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Making muscle: skeletal myogenesis in vivo and in vitro
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ABSTRACT

Skeletal muscle is the largest tissue in the body and loss of its function
or its regenerative properties results in debilitating musculoskeletal
disorders. Understanding the mechanisms that drive skeletal muscle
formation will not only help to unravel the molecular basis of skeletal
muscle diseases, but also provide a roadmap for recapitulating
skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs
have become an important tool for probing developmental questions,
while differentiated cell types allow the development of novel
therapeutic strategies. In this Review, we provide a comprehensive
overview of skeletal myogenesis from the earliest premyogenic
progenitor stage to terminally differentiated myofibers, and discuss
how this knowledge has been applied to differentiate PSCs into
muscle fibers and their progenitors in vitro.
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Introduction

With more than 600 individual muscles, skeletal muscle represents
the largest tissue mass of the body and is essential for motion and
support. Skeletal muscles are distinct from both cardiac and smooth
muscles in that they can be voluntarily controlled by the organism.
They are composed of bundles of striated myofibers that consist of
elongated multinucleated syncytia. These fibers are surrounded by a
basal lamina and are filled with a highly organized cytoskeleton
composed of myofibrils. Skeletal muscles of the body arise from the
somites, transient embryonic structures that originate from the
paraxial mesoderm. By contrast, muscles of the head and neck
derive from the anterior paraxial mesoderm, which does not form
somites, and which will not be discussed in this Review.

Despite its regenerative capability, compromised muscle function
is a hallmark of a number of conditions, ranging from
developmental disorders to rhabdomyosarcoma and muscular
dystrophies (Emery, 2002). In the adult, acute muscle injury such
as volumetric loss, late-onset muscle dystrophies, neuromuscular
degenerative diseases, cachexia as well as aging (sarcopenia) can
result in significant muscular impairment leading to a severely
compromised quality of life. There is an acute need for novel
therapies to treat muscle diseases, and understanding the
developmental basis of skeletal muscle formation and function
holds value for the elucidation and possible treatment of muscle
pathologies. Notably, it is well known that rhabdomyosarcomas
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exhibit undifferentiated myogenic features (Dagher and Helman,
1999), and that during adult muscle regeneration, developmental
programs are partially reactivated in the injured tissue (Dumont et al.,
2015). Therefore, a better understanding of myogenesis can also shed
light on the mechanisms of muscle disease and regeneration.
Understanding how muscle is formed in vivo will also help pave
the way for recreating muscle tissue in vitro from pluripotent stem
cells (PSCs), either embryonic (ESCs) or induced (iPSCs).
Although this field has lagged behind other lineages such as
cardiac, neural and endodermal, the in vitro transposition of early
signaling events as they occur during paraxial mesoderm
specification in the embryo has led to recent success in this area
(Chal et al., 2015; Crist, 2017; Hicks and Pyle, 2015). This was
made possible thanks to the wealth of knowledge accumulated over
decades of developmental studies in model organisms. The ability
to generate skeletal muscle in vitro opens up new avenues for
deciphering essential but poorly understood aspects of skeletal
myogenesis such as myoblast fusion and satellite cell
differentiation, and might also lead to important breakthroughs in
disease modeling, drug screening and cell therapeutics. In this
Review, we first provide a comprehensive overview of skeletal
myogenesis in vivo, from its earliest developmental origin in the
paraxial mesoderm to the formation of mature myofibers. We then
focus on recent efforts to recapitulate muscle specification and
skeletal myogenesis from PSCs in vitro, covering both directed
differentiation and direct reprogramming approaches.

From the beginning: the developmental origin of skeletal
muscle

Skeletal muscles originate from the paraxial mesoderm, a tissue that
forms in the primitive streak/blastopore during gastrulation and later
in the tail bud during embryonic axis elongation (Fig. 1). The nascent
paraxial mesoderm constitutes the presomitic mesoderm at the
posterior tip of the embryo. The presomitic mesoderm is a transient
tissue that can be further subdivided into an immature posterior and a
committed anterior region, the latter of which segments to form the
somites. It is within the somites that skeletal myogenesis is initiated
with the specification of the premyogenic progenitors and skeletal
myoblasts. Several phases of proliferation and differentiation lead to
the formation of multinucleated myofibers from the fusion of
mononucleated myocytes. In the following sections, we discuss the
key cellular and molecular events that regulate the progression
through these developmental steps in the embryo.

