexandra R Garza <sup>17,18</sup>, Snigdha Srivastava <sup>19,20,21</sup>, Si-Yuan Song <sup>22,23</sup>, Masashi Fujita <sup>24</sup>, Duc M Duong <sup>25</sup>, David A Bennett <sup>26</sup>, Philip L De Jager <sup>27</sup>, Nicholas T Seyfried <sup>28</sup>, Mary E Dickinson <sup>29,30</sup>, Jason D Heaney <sup>31</sup>, Benjamin R Arenkiel <sup>32,33,34,##</sup>, Joshua M Shulman <sup>35,36,37,38,39,##,##</sup>

**Microglial CD2AP deficiency exerts protection in an Alzheimer's disease model of amyloidosis**

Lingliang Zhang <sup># 1</sup>, Lingling Huang <sup># 1</sup>, Yuhang Zhou <sup>1</sup>, Jian Meng <sup>1</sup>, Liang Zhang <sup>1</sup>, Yunqiang Zhou <sup>1</sup>, Naizhen Zheng <sup>1</sup>, Tiantian Guo <sup>1</sup>, Shanshan Zhao <sup>1</sup>, Zijie Wang <sup>1</sup>, Yuanhui Huo <sup>1</sup>, Yingjun Zhao <sup>1</sup>, Xiao-Fen Chen <sup>1</sup>, Honghua Zheng <sup>1</sup>, David M Holtzman <sup>2</sup>, Yun-Wu Zhang <sup>3</sup>

# Systemic differences between eQTLs and GWAS

---

› [Nat Genet](#). 2023 Nov;55(11):1866-1875. doi: 10.1038/s41588-023-01529-1. Epub 2023 Oct 19.

## Systematic differences in discovery of genetic effects on gene expression and complex traits

Hakhamanesh Mostafavi <sup>1</sup>, Jeffrey P Spence <sup>2</sup>, Sahin Naqvi <sup>2</sup> <sup>3</sup>, Jonathan K Pritchard <sup>4</sup> <sup>5</sup>

Affiliations + expand

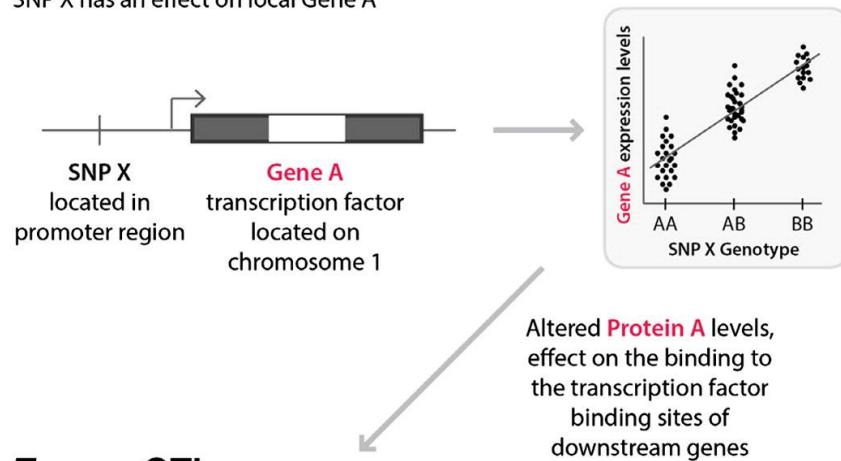
PMID: 37857933 DOI: [10.1038/s41588-023-01529-1](https://doi.org/10.1038/s41588-023-01529-1)

*“GWAS and cis-eQTL hits are systematically different: eQTLs cluster strongly near transcription start sites, whereas GWAS hits do not. Genes near GWAS hits are enriched in key functional annotations, are under strong selective constraint and have complex regulatory landscapes across different tissue/cell types, whereas genes near eQTLs are depleted of most functional annotations, show relaxed constraint, and have simpler regulatory landscapes.”*

# Cis and trans-eQTLs can identify proximal and distal genes of action

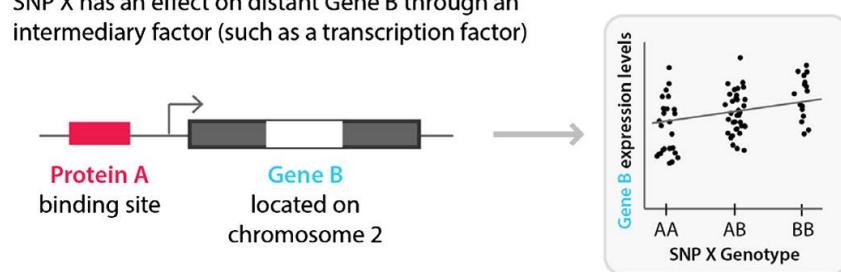
## Cis-eQTL

SNP X has an effect on local Gene A

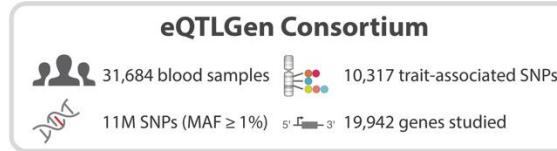


## Trans-eQTL

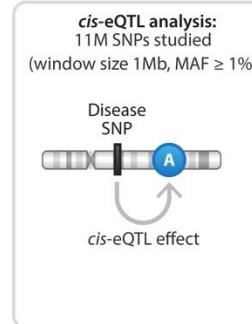
SNP X has an effect on distant Gene B through an intermediary factor (such as a transcription factor)



a

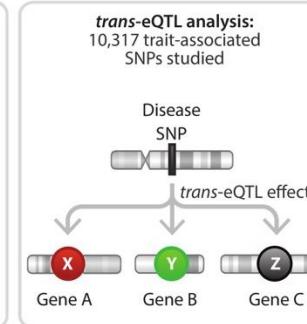


b



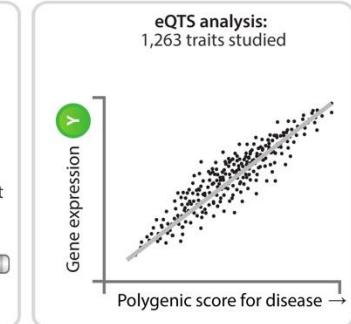
**cis-eQTL analysis results:**  
16,987 (88.2%) cis-eQTL genes

c



**trans-eQTL analysis results:**  
6,298 (32%) trans-eQTL genes  
3,853 (37%) trait-associated SNPs

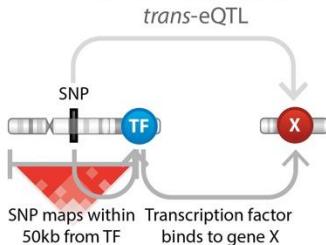
d



**eQTS analysis results:**  
2,568 (13%) eQTS genes  
689 (55%) traits affect gene expression

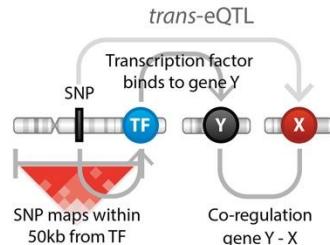
# Cis and trans-eQTLs can identify proximal and distal genes of action

## Direct TF regulation

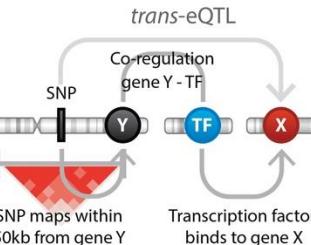


Odds Ratio: 1.40  
P-value:  $5.6 \times 10^{-38}$

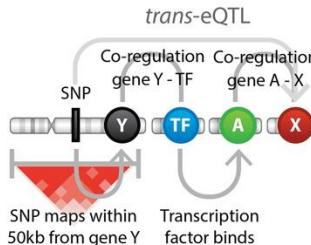
## Indirect TF regulation



Odds Ratio: 3.57  
P-value:  $< 1.0 \times 10^{-308}$

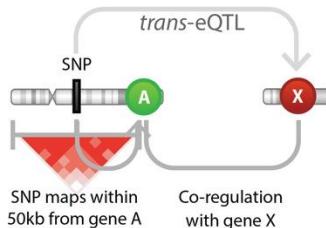


Odds Ratio: 1.38  
P-value:  $5.8 \times 10^{-72}$



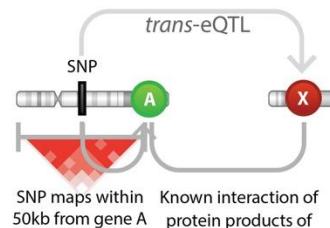
Odds Ratio: 4.37  
P-value:  $< 1.0 \times 10^{-308}$

## Co-regulation between *cis* and trans-eQTL gene



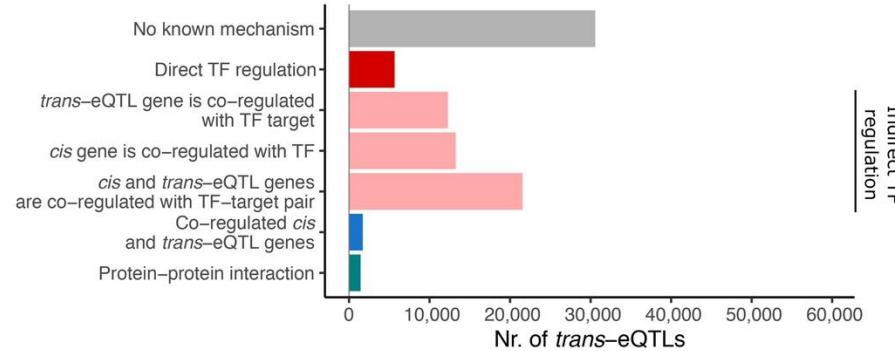
Odds Ratio: 22.3  
P-value:  $< 1.0 \times 10^{-308}$

## Protein-protein interaction

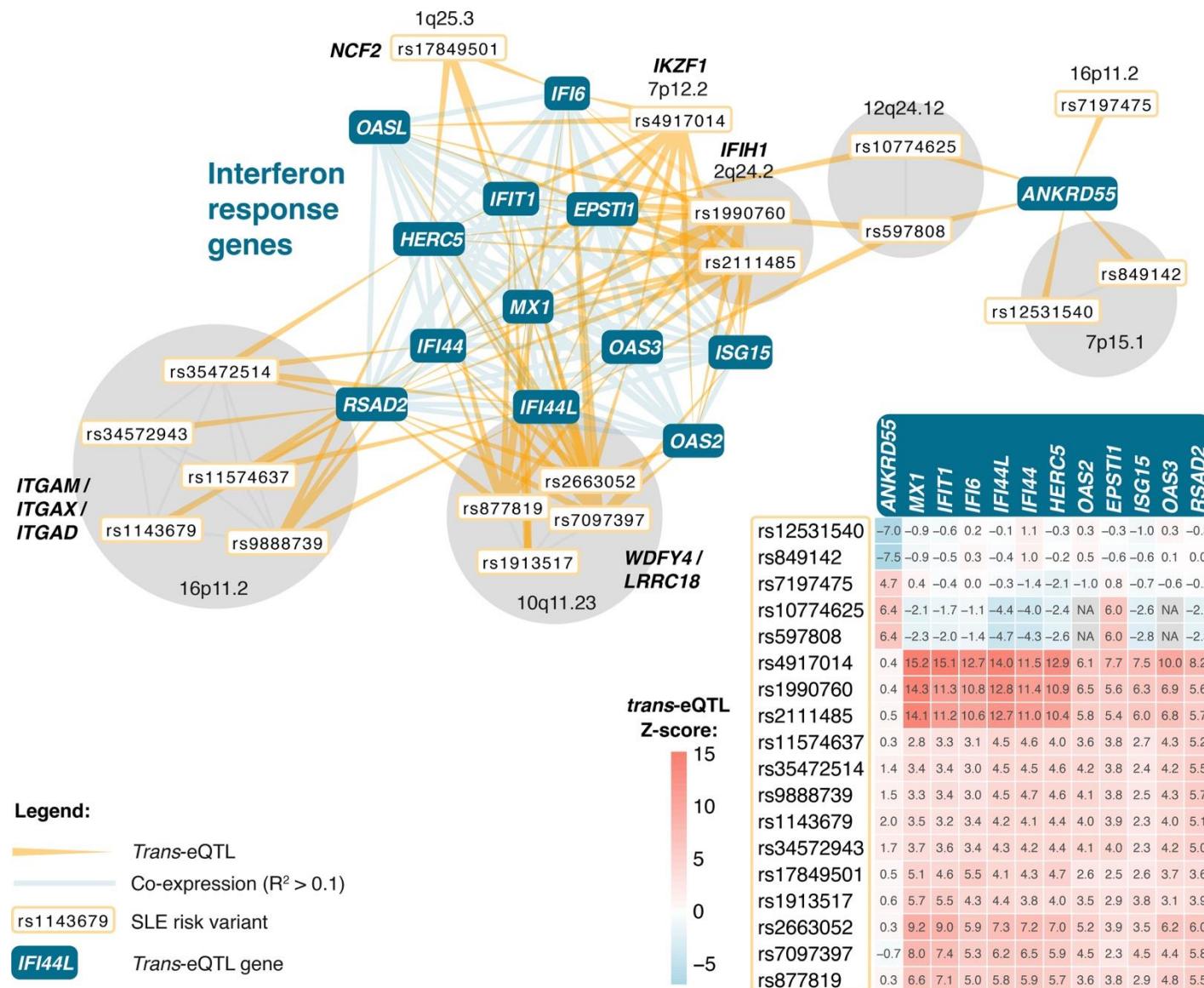


Odds Ratio: 1.45  
P-value:  $3.5 \times 10^{-17}$

C



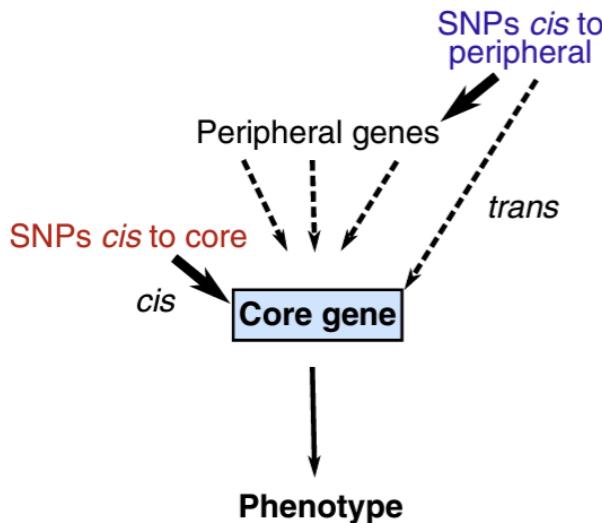
# Cis and trans-eQTLs can identify proximal and distal genes of action



