


Advanced Light Microscopy
Course, GSK Cancer Engineering

Alexandros Pertsinidis, PhD
Structural Biology Program

pertsina@mskcc.org



Imaging across spatial scales

| | | | | | |
0.1fnm 1nm 10nm 100nm 1um 10pm 100um 1mm 1cm 1m

NMR VR
Crystallography PET
Electron-microscopy CT

Optical Microscopy



What a microscope needs to do

«  Magnify things
+ Resolve points which are close together
«  Collect as much light as possible (esp. for fluorescence)

« Do all of the above while introducing as little distortion as possible

Ocular (eyepiece)

Also, for imaging live biological samples
* Speed is important
* Must not disturb biological process

Objective lens
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https://downloads.micron.ox.ac.uk/lectures/onbi_2014-2015/week-1/ONBI_Lecture_03_imageformation_resolution.pdf



Image position and magnification depend on lens
curvature (focal length) and on the physical
distance from the object to the lens
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All simple lenses have associated aberrations

+ Still may encounter: chromatic aberration on cheap microscopes (prism effect--but can
be reduced by using monochromatic light), spherical aberration when imaging deep
into samples (e.g. embryos, even when the objective is "corrected"), field curvature
when using bright lenses for fluorescence (but this is not a problem if you're imaging
cells only in the center of the field)

More lens elements = better correction,
but also possibly less light throughput

On-axis aberrations

=

. =
Planapochromat Achromat and
fluarite

Figure 4-9

Objective lens designs. Two popular lenses for fluorescence microscopy are shown.
Apochromatic lenses may contain 12 or mare lens elements to give bright, flat images with
excellent color correction across the visual spectrum. Fluorite lenses have fewer lens
components and produce sharp, bright images. These lensas exhibit axcellent color
correction and transmit UV light.

L—Hj, Achromat = corrected for 2 colors

Distortion

Field curvature Barrel distortion Pincushion distortion
© Apochromat = corrected for 3 colors
Figure 4-8 o Plan = flat-field (although not always to
Aberrations of a simple lens. (a) Chromatic aberration: Parallel incident rays of different — . .
wavelength are focused at different locations. (b) Spherical aberration: Incident rays parallel full limits of field of Vle\f\/)

to the optic axis and reaching the center and the periphery of the lens are focused at

different locations. (c) Coma: Off-axis rays passing through the center and periphery of the

lens are focused at different locations. (d) Astigmatism: An off-axis aberration causes waves

passing through the vertical and horizontal diameters to focus an object point as a streak. T E ST B E F O I l
(e) Distortion and field curvature: The image plane is curved and not planar. So-called barrel R E B U Y | N G 1y
and pincushion distortions produce images that are not high in fidelity compared to the

object.

https://downloads.micron.ox.ac.uk/lectures/onbi_2014-2015/week-1/ONBI_Lecture_03_imageformation_resolution.pdf
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LABEL-FREE IMAGING



Contrast Enhancing Techniques

Bright
Field

Phase
Contrast
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Phase Contrast & DIC

Phase Contrast Imaging of Transparent Thin Specimens
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Quantitative Phase Imaging
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ACS Nano 2022, 16, 8, 11516—11544 https://doi.org/10.1021/acsnano.1c11507



Quantitative Phase Tomography
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Nat Methods 4, 717-719 (2007). https://doi.org/10.1038/nmeth1078
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Quantitative Phase Tomography

Camera

Nat Methods 4, 717-719 (2007). https://doi.org/10.1038/nmeth1078



FLUORESCENCE IMAGING



https://micro.magnet.fsu.edu/primer/java/jablonski/jabintro/index.html

Fluorescence Basics

Jablonski Energy Diagram
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Fluorescent Probes

Fluorescent proteins
GFP-derived mRFP1-derived Evolved by SHM
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a Shifting spectral properties

b Improving photostability and brightress

“ Lavis LD, 2017.
Annu. Rev. Biochem. 86:825-43
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Anatomy of Fluorescence Microscope

Inverted Tissue Culture Fluorescence Microscope
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Normalized intensities @

Seo, J., Sim, Y., Kim, J. et al.

Multi-color Imagmg

CF405S CF405M ATTO390 ATTO514 ATTO532 CF568 ATTORho101 ATTO594 CF633 CFSBOR CFGSOR ATTO725

Alexa488

. Nat Commun 13, 2475 (2022)
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Multi-color Imaging

)

6-color LLS imaging of organelles in COS7 cell

Valm, A., Cohen, S., Legant, W. et al. Nature 546, 162-167 (2017).