Specification of paraxial mesoderm progenitors

The paraxial mesoderm is composed of two bilateral strips of tissue
flanking the neural tube and notochord. Posteriorly, these strips are
unsegmented and form the presomitic mesoderm, while anteriorly
they are composed of somites which define the embryonic segments
(Fig. 1A). In amniotes, such as mouse or chicken, the paraxial
mesoderm forms by ingression of the epiblast at the level of the
anterior streak and later on from the tail bud. Formation of the
primitive streak and activation of Wnt3 and the early mesoderm
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Fig. 1. The formation and differentiation of the paraxial mesoderm. (A) Spatial organization of mesoderm fate in the posterior region of an amniote embryo.
Mesoderm forms by ingression of epiblast cells at the level of the primitive streak (PS). Mesoderm subtypes (color-coded) are distinguished by their mediolateral
position, whereby the axial mesoderm corresponds to the notochord. Progressively more lateral domains of the paraxial mesoderm (PM), intermediate

mesoderm (IM) and lateral plate mesoderm (LPM) are shown and the corresponding marker genes are indicated. The nascent mesoderm is patterned by specific
signaling pathways — in particular BMP, Wnt, FGF and retinoic acid (RA) signaling — the activities of which are distributed in gradients in the developing

embryo (as shown to the right). During axis elongation (arrow), paraxial mesoderm progenitors are, at early stages, located in the anterior primitive streak posterior
to the node, and they become incorporated into the tail bud later on. These progenitors include the neuromesodermal progenitors (NMPs). Dorsal view, anterior to
the top. (B) Diagram recapitulating the differentiation of paraxial mesoderm toward skeletal muscle. From left to right, the developmental sequence (top) and the
intermediate cell types with their marker genes (bottom) are shown. Cell types are color-coded according to the tissue types shown in A. aPSM, anterior presomitic

mesoderm; pPSM, posterior presomitic mesoderm; Emb., embryonic.

marker brachyury (T) depend on several signaling factors including
Nodal and BMP4 (Beddington and Robertson, 1999; Liu et al., 1999;
Ramkumar and Anderson, 2011; Tam and Loebel, 2007). Detailed
fate mapping and grafting studies have identified several types of
progenitors that give rise to the paraxial mesoderm. One type
corresponds to a resident cell population able to give rise to both
paraxial mesoderm and neural tube derivatives, the so-called
neuromesodermal progenitors, which co-express the genes 7 and
Sox2 (Garriock et al., 2015; Takemoto et al., 201 1; Tzouanacou et al.,
2009). A second type of progenitor gives rise only to paraxial
mesoderm, while a third type can give rise to both paraxial mesoderm
and lateral plate derivatives (Ilimura et al., 2007; Stern and Canning,

1990; Wymeersch et al., 2016), and a fourth type can give rise to
paraxial mesoderm and notochord (Selleck and Stern, 1991).
Paraxial mesoderm specification is concomitant to precursor exit
from the progenitor zone and their entry to the posterior presomitic
mesoderm, which are processes largely controlled by the Wnt and
fibroblast growth factor (FGF) signaling pathways (Fig. 1A) (Ciruna
and Rossant, 2001; Takada et al., 1994; Yamaguchi et al., 1994).
Key Wnt/FGF targets including the transcription factors T, Tbx6
and Msgnl are expressed in partially overlapping domains of the
presomitic mesoderm (Chapman et al., 1996; Ciruna and Rossant,
2001; Yamaguchi et al., 1999; Yoon et al, 2000). These
transcription factors are essential for paraxial mesoderm
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specification and patterning (Chapman et al., 1996; Nowotschin
et al., 2012; van der Velden et al., 2006; Wilkinson et al., 1990;
Yoon and Wold, 2000). In the Msgn!/ mouse mutant, embryos
develop an enlarged tail bud that fails to differentiate further into
posterior presomitic mesoderm (Chalamalasetty et al., 2014; Yoon
and Wold, 2000). In the absence of Wnt or FGF signaling, the
mouse embryo is truncated and ectopic neural tissue forms in place
of the posterior paraxial mesoderm (Boulet and Capecchi, 2012;
Ciruna and Rossant, 2001; Takada et al., 1994). Thus, Wnt and FGF
signaling are required for the differentiation of neuromesodermal
progenitors toward a paraxial mesoderm fate at the expense of neural
fate (Garriock et al., 2015; Jurberg et al., 2014). Downregulation of
FGF and Wnt signaling in the tail bud signals the arrest of paraxial
mesoderm production and the end of axis elongation (Cambray and
Wilson, 2007; Denans et al., 2015; Olivera-Martinez and Storey,
2007; Tenin et al., 2010). Wnt3a is required for expression of Fgf8
in the tail bud (Aulehla et al., 2003), whereas Fgf4 and Fgf8 are
necessary for Wnt signaling in the nascent presomitic mesoderm
(Boulet and Capecchi, 2012; Naiche et al., 2011). Thus, the Wnt and
FGF pathways form a closed regulatory loop that controls the
specification and formation of the paraxial mesoderm.