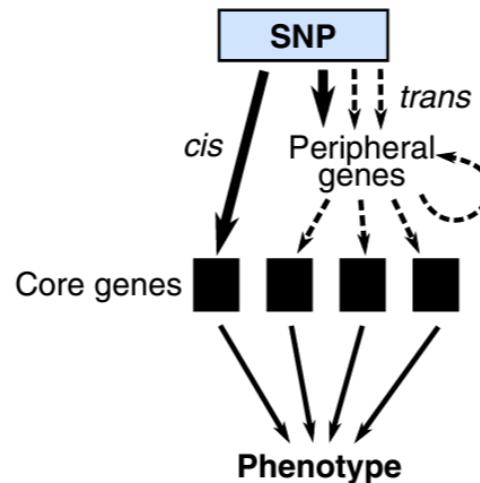
# Omnigenic model hypothesis in genetics



**A** Core genes mediate the *cis* and *trans* effects of trait-associated variation



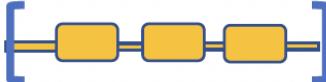
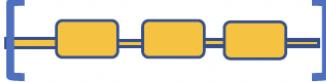
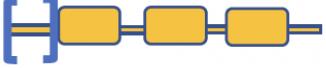
**B** Regulatory variation impacts traits by affecting peripheral and core genes



# Other approaches of mapping GWAS Variants to Genes (V2G)

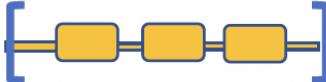
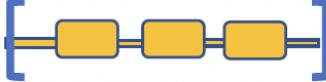
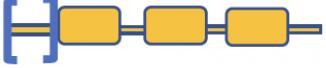
# Broadening the scope of approaches to link variants to genes

---

| S2G strategies                                                                    | Description |
|-----------------------------------------------------------------------------------|-------------|
|  | 5kb         |
|  | 100kb       |
|  | Promoter    |
|  | TSS         |
|  | Coding      |

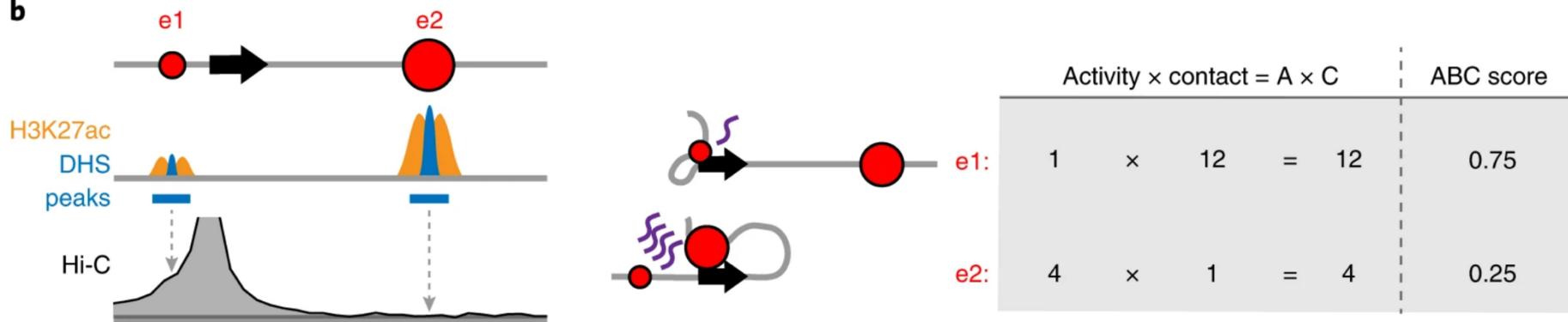
# Broadening the scope of approaches to link variants to genes

---

| S2G strategies                                                                    | Description |
|-----------------------------------------------------------------------------------|-------------|
|  | 5kb         |
|  | 100kb       |
|  | Promoter    |
|  | TSS         |
|  | Coding      |

# The Activity-By-Contact element-gene linking method

b

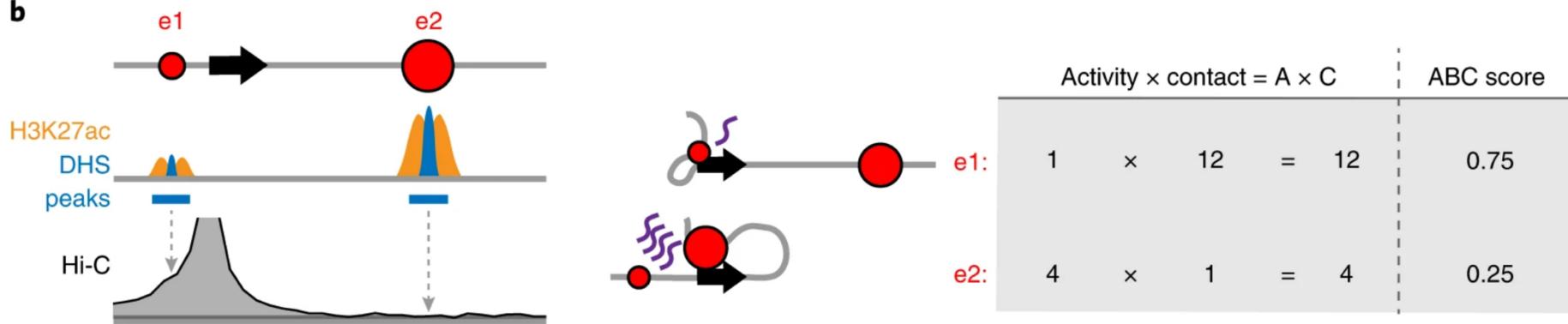


$$\text{ABC score}_{E,G} = \frac{A_E \times C_{E,G}}{\sum_{\text{all elements } e \text{ within 5 Mb of } G} A_e \times C_{e,G}}$$

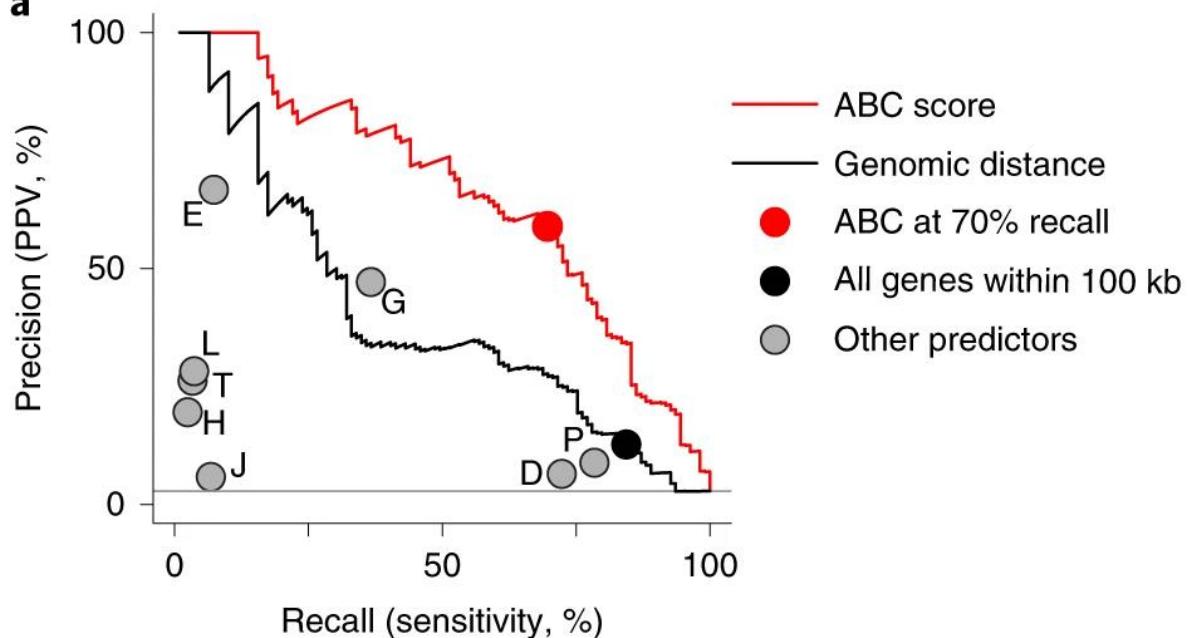
Operationally, we estimated Activity ( $A$ ) as the geometric mean of the read counts of DHS and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) at element  $E$ , and Contact ( $C$ ) as the KR-normalized Hi-C contact frequency between  $E$  and the promoter of gene  $G$  at 5-kb resolution (see Supplementary Note 4 and Supplementary Figs. 4 and 5).

# The Activity-By-Contact element-gene linking method

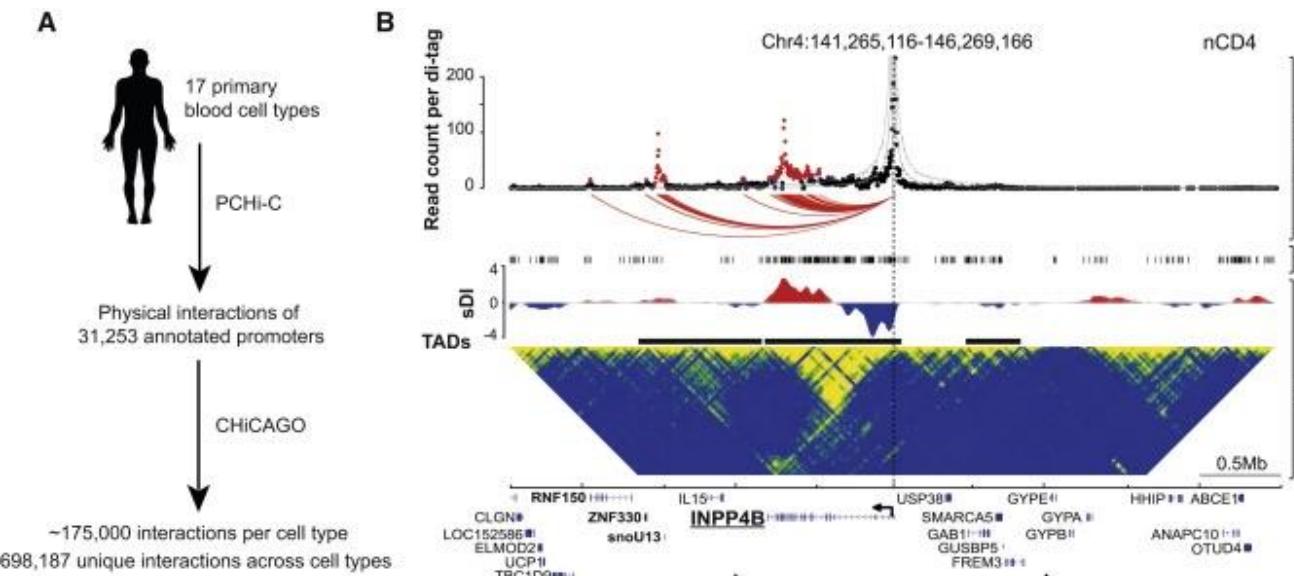
**b**



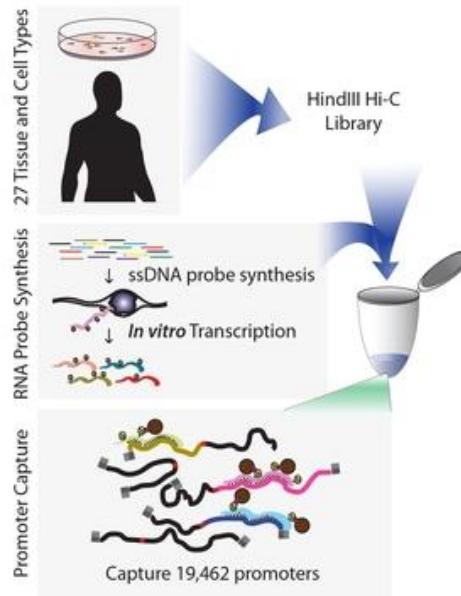
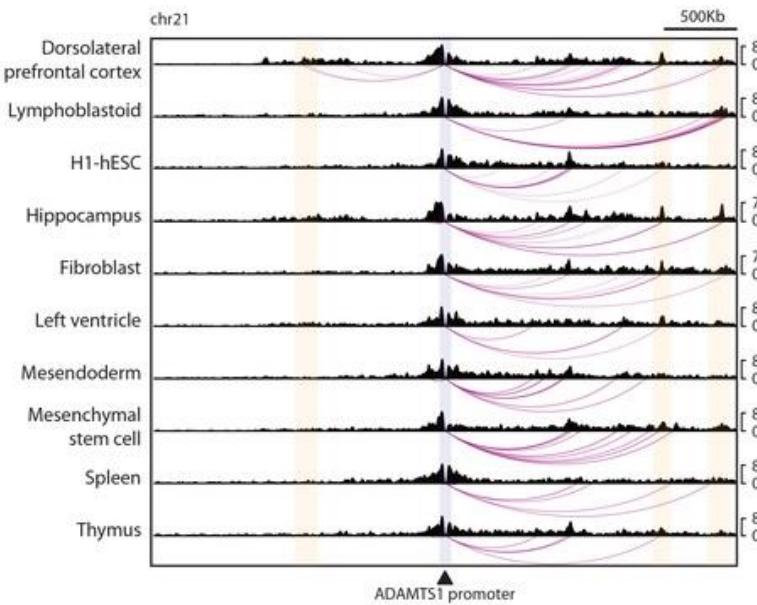
**a**



