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Intraoperative optical imaging
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PARP-1 Molecular Imaging
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Oral cancer detection phase I/l clinical trial
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SWIR imaging

Short-wave infrared
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SWIR imaging

Short-wave infrared

25|00 30|00 50|00 80|00 12(?00

uv s | INFRARED * D, ¢ MICROWAVES
380-850 900-12000 |
Wavelength [nm] >

scattanng Es lng

sSca %ln
| °§%xy bloo%'(%ﬁ'é'ak.) (

\/ Visible

- -
- -
- - .
- -
R .
- - e e e e

water

102 — ' ' ' '
=00 1000 1500 2000 2500 Hashagen ] (2014) PhotonicsMedia

Wavelength [nm]




SWIR cameras
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SWIR outperforms NIR
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SWIR outperforms NIR (and VIS)
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|ICG imaging of SWIR
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SWIR pHLIP ICG Tumor Screening
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Video rate tumor screening!

PHLIP ICG & SWIRFI can provide non-invasive
human safe high contrast video rate
tumor imaging, unaffected by LED room lighting
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Pan-cancer seeking NIR/SWIR agent
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SWIR imaging is closer to the ground truth

0 mm 5 mm tissue

5 mm Tissue

Open

1.0 Ground Truth
Open

1000 nm
= — 1100 nm
= =
— <
o —

— >
- h
)
o
= E
o - 0.54+--———----——— AR -
= N
B ©
-
-
(@
2

McLarney B et al (2024) Nature Biomedical Engineering 8(9):1092



Pan-cancer seeking NIR/SWIR agent

PC3-PSMA HT1080
Prostate” Fibrosarcoma
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Pan-cancer seeking NIR/SWIR agent
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Pan-cancer seeking NIR/SWIR agent
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Pan-cancer seeking NIR/SWIR agent

PC3-PSMA HT1080
Prostate” Fibrosarcoma
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Novel SWIR agent CJ215
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SWIR imaging in vivo
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Video rate tumor screening in Contrast Mode

Video-rate images with |0 ms frame rate
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| 44h post injection (6 days)
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Mechanism?
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Cerenkov Luminescence Imaging
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When a charged particle travels through a dialectric medium faster than
the speed of light in that medium it emits a continuous spectrum of
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Pavel Cerenkov's lucky mistake

® Cerenkov studied the luminescence of uranyl salt
solutions under the gamma-ray radiation of radium.

® Prior to measurement Cerenkov sat in a dark room fo
90' to increase his eyes' sensitivity to the weak signal.

\_ ‘‘‘‘‘

-t ®n 1933, glass A was accidentally filled only with solvent,

3 but it also glowed under radium irradiation.

® The intensity was of the same order of magnitude as
the glow of the uranyl salt solution in the same solvent
(sulfuric acid).




Frank & Tamm
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The Frank-Tamm formula defines photon output over a distance
(dN/dx), where «a is the fine structure constant, f is the velocity of
the particle relative to the speed of light in a vacuum, # is the refrac-
tive index of the medium, and 4 is the wavelength of interest in the
ultraviolet-visible region.

Pavel Cherenkov llya Frank | Igor Tamm

“However, a more detailed quantitative investigation of this light process enabled us to find a range of
broperties so remarkable as to afford incontrovertible proof that here we were dealing with no ordinary
everyday luminescence, but with a phenomenon of an entirely new kind; and one of extraordinary interest
not only on account of its significance in principle but also in regard to the many practical possibilities for
its use.”

(Cerenkov's Nobel Lecture, Dec. I | 1958; with Frank and Tamm)
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Medical radionuclides emitting energetic charged particles can be used to ~™="
generate light and imaged with sufficiently sensitive cameras.
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Path length & resolution

In vitro CL spectrum

000000 | —
y o
900000 :
000000
00000 :
Z
0.0
500 600 700 800
wavelength (nm)
In vivo CL spectrum
o 10
o
° s
S
T
- —— % os
7/ =
§ — 89Zr (surface)
Z

— 18F (bladder)

500 600 700 800
wavelength (nm)

MitchellG et al (201 1) Phil Trans R Soc A Math Phys Eng Sci. 369:4605
Shaffer; Pratt and Grimm (2016) Nature Nanotechnology 12(2):106

‘I \'\i Ciarrocchi E & Belcari N (2017) EJ[NMMI Physics 4:14



Path length & resolution
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* |maging isotopes difficult to see
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Radiance (x103)(p/s/cmay/sr)

Cerenkov Imaging

40 %ID/g

0 %ID/g

Optical imaging cheaper than PET
“Cheap man’s PET”
In vitro measurements
More animals in less time than PET
* 5 micein 5 vs. | mouse in 20’
e Allows for higher throughput

Imaging isotopes difficult to see
otherwise (°0Y, 223Ra)

Acquisition time of a few minutes

Ultra-low signal intensity
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Imaging MMP-2 activity
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Quantitative imaging

o CLI/SCIFl is truly multimodal
e Same agent for CL and PET
e F&T equation to quantify

* Only absolute quantitative optical
method

e PET provides internal standard

a, \'\i Thorek D et al. (2013) Nature Medicine 19(10):1345-50
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Fluorescent footprint of FDG

* Very few approved targeted fluorescence agents
available.