BMP signaling also plays an important role in the specification and
fate of mesoderm, both along the anterior-posterior axis at the early
primitive streak stage and later along the mediolateral axis during late
primitive streak and tail bud stages (Winnier et al., 1995). BMP4 is
secreted by the posterior primitive streak and lateral tissues such as the
lateral plate and extraembryonic mesoderm. BMP action is
counteracted by opposite gradients of noggin and other BMP
antagonists produced by the axial structures of the embryo
(McMabhon et al., 1998; Pourquié et al., 1996; Reshef et al., 1998;
Tonegawa et al., 1997). This results in the establishment of a BMP
signaling gradient that controls the mediolateral fates of mesoderm.
Each mesodermal type, from the notochord to the extraembryonic
mesoderm, requires progressively higher levels of BMP signaling for
their specification (Kishigami and Mishina, 2005). Not surprisingly,
formation of the paraxial mesoderm is exquisitely sensitive to changes
in BMP signaling. For example, when a bead producing the BMP
inhibitor noggin is grafted in the posterior primitive streak, which
normally gives rise to lateral plate, these cells are converted to a
paraxial mesoderm fate, leading to the formation of ectopic somitic
columns (Tonegawa et al., 1997). In another study, a graft of quail
posterior primitive streak, which would normally give rise to the
lateral plate mesoderm, together with noggin-producing cells led to
the formation of ectopic somites in a chicken embryo host (Streit and
Stern, 1999). Also, mouse embryos chimeric for a BMP receptor null
mutation show an expansion of the paraxial mesoderm domain,
evidenced by the formation of ectopic rows of somites (Miura et al.,
2006). Strikingly, this phenotype can be rescued by inhibiting FGF
signaling, suggesting that BMP and FGF may antagonize each other.
Together, this argues in favor of some plasticity of the paraxial
mesoderm precursors of the primitive streak, which can still be
induced to a lateral plate mesoderm fate if exposed to BMP signaling.
In addition, these data indicate that, in vivo, BMP signaling needs to be
suppressed for cells to acquire and maintain paraxial mesoderm fate.