# Promoter-capture Hi-C to link elements to genes



Javierre et al 2016 Cell



Jung et al 2020 Nat Genet

# Broadening the scope of approaches to link variants to genes

## Naive S2G

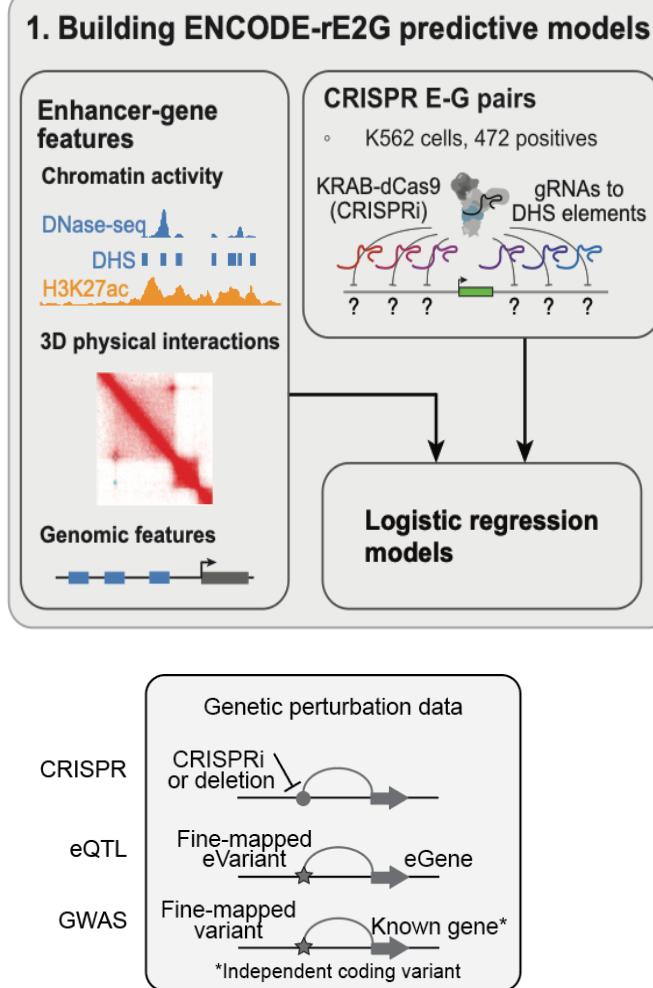
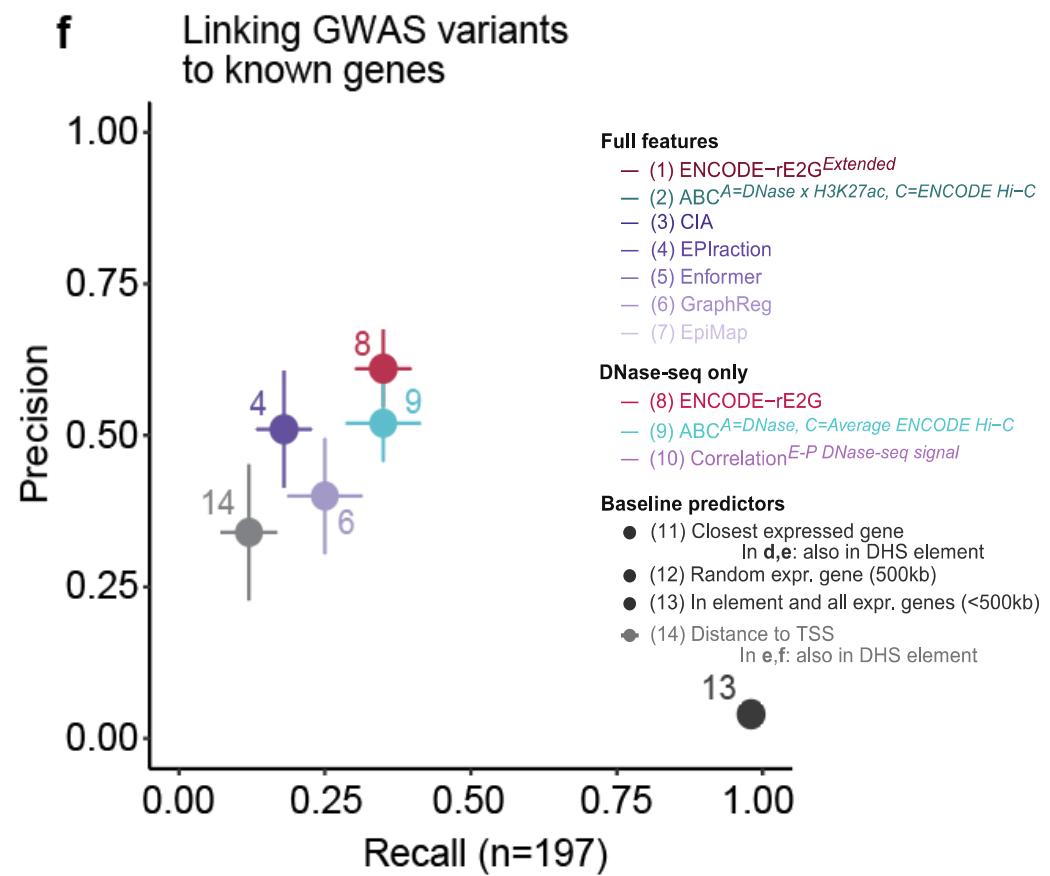
## Expression S2G

## Hi-C S2G

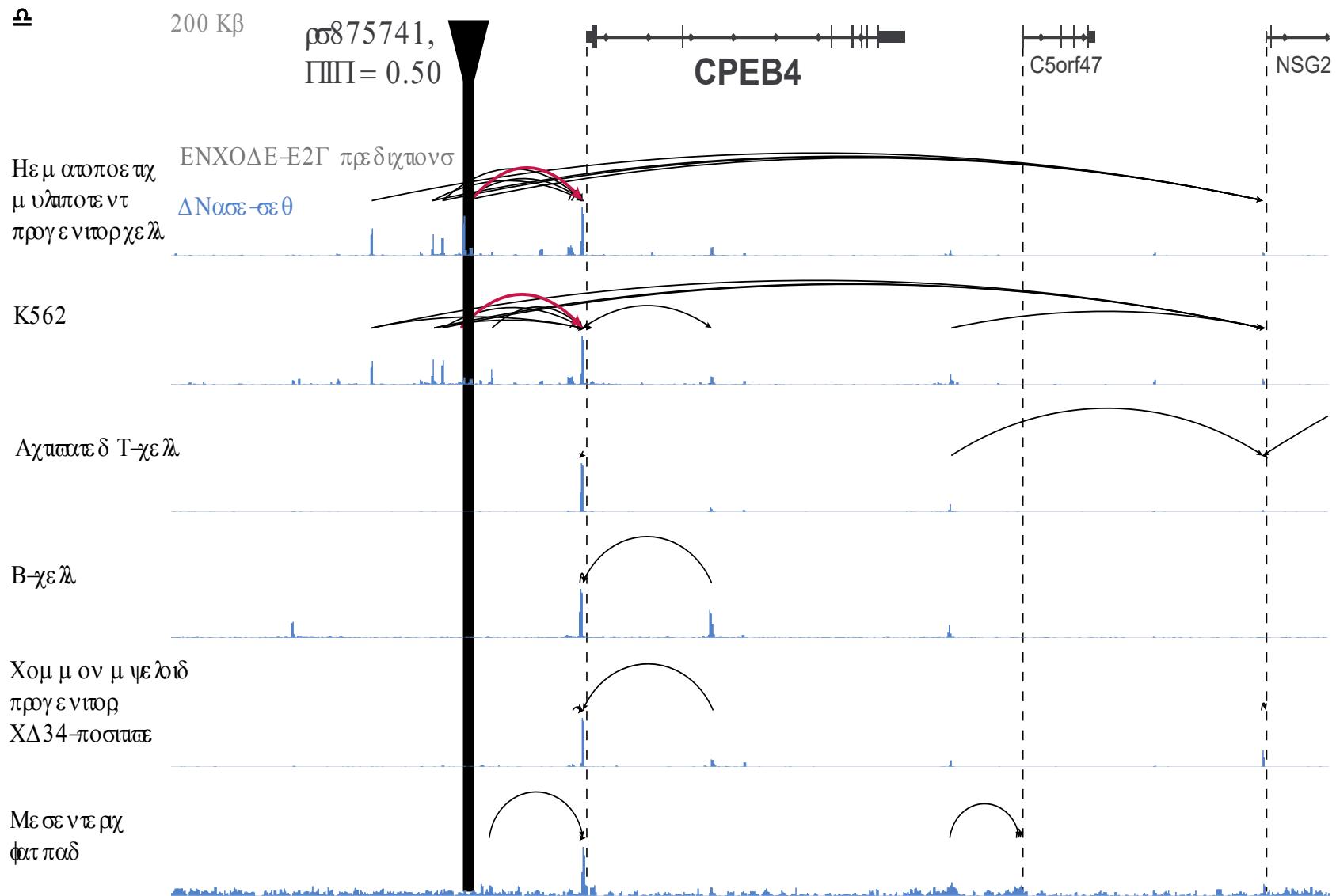
| S2G strategies | Description                                                                   |
|----------------|-------------------------------------------------------------------------------|
|                | 5kb<br>SNPs in 5kb window around gene                                         |
|                | 100kb<br>SNPs in 100 kb window around gene                                    |
|                | Promoter<br>SNPs in promoter region of the gene                               |
|                | TSS<br>SNPs in and around Transcription start sites                           |
|                | Coding<br>SNPs in coding regions of the gene                                  |
|                | eQTL<br>Max. post. causal probability in GTEx blood <sup>1,2</sup>            |
|                | ATAC<br>Correlated ATAC-seq peaks and gene expression in blood <sup>3</sup>   |
|                | Roadmap<br>Correlated enhancers and gene expression in blood <sup>4,5,6</sup> |
|                | PC-HiC<br>Promoter Capture Hi-C <sup>7</sup>                                  |
|                | ABC<br>DHS $\cap$ H3K27ac $\cap$ Hi-C in blood <sup>8</sup>                   |

<sup>1</sup>Hormozdiari et al 2018 NG, <sup>2</sup>Aguet et al 2019 bioRxiv, <sup>3</sup>Yoshida et al 2019 Cell, <sup>4</sup>Liu et al 2017 Gen. Biol. , <sup>5</sup>Ernst et al 2011 Nat. meth., <sup>6</sup>Kundaje et al 2015 Nature , <sup>7</sup>Javierre et al 2016 Cell., <sup>8</sup>Fulco et al 2019 Nat.Genet

# Benchmarking different element-gene linking approaches



# Visualizing the element-gene links underlying rs875741: fine-mapped variant PIP = 0.50 for mean corpuscular hemoglobin.

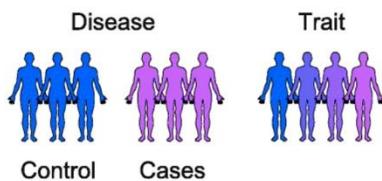


Artificial perturbation  
screens for human  
molecular phenotypes  
(CRISPR)

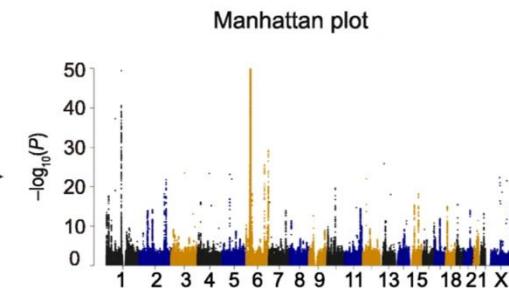
# Functional characterization targeting GWAS risk variants

**A**

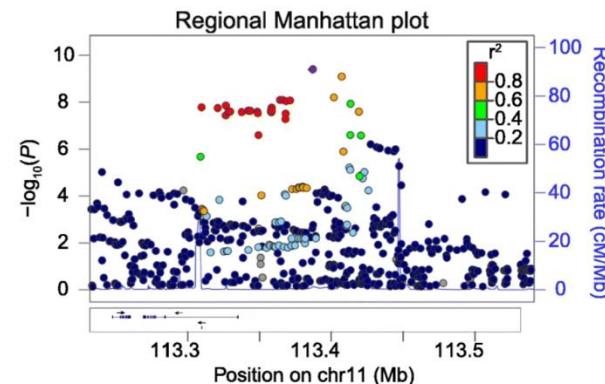
Study populations



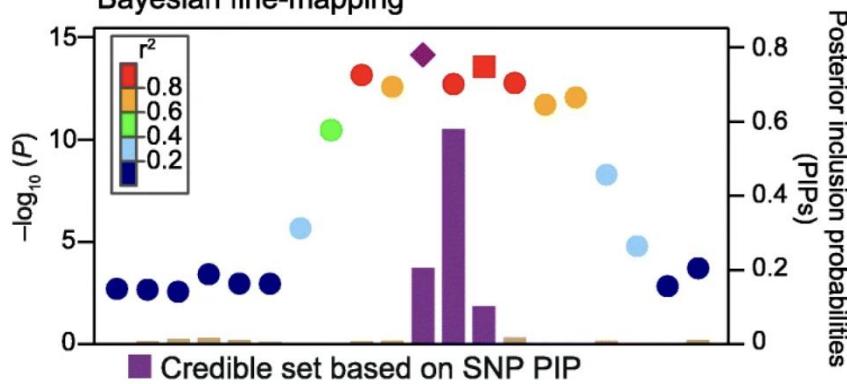
List of associated SNPs



Physically independent risk regions according to LD structure



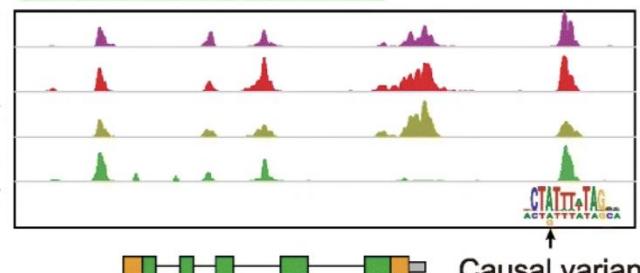
Bayesian fine-mapping



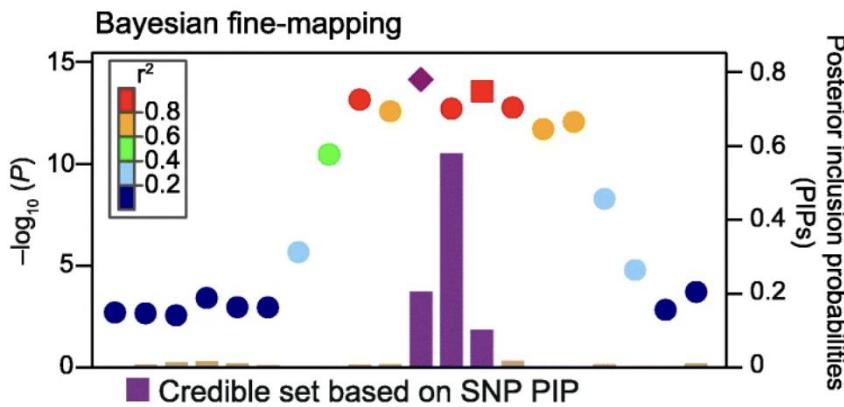
Genomic annotation

Chromatin accessibility  
Histone markers  
Transcription factor binding

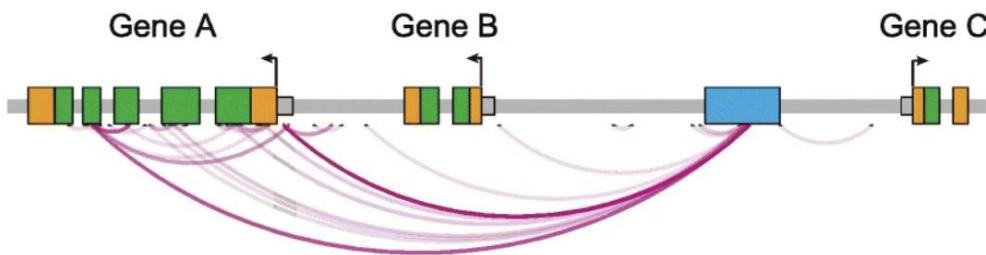
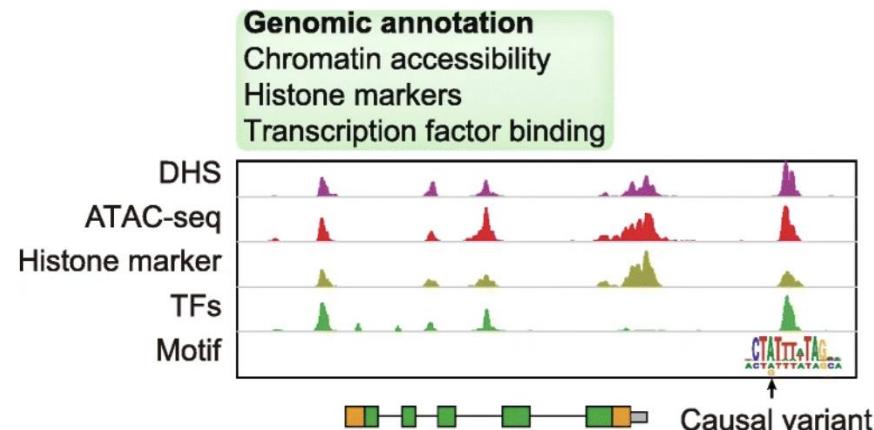
DHS  
ATAC-seq  
Histone marker  
TFs  
Motif