* Many clinically PET tracers are attainable.

* Could we use the many PET agents for optical
imaging?

* Cerenkov = weak optical signal from
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Fluorescent footprint of FDG
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Clinical Applications

e US has 7 PET scanners / 10¢ people, Latin America 0.3 and India 0.07!

* [racers available but access is very limited.

* Could we use CLI to bridge the gap and offer accessible nuclear imaging?
e PET/CT scanner ~$2,000,000 versus CLI system ~$150,000

* Triage access to rare PET/CT scanners

* Monitoring of a-based therapies, cheaper alternative to SPECT
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Challenges

* Biggest challenge is low SI, need to exclude ambient light
* Especially challenging in any clinical setting

* Radioactive exposure of surgeons and patients
* "Clinical CLI considered impossible” (thanks, reviewer 3)
* Solutions:

* Back table approach (ex vivo)

* Specialized clinical Cerenkov imaging system (in vivo)

* Expanding the spectral range
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Back Table imaging

LightPath™ « _a UgimronT

Grotendorst MR et al. (2017) JNM 58(6):891
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Back Table imaging

LightPath™ « _a UgimronT
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igone Cerenkov imaging system
. | T,

/
Optical Fibre bundle |
Flexible support arm

Optical Fibre bundle

Monitor support arm

Pre-clinical enclosure
Including reference
capture LEDs

Interlock and LED

control box

Lead shielded Notebook t

Instrument containing otebook computer .

EMCCD camera and for control and Kl d n e)’S
optical filter Image storage

PC3+

Instrument trolley

@\

Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559



Cerenkov imaging s

E Pratt M Skubal B McLarney

www.nature.com/natbiomedeng /May 2022 Vol. 6 No. 5

nature —
biomedical
engineering

Cerenkov light,
visible to the camera
as tissue- penetrating
red light

Camera lens

Fiberscope

Finding tumours g
via Cerenkov lummescenc Mglng

Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559



Cl

inical Fiberscope

Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559



Clinical Fibersco

Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559

1884



Clinical Fiberscope
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Clinical Fiberscope

2 ¢ kg -

Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559 $
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Imaged tracers

Radiopharmaceutical | Indication Clinical Typical Cerenkov light Total possible Number of
imaging dose mCi generated by Cerenkov light at patients
mode (GBq) isotope injection imaged

(photons/decay)*~*® | (photons/second) x 10’

Na''I Thyroid cancer SPECT 100-200 0.669 5.0 25

adjuvant therapy (3.7-7.4)

*F-FDG General disease PET 10-14.9 1.32 0.7 20

staging (0.37-0.55)

*Ga-DOTATATE Neuroendocrine PET 4.4-5.5 33.9 6.3 28

PET imaging (119-149)

""Lu-DOTATATE Neuroendocrine SPECT 188-200 0.141 1.0 26

radiotherapy (6.9-7.4)

*2RaCl, Metastatic None 0.091-0.177 | 28.0104 (with 0.2 7

castration-resistant (separate (0.0033- daughters)
prostate cancer PET or 0.0065)
therapy SPECT scan)

Table 1. Radiotracers and details of accrual for IRB 17-538 specifying range of radiotracer administered and number
of patients accrued at time of writing. Details reflect range of administered activity to the patient and computed

Cerenkov light based on (35:36).
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Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559
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IBF-FDG Imaging

I8F-FDG [2.1 mCi iv (4.7 puCi locally)

Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559
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Imaging of a-emitters currentlx difficult
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CLI of a-emitters in the visible

8F PET

Pratt E et al. (2022) Nature Biomedical Engineering 6:5 559




Listening to the light

(a) ’ (iii) Pressure rise
(il) Temperature (iv) Image
i) Laser excitation rise And propagatlon reconstruction
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Optoacoustic Imaging
Light in and Sound out: Listening to the light

Lesion

Light

trasound




Optoacoustic Imaging
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Skin chamber vs. RSOM

Intravital microscopy Optoacoustic imaging
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e | aborious experiments limit number * | ongitudinal studies in many animals possible
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Raster Scanning Optoacoustic Mesoscopy
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Pharmacologic reactions of vessels

K Haedicke

Epinephrin intravenous

before

CT26 tumor

Haedicke K et al (2020) Nature Biomedical Engineering (4): 286-97




K Haedicke | Coleman A Scherz
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maging therapy at work - later time points

vasc. normalization
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Imag ng therapy at work - later time points
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Imag ng therapy at work - later time points
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Clinical Optoacoustic Imaging
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Clinical Optoacoustic Imaging
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Melanin as contrast agent
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Melanin as contrast agent

Melanoma model
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