Differentiation of the presomitic mesoderm

The specification of the future pairs of embryonic segments — the
somites — is the result of highly dynamic molecular processes within
the presomitic mesoderm. This involves a molecular oscillator known
as the segmentation clock, which generates pulses of Notch, FGF and
Wnht signaling to control the periodic production of somites (reviewed
by Hubaud and Pourqui¢, 2014). The posterior domain of the paraxial
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mesoderm is composed of four consecutive transcriptional domains:
the tail bud, the posterior presomitic mesoderm, the anterior presomitic
mesoderm, and the forming somite (S0) (Chal et al., 2015). The tail bud
domain contains the paraxial mesoderm progenitors and is exposed to
the highest Wnt/FGF signaling activity (Aulehla et al., 2003; Chal
etal., 2015; Naiche et al., 2011). More anteriorly, cells of the posterior
presomitic mesoderm are characterized by the expression of genes such
as Msgnl (Fig. 1). In this domain, the Wnt/FGF pathways are still
highly active and are essential for maintenance of paraxial mesoderm
identity and for segmentation clock oscillations (Aulehla and Pourquie,
2008; Chal et al., 2015; Dunty et al., 2008; Jurberg et al., 2014). The
Wnt/FGF activity gradient along the presomitic mesoderm is proposed
to define a threshold, at which level cells become competent to respond
to the clock by activating the expression of segmentation genes such as
Mesp2 (Aulehla et al., 2003; Dubrulle et al., 2001). This specific
threshold is called the determination front or wavefront and is roughly
positioned at the posterior boundary of the anterior third of the
presomitic mesoderm (Fig. 1A). Cells of the posterior presomitic
mesoderm undergo abrupt signaling, metabolic and transcriptional
changes as they enter the anterior presomitic mesoderm (Chal et al.,
2015; Oginuma et al., 2017; Ozbudak et al., 2010) (Fig. 1A), including
downregulation of Msgn I and activation of Mesp2, Pax3, Foxcl/2 and
Meox1/2 (Goulding et al., 1991; Kume et al., 2001; Mankoo et al.,
2003; Sagaetal., 1997) (Fig. 1B). In the anterior presomitic mesoderm,
the posterior Wnt/FGF gradients are counteracted by retinoic acid (RA)
produced by the somitic region (Fig. 1A). The tail bud containing the
paraxial mesoderm precursors is protected from the differentiating
action of RA by the expression of the RA-degrading enzyme Cyp26
(Abu-Abed et al., 2001; Iulianella et al., 1999; Sakai et al., 2001).
The bilateral stripes of Mesp2 define the anterior and posterior
boundaries of the future segment (Oginuma et al., 2008; Takahashi
et al., 2000). Anterior to the determination front, the newly formed
segment acquires its posterior and anterior identities in response to a
dynamic process largely controlled by Notch signaling (Chal and
Pourquie, 2009). The cells of the posterior presomitic mesoderm are
mesenchymal and highly motile (Bénazéraf et al., 2010;
Chalamalasetty et al., 2014; Delfini et al., 2005), whereas the
anterior presomitic mesoderm undergoes a mesenchymal-to-
epithelial transition (MET), becoming progressively organized
into dorsal and ventral epithelial layers surrounding a mesenchymal
core (Duband et al., 1987; Martins et al., 2009). This process is
controlled by Tcf15 (paraxis), a transcription factor activated in the
anterior presomitic mesoderm by Wnt6 from the dorsal ectoderm
(Burgess et al., 1996; Linker et al., 2005; Sosi¢ et al., 1997). In the
anteriormost presomitic mesoderm, a posterior fissure forms at the
boundary between Mesp2-positive and -negative cells, resulting in
the formation of an epithelial block of tissue — a new somite. This
tissue remodeling involves Eph-ephrins (Barrios et al., 2003;
Nakajima et al., 2006; Watanabe et al., 2009), cadherins (Chal et al.,
2017b; Horikawa et al., 1999) and the small G proteins Cdc42 and
Racl (Nakaya et al., 2004). Even so, in mouse or chicken embryos
with severe segmentation and/or epithelialization defects, timely
differentiation of the paraxial mesoderm as well as muscle and
cartilage formation is observed, although improperly patterned
(Bessho et al., 2003; Burgess et al., 1996; Dale et al., 2003; Saga
et al., 1997). Thus, the differentiation and patterning of the paraxial
mesoderm can be genetically uncoupled, suggesting that the
underlying molecular mechanisms are relatively independent.

Compartmentalization of somites
Soon after their formation, somites become compartmentalized along
the dorsoventral axis into a dorsal epithelial dermomyotome and a
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ventral mesenchymal sclerotome. The dermomyotome gives rise to
skeletal muscle, brown fat and dermis of the back, whereas the ventral
sclerotome produces the axial skeleton and tendons. At the time of
their formation, each somite is composed of an anterior 7hx/8" and a
posterior Uncx™ compartment with distinct derivatives (reviewed by
Chal and Pourquie, 2009). In the chicken embryo, newly formed
somites can also be further subdivided into a medial and a lateral
compartment (Olivera-Martinez et al., 2000; Ordahl and Le Douarin,
1992; Selleck and Stern, 1991), which exhibit different fates and
express different sets of genes (Martins et al., 2009; Pourquie et al.,
1996). Cells of the lateral somite give rise to the hypaxial muscles of
the limbs or the intercostals, whereas the medial somite forms the
sclerotome, dermis of the back and paraxial muscles (Fig. 2) (Olivera-
Martinez et al., 2000; Ordahl and Le Douarin, 1992).

Cells of the newly formed somites are not yet committed to a
specific lineage (Aoyama and Asamoto, 1988). Grafting experiments
and in vitro explant cultures have shown that somitic domains are
progressively specified in response to factors secreted by the
surrounding tissues, namely the dorsal ectoderm, neural tube,
notochord and lateral plate (Fig. 2A) (reviewed by Christ and Scaal,
2008). Wnt, BMP and Shh represent the major signaling pathways for
the induction of different somitic fates (reviewed by Marcelle et al.,
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2002; Yusuf and Brand-Saberi, 2006). Dorsally, local inhibition of
BMP signaling is also essential for proper dermomyotome
specification, while Wnt signals produced from the dorsal neural
tube and ectoderm act to maintain the dermomyotome fate (reviewed
by Hirsinger et al., 2000). Moreover, lineage-tracing studies in the
mouse embryo have shown that the central engrailed-positive domain
of the dermomyotome contains early progenitors positive for Pax7,
Pax3 and/or Myf5, which will give rise to brown fat (Atit et al., 2006;
Lepper and Fan, 2010; Sanchez-Gurmaches and Guertin, 2014; Seale
et al., 2008). Ventrally, Shh signaling from the notochord and floor
plate specifies the sclerotomal compartment, which downregulates
Pax3 and upregulates Pax/ and Nkx3.2 expression (Fig. 2A) (Fan and
Tessier-Lavigne, 1994; Johnson et al., 1994; Murtaugh et al., 1999).
However, Shh can also stimulate the formation of myotomal cells
(Borycki et al., 1999).