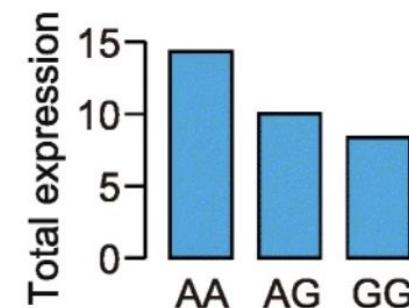
# Functional characterization targeting GWAS risk variants



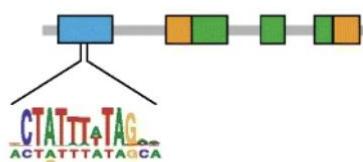
Linking to causal genes (enhancer-gene)



Expression QTL calling



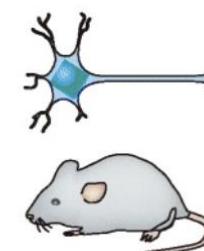
Causal variants



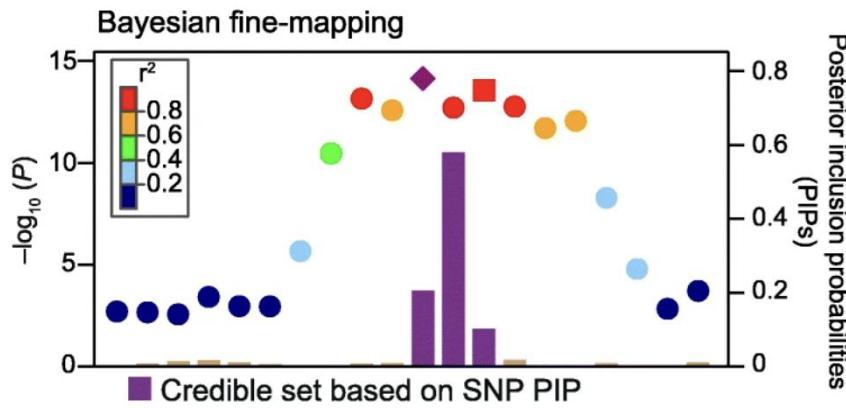
Target gene expression



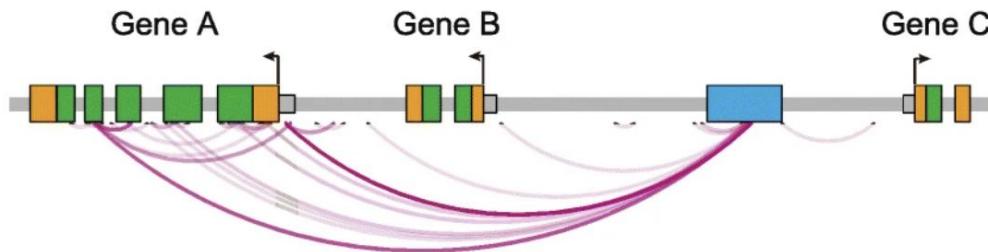
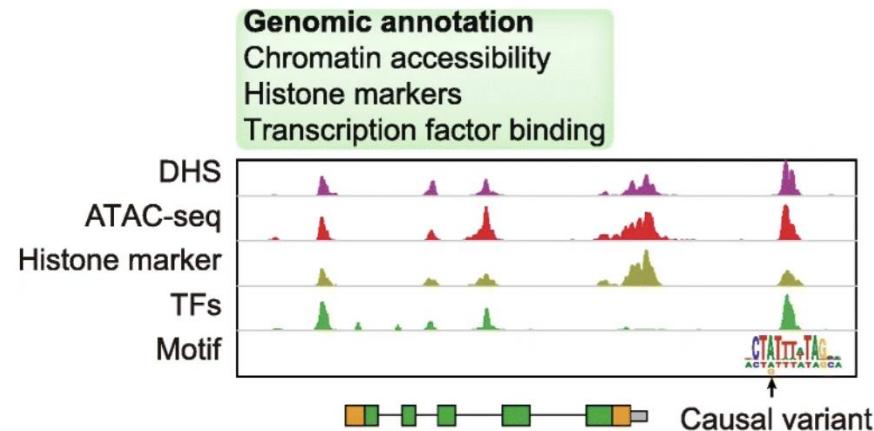
Phenotype



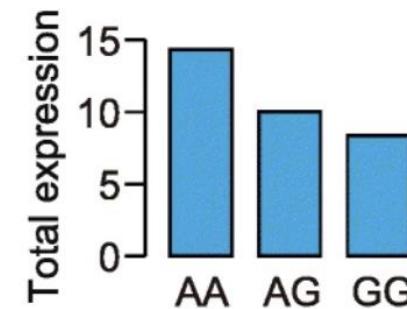
# Functional characterization targeting GWAS risk variants



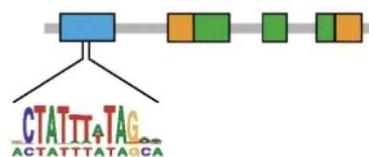
Linking to causal genes (enhancer-gene)



Expression QTL calling



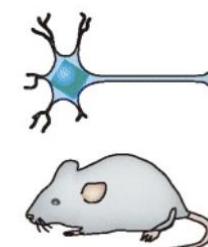
Causal variants



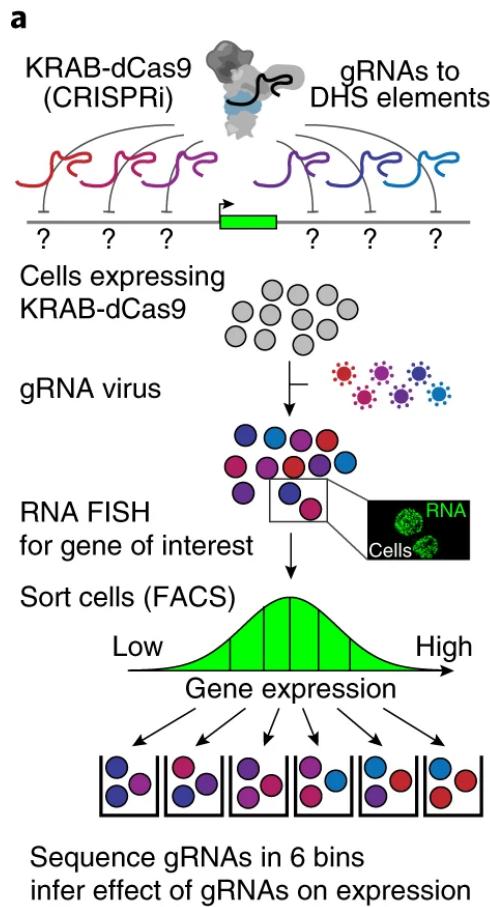
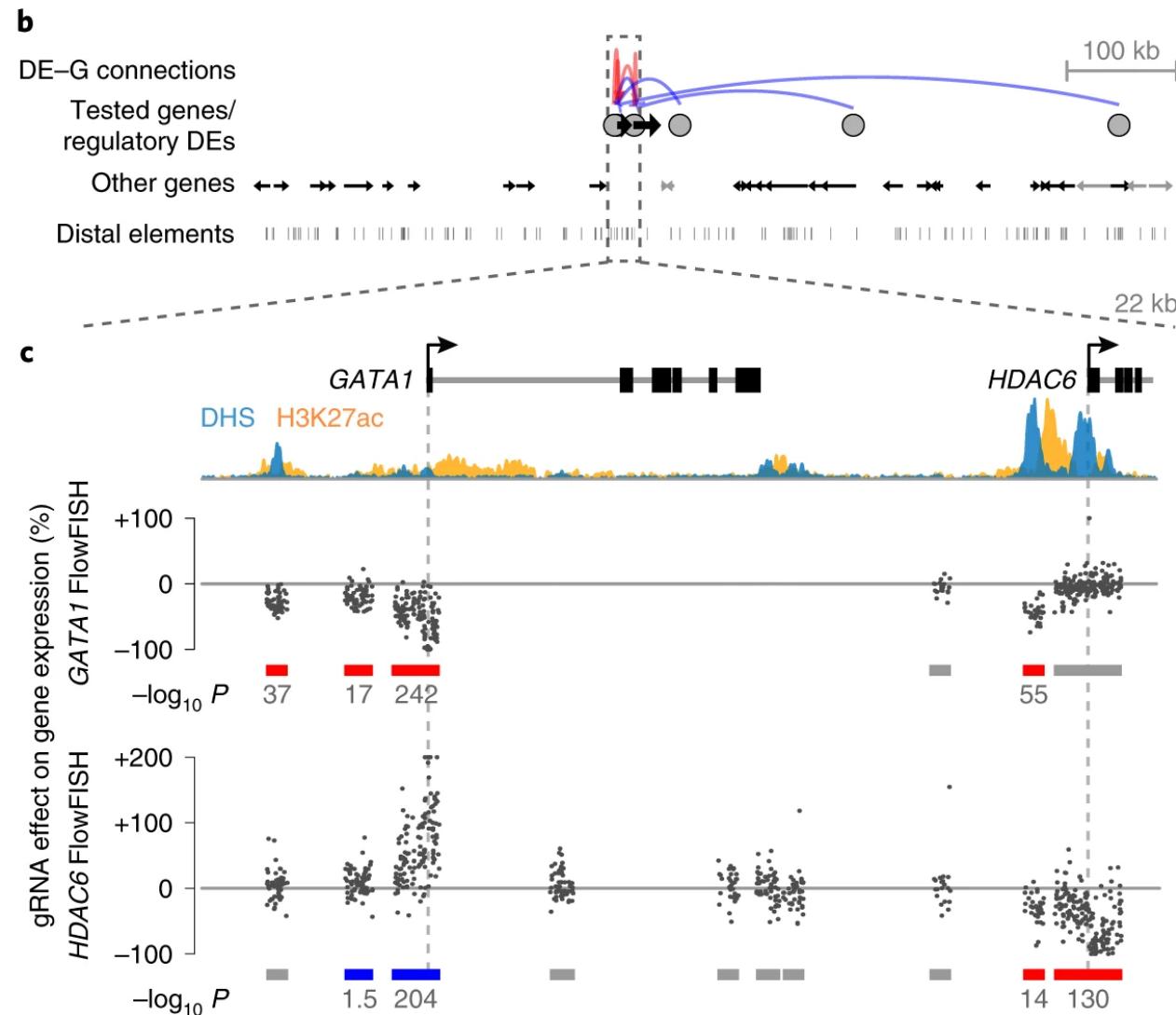
Target gene expression