ENHANCED RESOLUTION AND SUPER-
RESOLUTION IMAGING



wikipedia

Image formation in fluorescence microscope

I(r) =U@) @ [E(r)c(r)]

I(r):Image

U(r) = PSF(r): Point-spread Function
E(r): Excitation Intensity

c(r): Fluorophore distribution in sample



Wide-Field Imaging

PSF OTF
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Confocal Microscopy

Detector (PMT)

Image on pinhole plane s, given beam on sample atr

I(r,s) = j drru(r —r' + s)[E(r —r')c()]

Pinhole

jective lens

Y — Confocal image, integrate over pinhole (radius = a):

Dete{tionvolume ICOTlf (r) — j ds * I(r) S) —

fa dsU(r —r' +s) f dr' [E(r —r)c(r’)] =
s=0
“PSF,(r) ® [E@)c(r)]

Epifluorescence Confocal



Confocal PSF and OTF

PSF OTF

For small pinhole (radius = a->0):
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Confocal performance vs. pinhole diameter
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n = refractive index of immersion liquid
NA = numerical aperture of the objective
Aexe = wavelength of the excitation light
If NA < 0.5, equation (2) can be approximated by:
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Theoretically 1.4x better resolution

But at expense of signal!

Carl Zeiss



Increase in axial resolution — 4Pi/I5M

2-photon exc

QO

2PE 4Pi type C

4))

I°>M

Journal of Microscopy, Vol. 222, Pt 2 May 2006, pp. 105-117



Image Scanning and Photon reassignment
MICroscopy

Image on pinhole plane s, given beam on sample atr

I[(r,s) = j driu(r —r'+ s)E(r —r")c(’)

Y
U.«(r), peak is between r+s and r.

For photons detected at s, most likely emitter position is at r+s/2.
Reconstruction:

- shift signal to most probable position

- sum over s

Mueller and Enderlein, PRL 104, 198101 (2010)



Image Scanning and Photon reassignment

MICroscopy

Lys(r) = [ds*I(r—s/2,s)= [ dr

[dsU(@r—1r"+s/2)E(r—r' —5s/2)

Substitute: (s = 4v — 2r + 27"’)/

Mueller and Enderlein, PRL 104, 198101 (2010)

Upys(r)|= 4j dvUQ2v)E(2r — 2v)

_ —(k\| |.(k
Uims(k) =2U <§> * E <§>

2x resolution “attenuation factor”

c(r’)



Image Scanning Microscopy
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Optical Photon Reassignment Microscopy
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Gustafsson, J Microscopy, 2000

Structured lllumination Microscopy

lllumination Image

c d e I
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3D Structured lllumination Microscopy (SIM)
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Gustafsson et al, Biophys J, 2008



Structured Illlumination Microscopy

Li et al, Science, 2015 Caveolae dynamics in a COS-7 cell
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Stimulated emission depletion (STED) microscopy
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Resolution scaling in STED microscopy
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Combination of STED with 4Pi interferometry
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Single-molecule localization microscopy (SMLM)
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Discoveries by SMLM

a Nucleosome clutches b Nuclear pore complexes
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Lelek et al. Nat Rev Methods Primers (2021).



Image-based Single-molecule Localization

100 photons 1,000 photons 10,000 photons

) ) ()

Fundamental limit: signal-to-noise (“uncertainty principle”)
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3D Localization approaches
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Wang et al., Cell (2016)

Advanced Techniques:
Modulation-enhanced Localization
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c

Photon counts

Modulation enhanced localization
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IMAGING LIVE CELL AND MULTI-CELLULAR
SYSTEMS



Multi-photon Microscopy
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Miniature two-photon microscopy

Enlarged FOV: Tapered fiber
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Zong et al, Cell (2022)

Multi-photon Microscopy

Large-scale calcium imaging

Climbing &
jumping:







Trade-offs in imaging live biology

Sample health Spatial resolution

Signal-to-noise Temporal resolution
ratio

Laissue et al. Nat Meth (2017).



Selective-plane lllumination Microscopy (SPIM)
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SPIM with “Non-diffracting” Bessel beams
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Bessel Beam Arrays and Bounded Optical Lattices
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Bounded 2D Optical Lattices
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Chen et al, Science (2014)



SPIM with Bounded Optical Lattices (Lattice Light-
Sheet Imaging
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Lattice Light-Sheet Imaging
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Cao et al., Nat Biotech (2021)

3D Interferometric LLS Imaging
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Selective-plane lllumination Microscopy (SPIM)

Chen et al, Science (2014)



Selective-plane lllumination Microscopy (SPIM)
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Image Degradation in thick samples
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Closed-loop AO with direct wavefront sensing
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Adaptive Optlcs Imaging
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Adaptive Optics Imaging (Wide-field)
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Adaptive Optics Imaging
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Adaptive Light-sheet Imaging
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