Myogenesis in the embryo and the adult

Initiation of myogenesis in the somite

In mouse and chicken embryos, the first sign of myogenesis is the
activation of the myogenic factor Myf5 in cells of the dorsomedial
part of the newly formed somite (Ott et al., 1991; Pownall and
Emerson, 1992) (Fig. 1B). The dorsal epithelial dermomyotome,

Fig. 2. Somite patterning and myotome formation.
(A) Spatial relationship between the epithelial somite
and the surrounding structures. The mesodermal
subtypes are shown, as well as the future epaxial and
hypaxial domains. Each epithelial somite is patterned
into dorsoventral, mediolateral and anteroposterior

BMP compartments by signaling factors secreted by the

surrounding tissues. Dorsally, Wnt signaling is

required for dermomyotome specification, while BMP

signaling produced by the lateral plate mesoderm
(LPM) inhibits the differentiation of somitic lineages.
Ventrally, Shh secreted from the midline plays a major
role in sclerotome induction. (B) Spatial relationship
between the differentiated somite and the
surrounding structures. Dorsally, the somite
differentiates into the dermomyotome (DM, red),
which can be further subdivided into central
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dermomyotome (cDM), dorsomedial lip (DML) and
ventrolateral lip (VLL). The dermomyotome also gives
rise to the myotome (m, orange), which forms beneath
from the four DM lips. Cells delaminate from the VLL
to give rise to the myogenic progenitors of the limbs
that migrate into the LPM. The ventral somite
undergoes an epithelial-to-mesenchyme transition to
form the sclerotome (scl, blue). BMP signaling (not
shown) produced by the LPM transiently inhibits

somitic lineage differentiation. Concomitantly, neural
crest (nc, gray) delaminates from the dorsal neural
tube and, while migrating ventrally, contacts
dermomyotomal cells to promote myogenic induction
through Notch activation and B-catenin stabilization
(asterisk). The respective contributions of the various
mesodermal subtypes to the adult tissues are listed
beneath each tissue type; for example, the notochord
contributes to the formation of the nucleus pulposus in
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the adult. ao, dorsal aorta; IM, intermediate
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which expresses Pax3, becomes subdivided into a central domain, a
dorsomedial lip, anterior and posterior lips, and a ventrolateral lip
(Gros et al., 2004). Soon after dermomyotome formation, cells in
the dorsomedial lip begin to express Myf5 and to downregulate
Pax3 (Bober et al., 1994; Ott et al., 1991; Williams and Ordahl,
1994) (Fig. 2B). The primary myotome forms as a cell layer
sandwiched between the dermomyotome dorsally and the
sclerotome ventrally (Ordahl, 1993).

The first postmitotic skeletal muscle cells formed in the embryo

specialized cytoskeletal proteins including slow (type I, Myh7) and
embryonic (Myh3) myosin heavy chains (MyHC), o-actins [cardiac
(Actcl) and skeletal (Actal)] and desmin (Babai et al., 1990; Furst
etal., 1989; Lyons etal., 1991a, 1990; Sassoon et al., 1988), as well
as the Notch ligand jagged 2 (Hayashi et al., 1996; Hirsinger et al.,
2001) and metabolic enzymes such as B-enolase and carbonic
anhydrase III (CAIII) (Condon et al., 1990; Lyons et al., 1991b;
Tweedie et al., 1991). The newly formed mononucleated myocytes
elongate along the anterior-posterior axis to span the entire somite