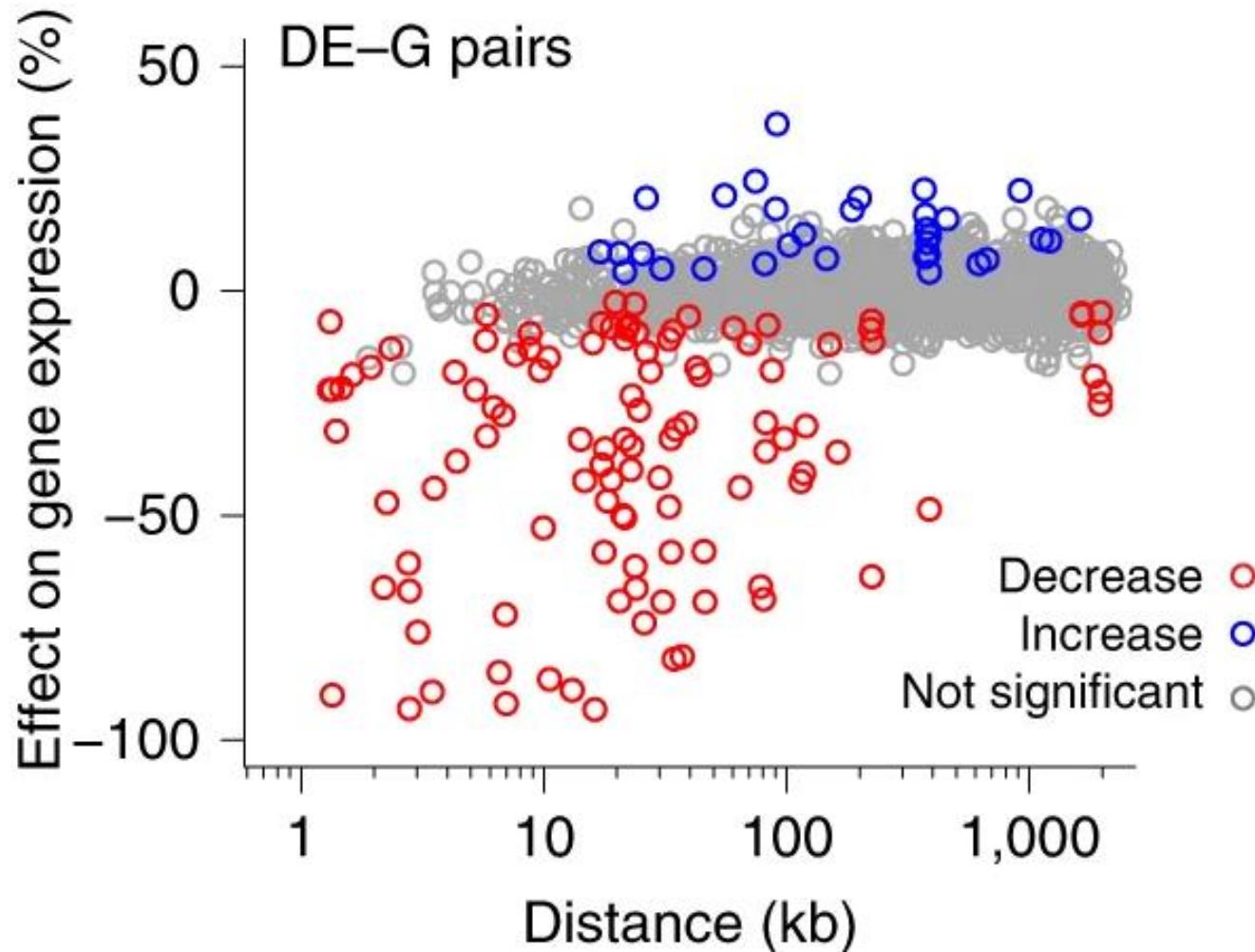
Phenotype



# CRISPRi perturbation screen in K562 mimic-ing cis eQTLs



# CRISPRi perturbation screen in K562 mimic-ing cis eQTLs

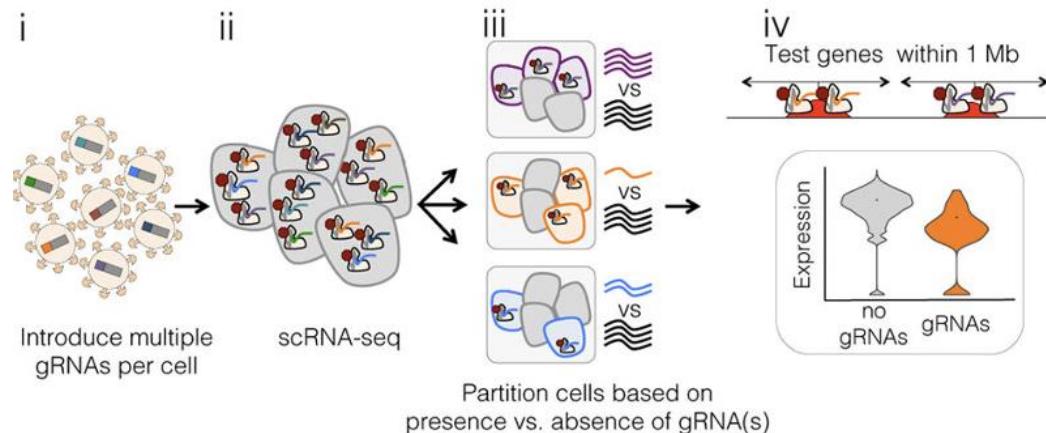


# Large scale genome-wide enhancer perturbation screen to mimic cis and trans eQTLs

**CRISPRi Perturb-seq (TSS-targeted or enhancer–targeted):** dCas9-KRAB, can assess global changes in transcriptomic profile owing to one or sets of perturbations.

By introducing **gRNAs at a high MOI (~30)**, each individual cell acquires a unique combination of perturbations, which markedly increases statistical power.

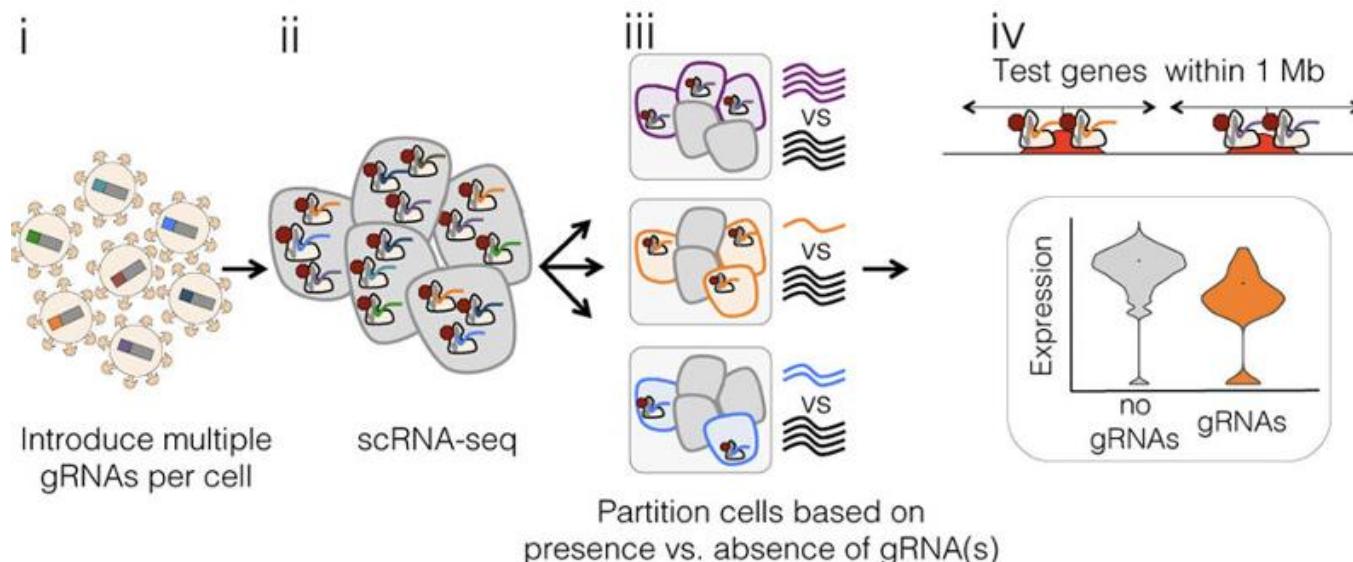
Incorporating in **low MOI (<= 1~2)** however enables more accurate understanding of a single perturbation effect



# Large scale genome-wide enhancer perturbation screen to mimic cis and trans eQTLs

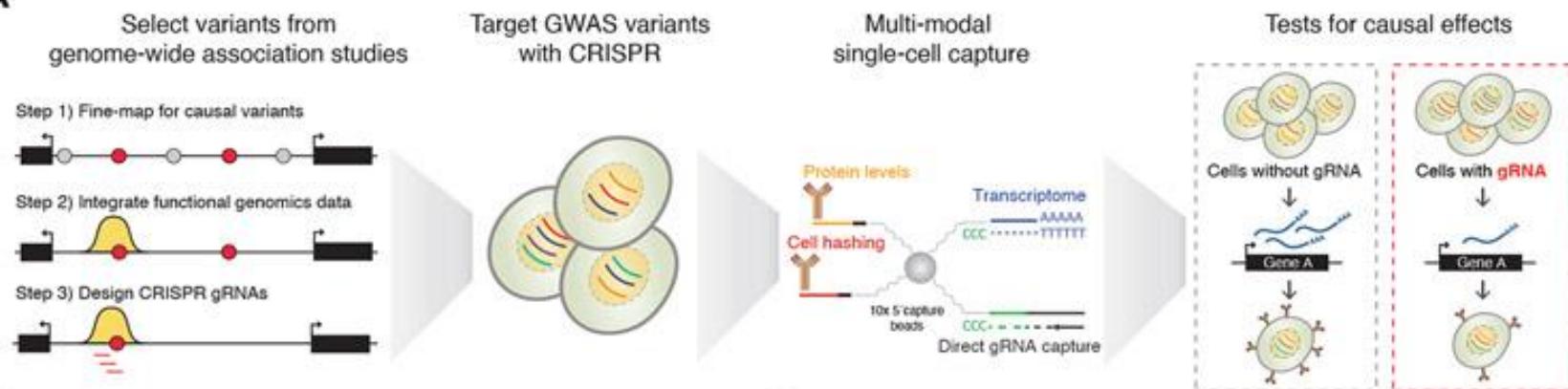
Map *cis* and *trans* effects by comparing gene expression in the subset of cells that contain a given gRNA to those that lack that guide (similar to eQTL) (crisprQTL mapping).

Unlike eQTL studies, the resolution of our screen is **not constrained by linkage disequilibrium**, nor is it limited to studying sites in which common genetic variants happen to exist.