are the myocytes of the myotome (Fig. 3A). These cells express length, a process controlled by Wntl1 signaling (Christ et al., 1983;
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Fig. 3. Stages of skeletal myogenesis from the embryo to the adult. (A) Developmental sequence of muscle formation from the dermomyotome. The early
myotome (left, yellow) is composed of primary myocytes, which are aligned along the anteroposterior axis and span each somitic compartment. During primary
myogenesis (middle), Pax3* progenitors (yellow cytoplasm, green nuclei) delaminate from the dorsal side of the dermomyotome and contribute to the formation of
large primary myofibers (yellow). Some Pax3* progenitors also migrate from the ventral lip to populate the body wall and limb buds (hypaxial domain). During
secondary myogenesis (right), Pax7* myogenic progenitors (red cytoplasm, brown nuclei) contribute to secondary (red) fiber formation, using the primary fibers
as a scaffold and contributing to the growth of fetal muscles. During this phase, satellite cell precursors (purple cytoplasm, brown nuclei) localize under the basal
lamina (dotted line) of the fibers where they can be found in adult muscles. Key processes associated with each stage are listed above. nt, neural tube; n,
notochord; DM, dermomyotome; MTJ, myotendinous junction; NMJ, neuromuscular junction. (B) Differentiation of somitic progenitors toward skeletal muscles
and adult satellite cells. Myogenic stem cells contribute to fetal myogenesis while maintaining a pool of progenitors, which eventually become located on mature
myofibers in the satellite cell niche. For each step, markers for the intermediates and differentiated skeletal myofibers are shown. Additional markers are also
shown in smaller font. Differentiation stages along the myogenic lineages are color-coded according to A. ‘Myocytes’ encompasses also myotubes and myofibers.
Emb., embryonic. Glut1, 2 and 4 are also known as Slc2a1, Slc2a2 and Slc2a4, respectively; for other symbols and synonyms see the main text.
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Denetclaw et al.,, 1997; Gros et al., 2009). More cells are
progressively added to the myotome by the other dermomyotomal
lips (Gros et al., 2004) and these cells fuse to existing myocytes
leading to the formation of slow MyHC" myofibers (Sieiro-Mosti
et al., 2014) (Fig. 3A). After formation of the myotome, the central
dermomyotome loses its epithelial character and its Pax3" cells
translocate to populate the myotome, providing the myogenic
precursors involved in later phases of myogenesis (Fig. 3) (Gros
et al., 2005; Kahane et al., 2001; Relaix et al., 2005). Myogenesis
progresses as a rostral-to-caudal wave of maturation as the embryo
elongates and as new pairs of somites are sequentially added (Cossu
et al., 1995; Kato and Gurdon, 1993). Limb muscles derive from
cells migrating from the lateral dermomyotome into the developing
limb buds (Chevallier, 1979; Jacob et al., 1979). These cells
progressively organize into muscle masses and form myofibers
(reviewed by Buckingham et al., 2003). In the trunk and limbs, the
myogenic program is controlled by a core network of transcription
factors, including Pax3 and a set of muscle regulatory factors
(MRFs) consisting of Myf5, MyoD (Myodl), MRF4 (Myf6) and
myogenin (Berkes and Tapscott, 2005; Pownall et al., 2002,
Rudnicki et al., 1993; Tapscott, 2005). In the embryo, myogenin
controls the terminal differentiation of myoblasts into myocytes
(Hasty et al., 1993; Nabeshima et al., 1993; Venuti et al., 1995).
Genetic studies have also identified a set of transcription factors that
are upstream regulators of skeletal myogenesis, which include Rp58
(Zp238 or Zbtb18), Meox1/2, Six1/4, Eyal/2 and Nfix (Biressi
et al., 2007; Grifone et al., 2007, 2005; Mankoo et al., 1999, 2003;
Yokoyama et al., 2009).

Primary and secondary myogenesis

Myogenesis during development can be separated into two phases:
an early embryonic or primary phase (E10.5-E12.5 in mouse, E3-7
in chicken) and a later fetal or secondary phase (E14.5-17.5 in
mouse, E8+ in chicken) (Biressi et al., 2007; Stockdale, 1992). The
first phase results in the production of the primary myofibers, which
derive from Pax3® (mouse) or Pax3"/Pax7" (chicken)
dermomyotomal progenitors (Horst et al., 2006; Hutcheson et al.,
2009; Otto et al., 2006). These primary myofibers form the early
myotomes and limb muscles, providing the templates upon which
adult muscles will be built (Fig. 3) (Murphy and Kardon, 2011).
They express a specific set of proteins, such as the slow MyHC and
myosin light chain 1 (MyLC1, Myll) (Kelly et al., 1997). During
the second phase of myogenesis in mouse, a subset of the Pax3*
myogenic progenitors begins to express Pax7 and downregulates
Pax3. These Pax7" myogenic precursors fuse among themselves or
to the primary fibers and give rise to secondary or fetal fibers that
express specific markers such as p-enolase, Nfix or MyLC3 (Myl3)
(Fougerousse et al., 2001; Keller et al., 1992; Kelly et al., 1997;
Messina et al., 2010). At this time, the fibers also start to express fast
MyHC isoforms (Van Horn and Crow, 1989). During secondary
myogenesis, muscle growth is sustained essentially by cell fusion
and the addition of myonuclei from proliferating Pax7* progenitors
(White et al., 2010). This is in contrast to postnatal muscle growth,
which mostly results from individual fiber hypertrophy through the
addition of novel myofibrils (Gokhin et al., 2008; Sparrow and
Schock, 2009). A subset of the Pax7" progenitors will also form the
pool of adult muscle stem cells — the satellite cells (Gros et al., 2005;
Kassar-Duchossoy et al., 2005; Relaix et al., 2005).

Signaling controlling myogenesis
Embryonic tissues surrounding the somite provide key inductive
signals for skeletal myogenesis. The notochord, neural tube and

dorsal ectoderm, which produce Shh and Wnt signals, are crucial for
this process (Miinsterberg et al., 1995; Miinsterberg and Lassar,
1995; Rios et al., 2011). The neural crest cells that migrate between
the neural tube and somites also play a key role in the onset of
myogenesis by triggering Myf5 activation in dermomyotome cells.
Neural crest cells, which carry Wnt1 at their surface and also express
delta-like 1 (DI11), activate Notch signaling in the cells they contact
in the dorsomedial lip. Notch activation in the lip cells in turn
inhibits GSK3p activity and leads to the stabilization of Snail,
resulting in the delamination of cells into the nascent myotome
(Rios et al., 2011; Serralbo and Marcelle, 2014; Sieiro et al., 2016)
(Fig. 2B). Another signaling molecule, hepatocyte growth factor
(HGF), supports different aspects of myogenesis during
development. In particular, HGF produced by the lateral plate
mesoderm is essential for the proper migration of myoblasts
(Andermarcher et al., 1996; Bladt et al., 1995; Brand-Saberi et al.,
1996; Takayama et al., 1996). Insulin signaling has been shown to
act with Wnt signaling to promote myogenesis and myoblast fusion
(Charge and Rudnicki, 2004; van der Velden et al., 2006), while
FGF signaling promotes myoblast proliferation while blocking
differentiation (Itoh et al., 1996; Milasincic et al., 1996). In the
context of adult regeneration, the FGF, insulin-like growth factor
(IGF), HGF and Wnt signaling pathways have all been shown to
play a role in satellite cell activation (Charge and Rudnicki, 2004;
Flanagan-Steet et al., 2000; von Maltzahn et al., 2012). Wnt7a/Fzd7
planar cell polarity signaling is involved in the control of satellite
cell self-renewal versus differentiation (Bentzinger et al., 2014,
2013; Le Grand et al., 2009).

Another important protein for myogenesis is myostatin (Gdf8),
which represses muscle hypertrophy (Amthor et al., 2009;
McPherron et al., 1997). In the absence of myostatin, mutants
show a striking hypertrophic phenotype (Lee, 2004; reviewed by
Rodriguez et al., 2014). Additionally, a number of microRNAs
(miRNAs) are highly expressed, often specifically, in muscle cells
(Chen et al., 2006; Kim et al., 2006; Sweetman et al., 2008).
Although the identification of the signaling upstream and
downstream of these miRNAs is still in its infancy (Motohashi
et al., 2013), miRNAs regulate almost every aspect of myogenesis
(reviewed by Ge and Chen, 2011). Finally, two additional pathways
have been shown to play key roles in regulating myogenesis. In vitro
work has revealed an important role for p38 MAPK intracellular
signaling in the control of myogenesis, whereby inhibition of p38c/
B (Mapk14/11) was shown to block myogenic differentiation and
cell fusion (Cuenda and Cohen, 1999; Wu et al., 2000; Zetser et al.,
1999). The nuclear factor of activated T-cells (NFAT)/calcineurin
pathway is also active in skeletal muscle and is involved in the
control of myogenic differentiation, myotube formation and fiber
type specification (Abbott et al., 1998; Chin et al., 1998; Dunn et al.,
1999; Musaro et al., 1999; Semsarian et al., 1999).