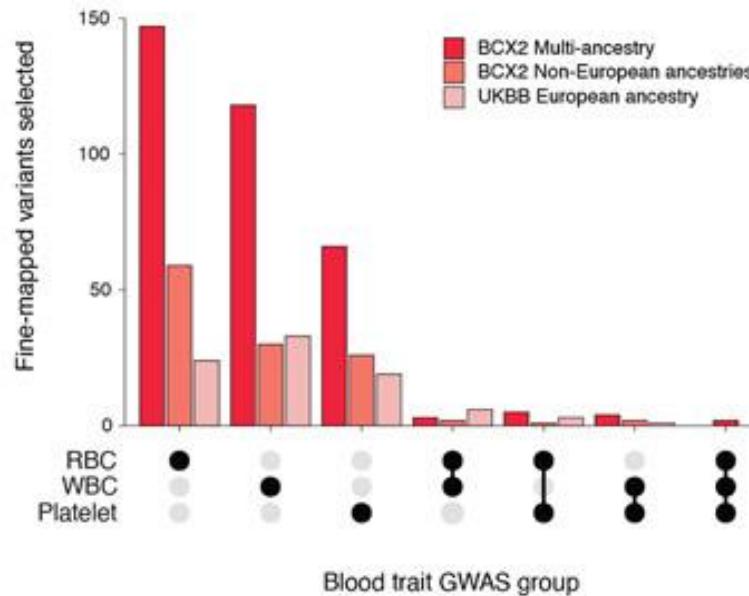


# STING-seq: CRISPRi and CRISPR base-editing efforts targeting variants fine-mapped from immune traits

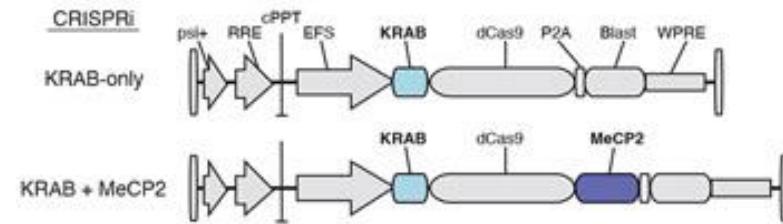
A



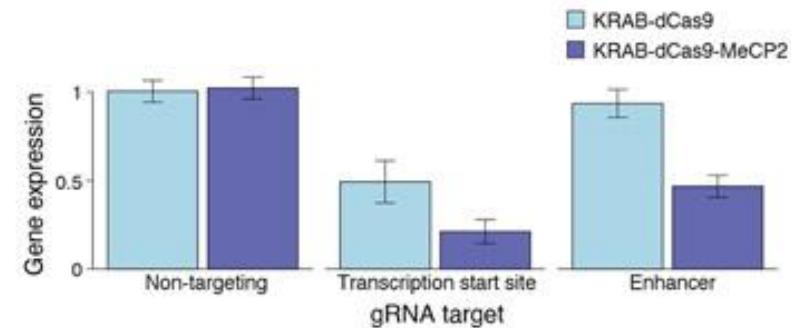
B



C

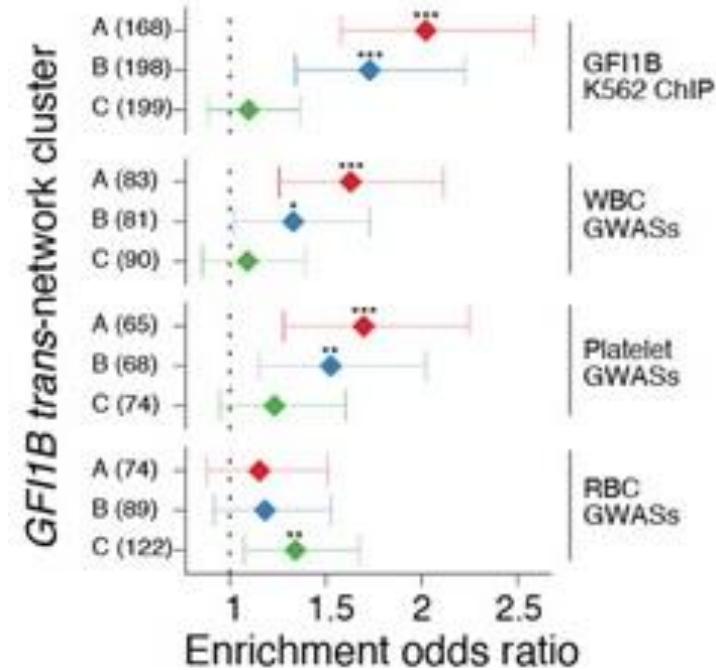


D

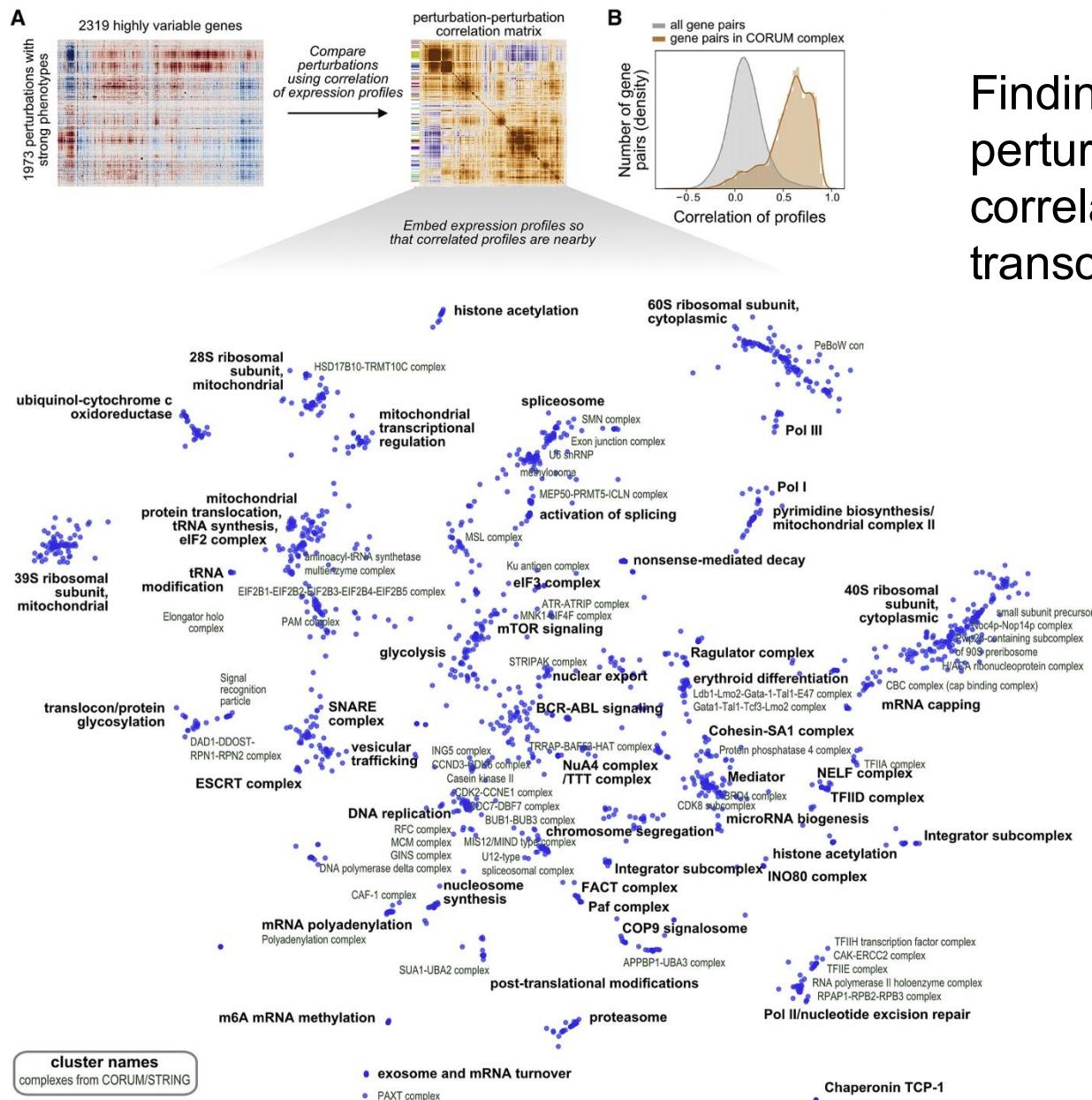


# STING-seq: CRISPRi trans-effect hubs similar to trans-eQTL programs of genes

A

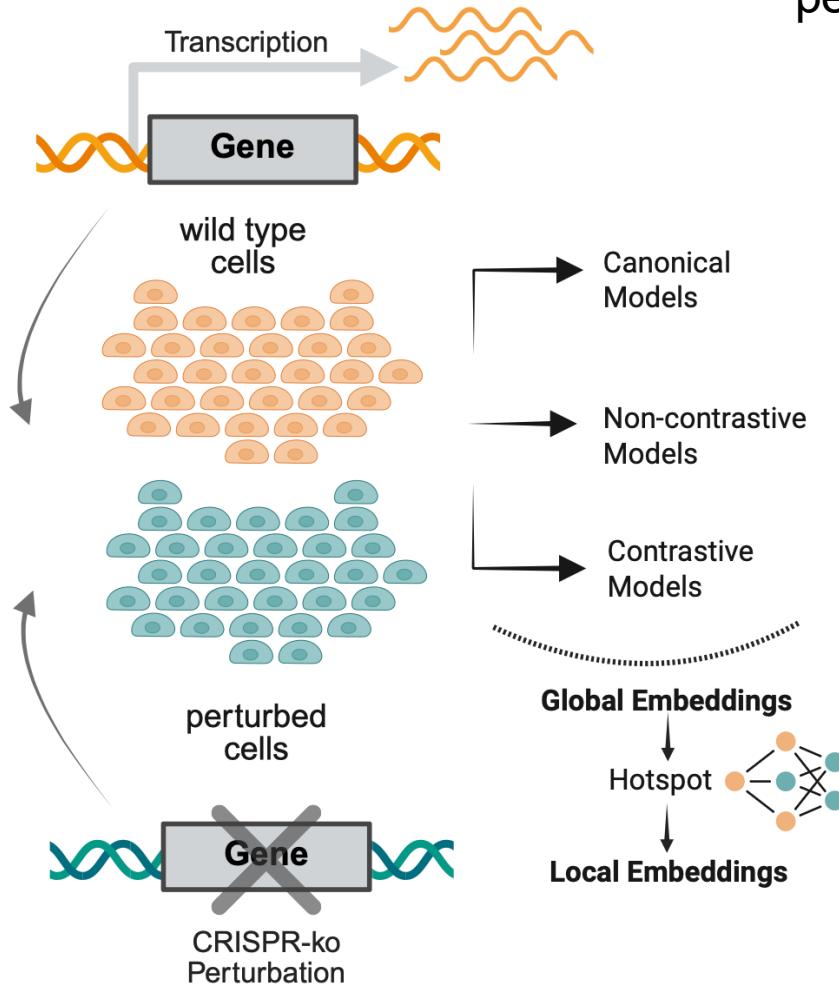


# Defining programs of genes underlying CRISPR perturbations

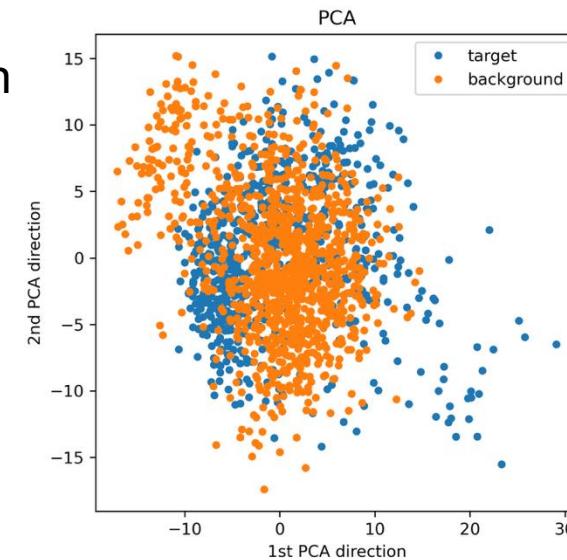
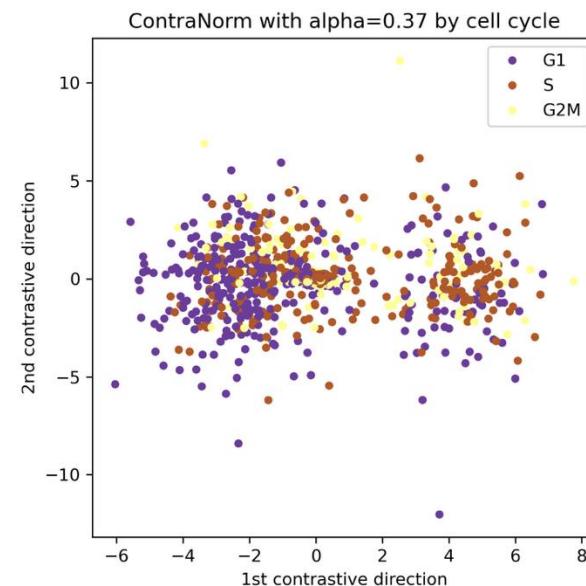


# Finding hubs of perturbations with correlated transcriptomic effects

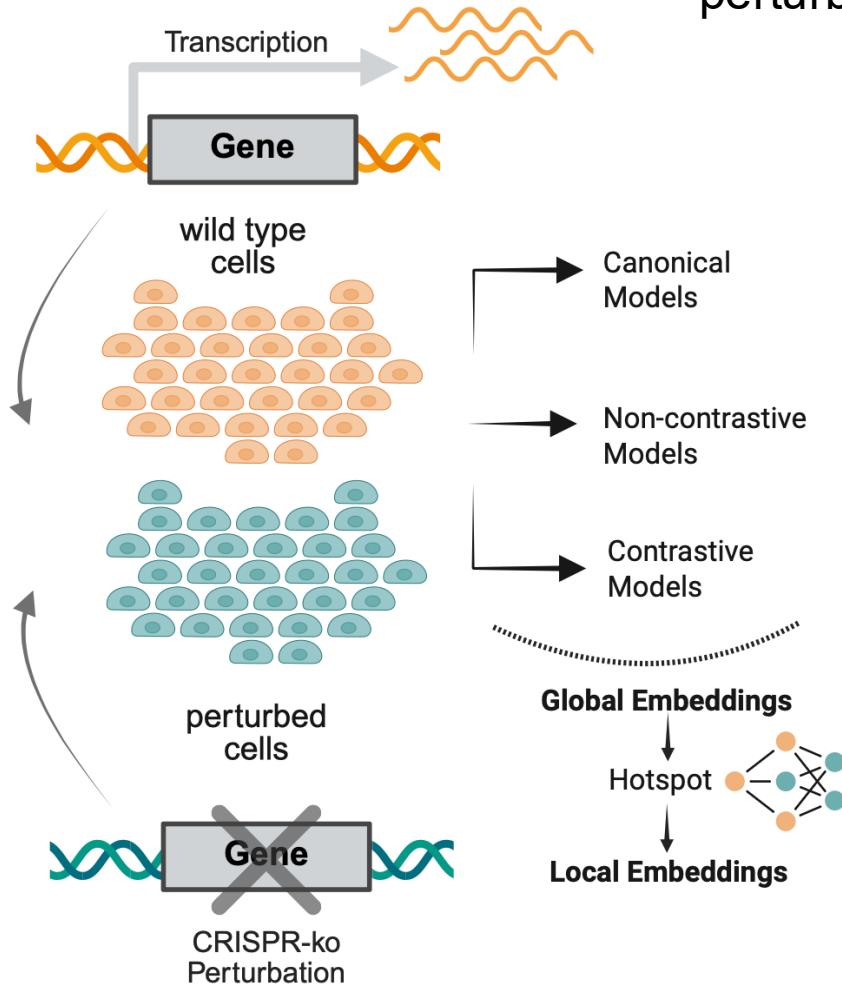
# Contrastive embedding approaches often find interesting structure among genes modulated by a perturbation



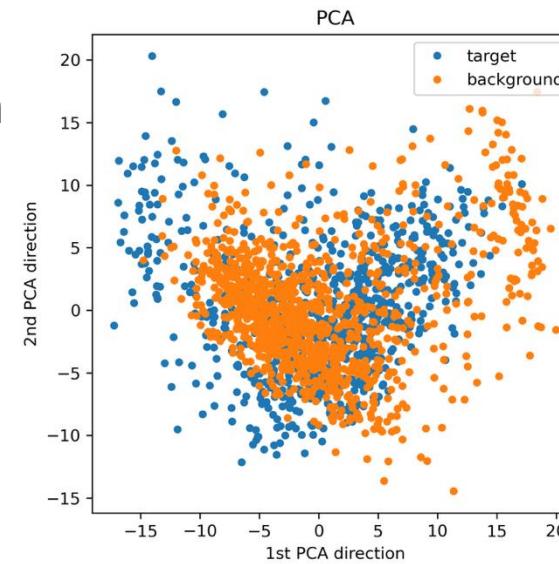
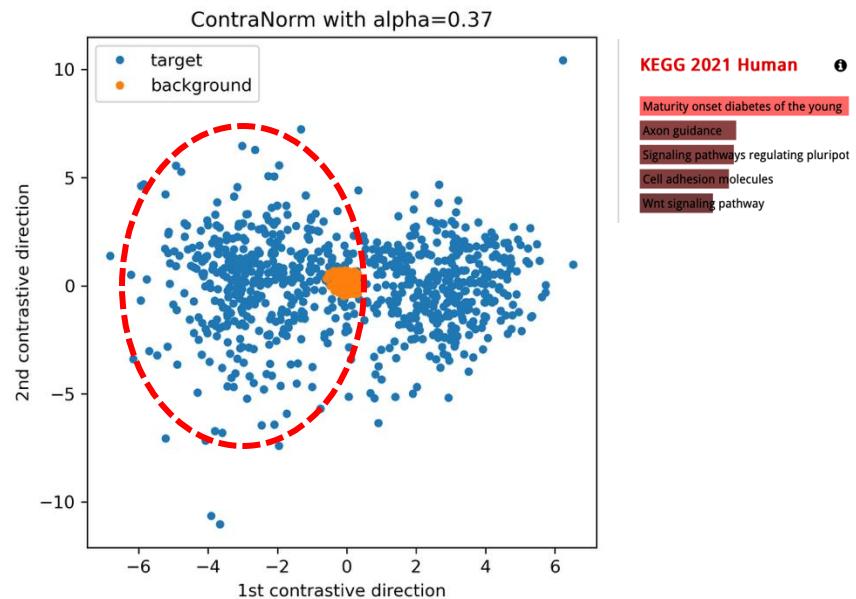
PDX1  
perturbation



# Contrastive embedding approaches often find interesting structure among genes modulated by a perturbation



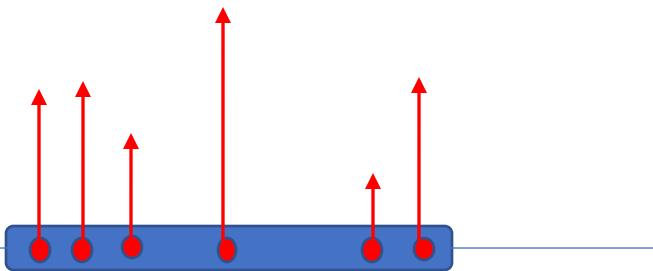
## GATA6het perturbation



# Linking Gene Programs to Disease (G2D) from perturbation screens

# Prioritizing genes for a complex disease (MAGMA and PoPS)

---



Two types of gene test statistics have been implemented in MAGMA:

(a) The mean of the  $\chi^2$  statistic for the SNPs in a gene,

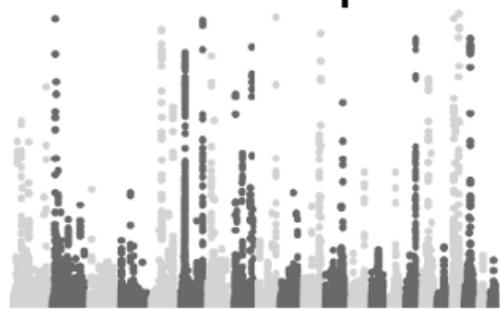
(b) The top  $\chi^2$  statistic among the SNPs in a gene.

For the mean  $\chi^2$  statistic, a gene p-value is then obtained by using a known approximation of the sampling distribution

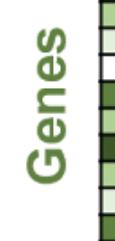
# Prioritizing genes for a complex disease (MAGMA and PoPS)

Weeks et al 2024 *Nat Genet*

**Summary statistics**  
**LD reference panel**

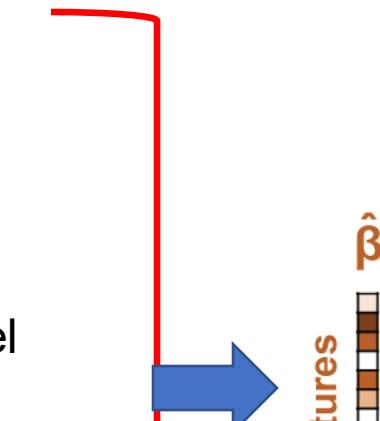


**z-scores**



=  $y$

MAGMA gene-level  
Z scores

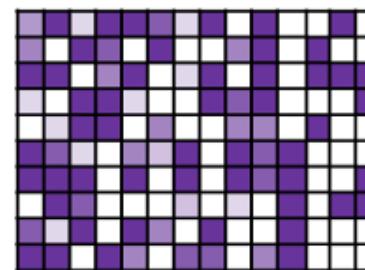


$\hat{\beta}$

**Features**



**Features**



=  $X$

$$\hat{y} = X\beta$$

**RNA-seq**  
**Pathways**  
**Networks**

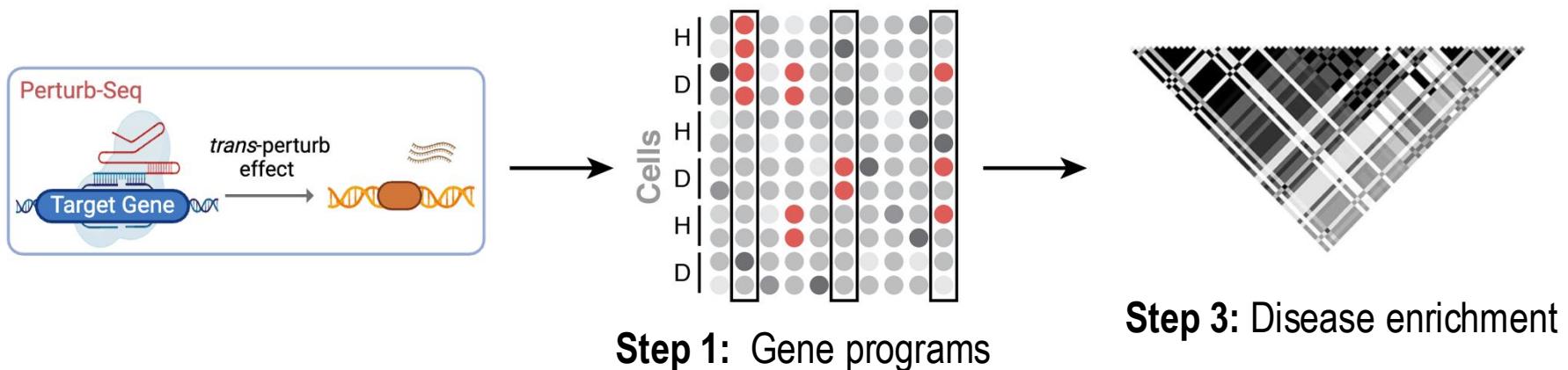
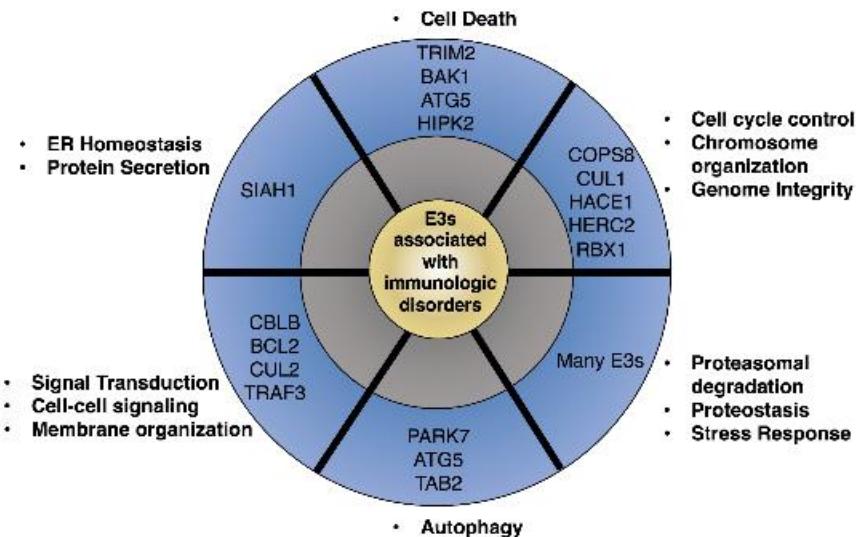


**Genes**

**LOCO: Leave one chromosome out**

**Polygenic Priority  
Score (PoPS)**

# Disease information in Perturb-seq co-regulated gene programs

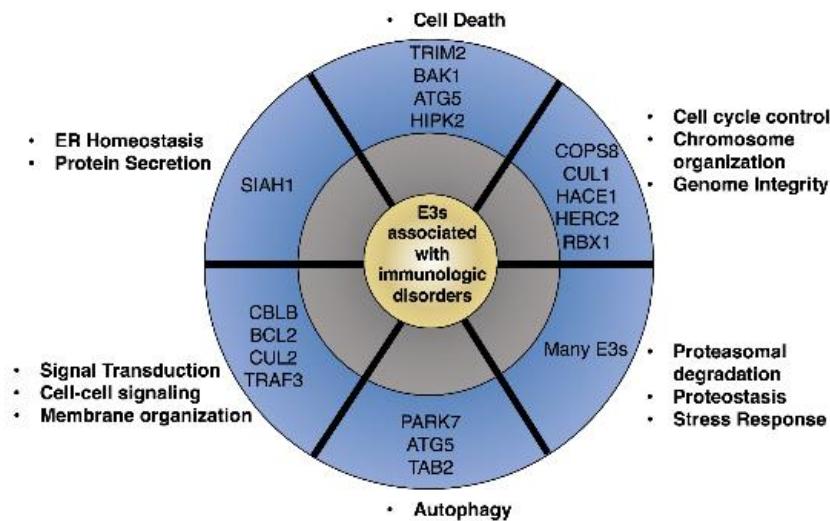
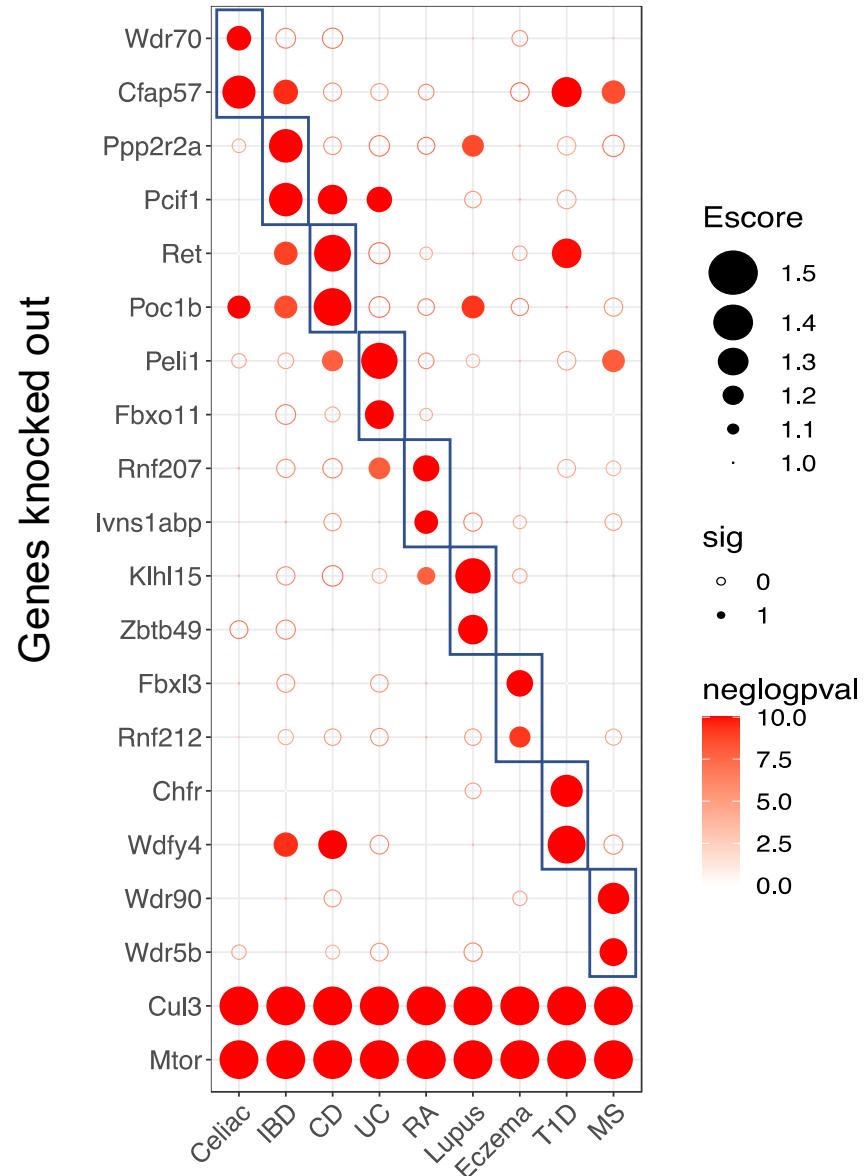


Enrichment of PoPS/MAGMA or any score in your perturbation program compared to similar-sized program drawn from genes affected by  $\geq 1$  perturbation

Large-scale Perturb-seq assay targeting 1031 E3 ligase genes in bone marrow dendritic cells

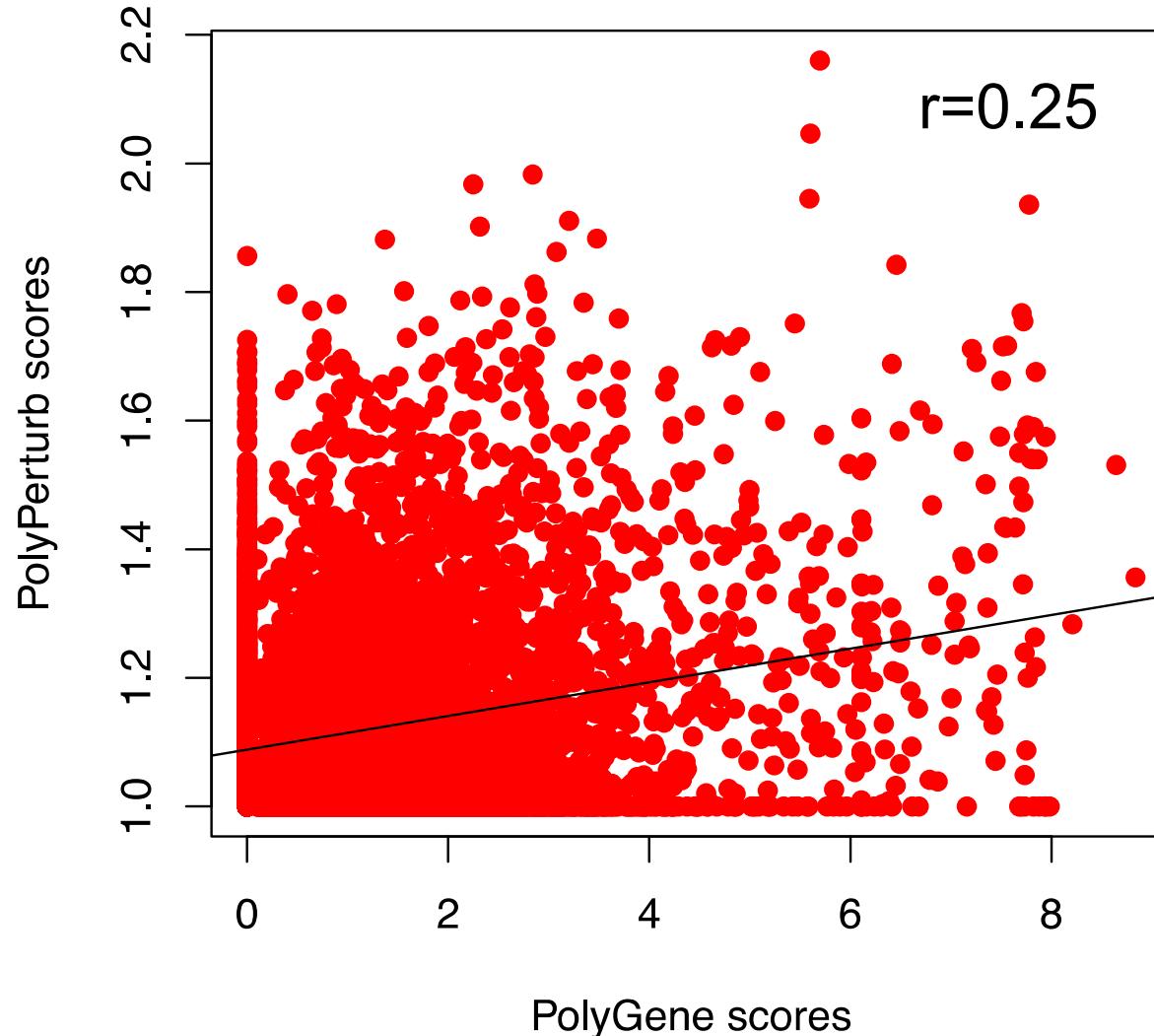
# GeneBoost approach to score perturbation programs for disease

1,030 E3 ligase genes and interacting partners



# PoPs gene-level scores of knockouts and PoPs enrichment of their perturbation profiles are moderately correlated

---

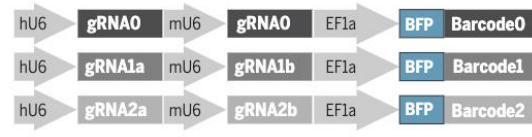


Each point is a (KO gene, immune disease) pair in E3ligase Perturb-seq experiment

We consider 1,030 genes and 9 immune related traits.

# In-vivo Perturbation programs across multiple cell types (Jin et al Science 2020)

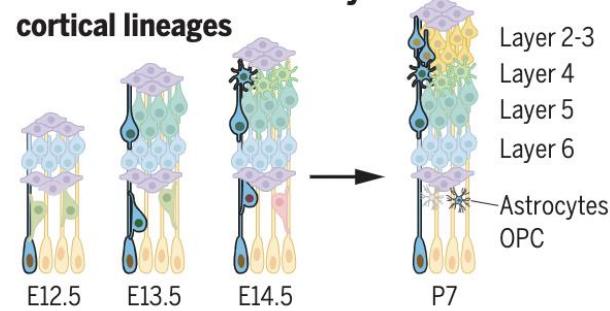
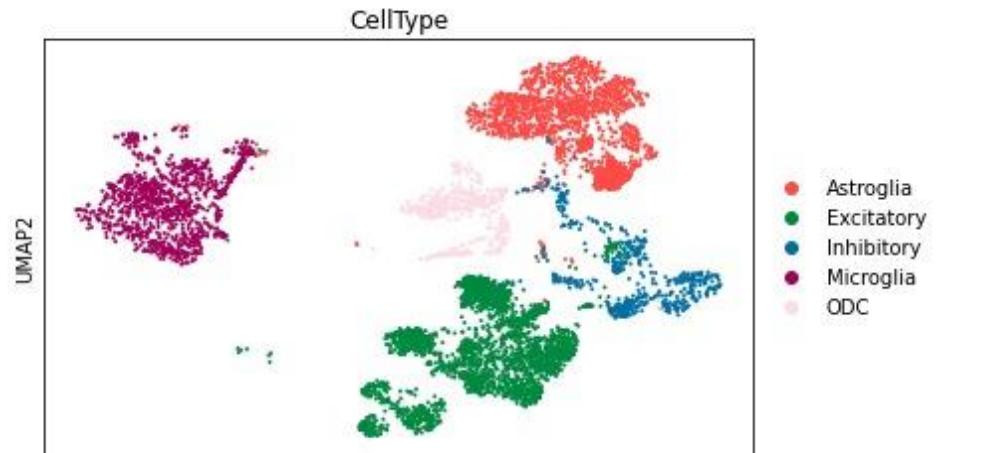
## Lentiviral gRNA library targeting ASD/ND risk genes



## In utero infection at E12.5



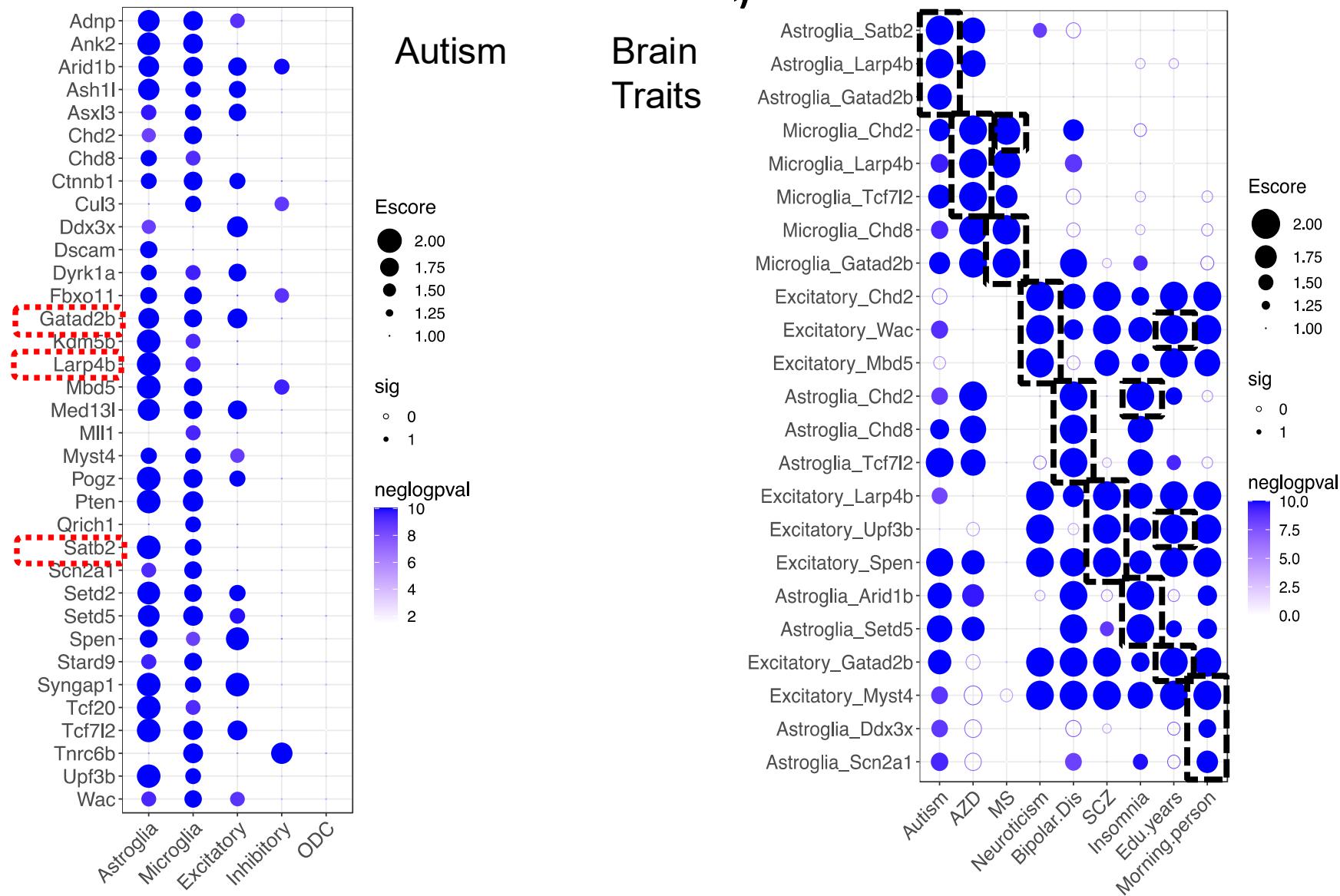
## Perturbations inherited by cortical lineages



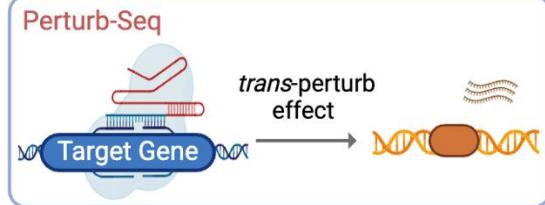
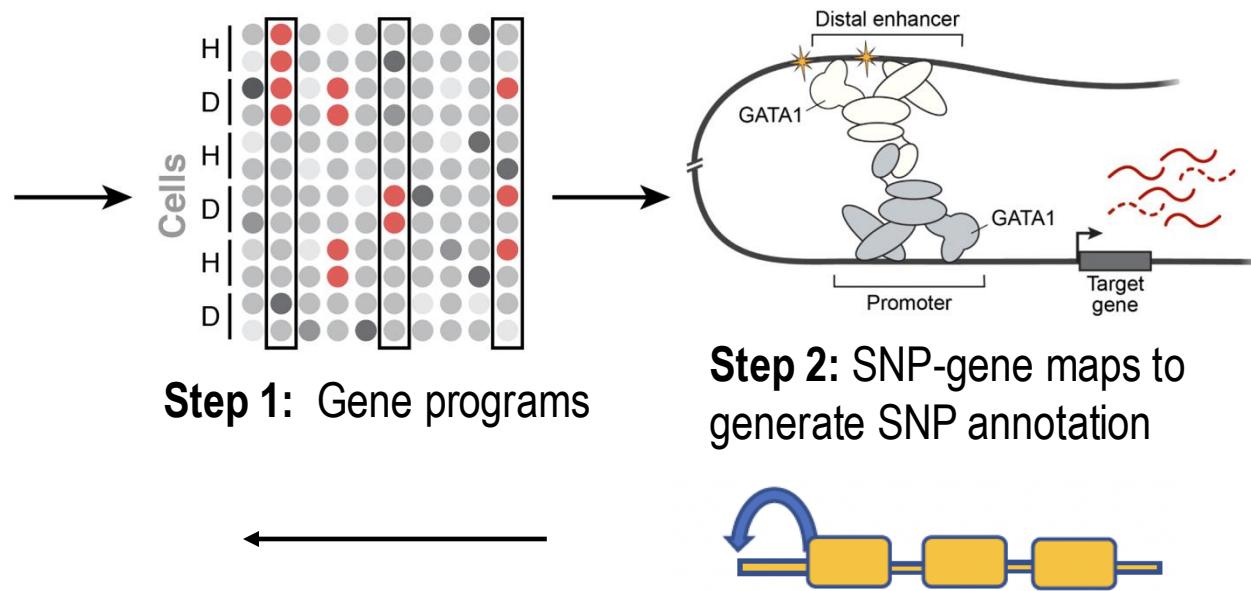
35 de-novo autism risk genes targeted

Perturbation program observed for each guide in 5 major brain cell types for a total of 175 perturbation programs.

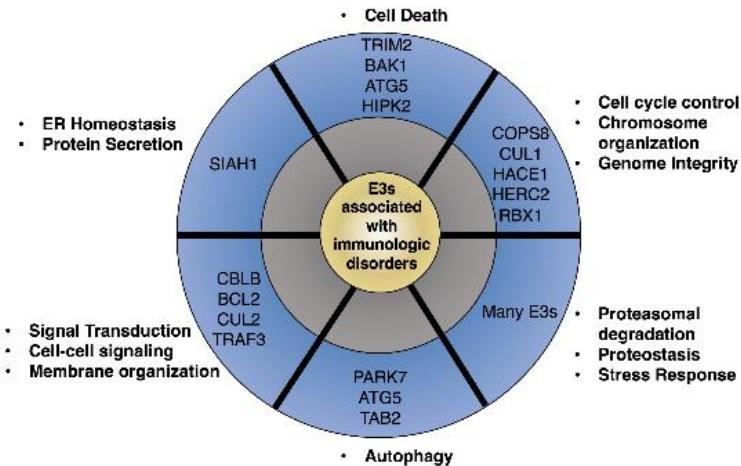
# Some Astroglia perturbation programs are specifically disease informative for autism compared to other brain related diseases



# sc-linker heritability analysis of Perturb-seq co-regulated gene programs



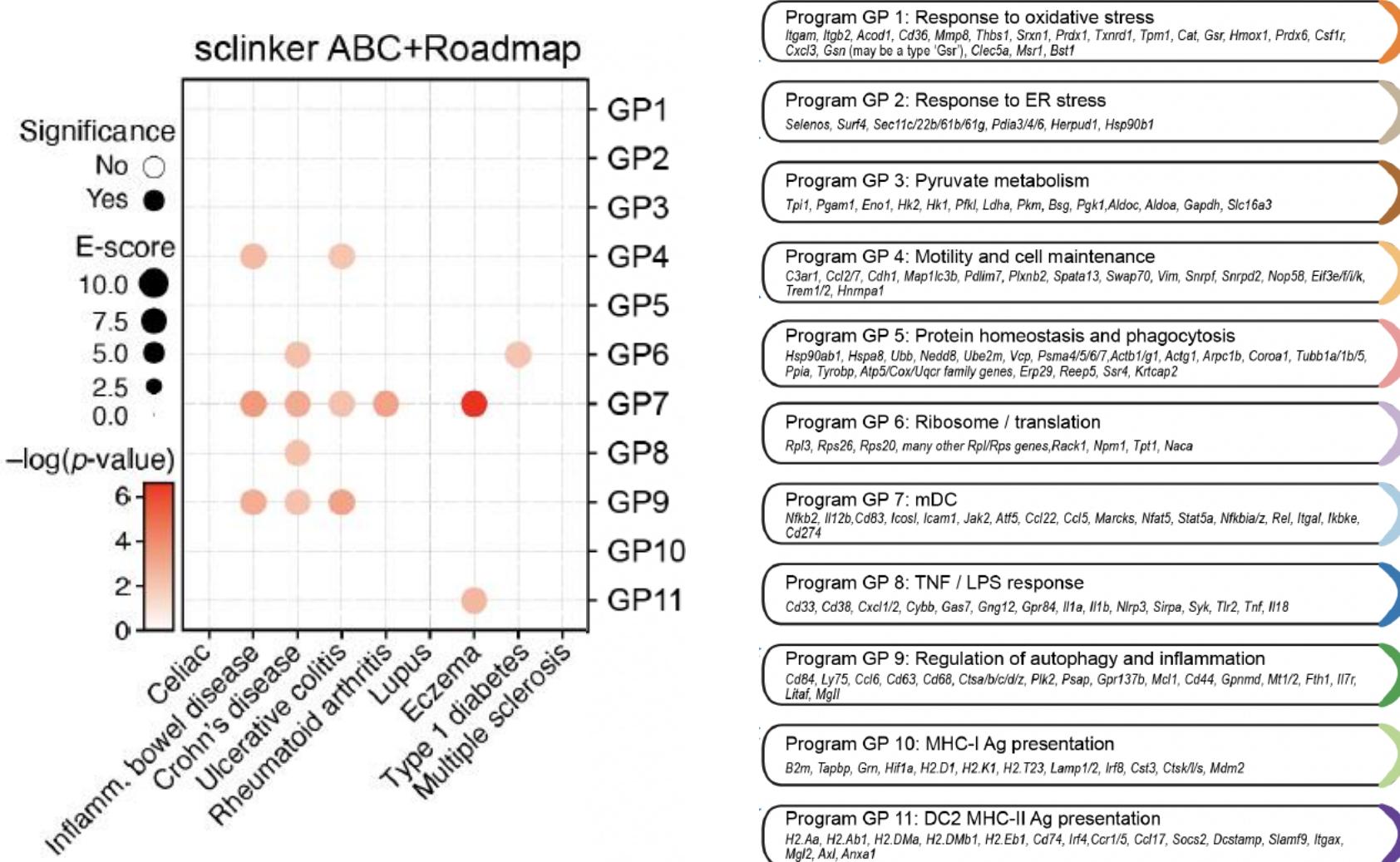
## Step 3: Disease heritability enrichment



Large-scale Perturb-seq assay targeting 1031 E3 ligase genes in bone marrow dendritic cells

Geiger-Schuller, Eraslan et al bioRxiv 2023, in rev *Cell*

# We observe specific immune disease heritability enrichment using sc-linker in various Perturb-seq programs



# Assignment Problem

---

## Whole genome CRISPRi Perturb-seq data :

Map fine-mapped GWAS variants for K562-related traits to genes using cS2G method and the nearest TSS distance.

Find genes that are significantly affected downstream of the CRISPR perturbations (<https://gwps.wi.mit.edu/>)

Group co-regulated genes and co-functional perturbations into groups of genes based on a chosen clustering or dimension reduction (PCA) + clustering algorithm.

Perform enrichment of the PoPS scores for 120 traits in the genes that are in each program against a background set of random genes selected from the pool of all perturbations.

Perform Stratified LD score regression of the genes in the gene program connected to variants by the cS2G method  
(<https://github.com/bulik/ldsc/wiki>)