Formation of the skeletal myofibers

Myoblast fusion, myofibrillogenesis and basal lamina

The mature skeletal myofiber contains a highly organized
cytoskeleton composed of aligned myofibrils. These fibers form
by fusion of myoblasts to produce multinucleated myotubes, which
further mature into myofibers (reviewed by Abmayr and Pavlath,
2012). The processes of myoblast-myoblast fusion and myoblast-
myotube fusion are highly regulated during development but are
still poorly understood in vertebrates. In flies, muscle fusion is
orchestrated by two distinct types of myoblasts, with a limited
number of founder cells initiating fusion with surrounding fusion-
competent myoblasts (Rochlin et al., 2010). Fusion-competent
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myoblasts produce actin-based podosome-like structures that invade
the muscle founder cell and form pores, allowing the transfer of the
cytoplasm and nucleus from the myoblast to the founder cell (Kim
et al.,, 2015b). In vertebrates, myoblast fusion starts with a
recognition and an adhesion phase involving surface receptors.
There is evidence to suggest that actin dynamics might play an
important role (Laurin et al., 2008), and proteins involved in
endocytosis and in membrane repair pathways have also been
implicated (Demonbreun et al., 2015; Kim et al., 2015a). In vivo,
elongation of the myofibers takes place by fusion of new myoblasts
at their extremities and is dependent on TGFp signaling (Gu et al.,
2016; Williams and Goldspink, 1971). The cytokine IL4 has also
been shown to control myoblast fusion, acting downstream of
NFATC?2 to control the fusion of myoblasts to myotubes (Horsley
et al., 2003).

Mpyofibrillogenesis refers to the formation of the myofibrils that fill
most of the fiber sarcoplasm, extending to both extremities of the
fibers where they anchor to the myotendinous junction (reviewed by
Sparrow and Schdck, 2009; Lemke and Schnorrer, 2017). Myofibrils
are composed of a regular array of contractile modules — the
sarcomeres. Each myofiber is also individually surrounded by a
specialized basal lamina, called the endomysium (Bowman, 1840;
Sanes, 2003), and harbors a specialized plasma membrane called the
sarcolemma, which provides structural stability and allows for
neuronal signal transduction. The sarcolemma anchors to the basal
lamina through a complex of transmembrane proteins called the
dystrophin-associated glycoprotein complex (DGC), which connects
the myofiber cytoskeleton to the extracellular matrix (ECM)
(Rahimov and Kunkel, 2013). The excitation-contraction coupling
that is integral to myofiber function is achieved through the formation
of a network of plasma membrane invaginations called T-tubules. In
the sarcoplasm, the apposition of the cisternae, a specialized
sarcoplasmic reticulum that acts as a calcium store, to the T-tubules,
forms the triads (Flucher, 1992; Flucher et al., 1992). The triads, which
are established during perinatal development (Flucher et al., 1993), are
closely associated to myofibrils and allow for the transduction of the
sarcolemmal depolarization upon neural excitation.

Myofiber types through developmental stages

Adult myofibers express specific isoforms of MyHC, which are
associated with distinct electrophysiological properties and
metabolism. Thus, oxidative slow twitch fibers express slow
MyHC (type I, Myh7), whereas glycolytic fast twitch fibers
express fast MyHC [types Ila (Myh2), 1Ib (Myh4) and IIx
(Myh1)]. The expression of MyHC isoforms follows a
developmental sequence, with the embryonic and slow MyHC
being the first to be expressed (reviewed by Schiaffino and
Reggiani, 2011). Fetal and neonatal fibers transiently express
perinatal MyHC (Myh8), while the fast isoforms start to be
expressed during late fetal myogenesis (Fig. 3B). Fiber type
specificity is controlled in part by the transcription factors Six and
Eya, which promote fast-type fiber diversity (Grifone et al., 2004;
Richard etal., 2011). Fiber type also depends on neural input, which
is established during fetal stages — as early as E14.5 in mouse limb
(Hurren et al., 2015; Martin, 1990). Thus, the final fiber type of a
given muscle is the product of its developmental history, its
innervation and, during postnatal life, the physiological demands
placed upon it (Schiaffino and Reggiani, 2011).

The origin of satellite cells

Satellite cells, which make up the main population of tissue-specific
stem cells found in adult muscle, can be traced back to the Pax7*
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myogenic progenitors of the dermomyotome central domain (Gros
et al., 2005; Kassar-Duchossoy et al., 2005; Relaix et al., 2005).
These Pax7* embryonic progenitors become the source of the adult
Pax7" satellite cells (Gros et al., 2005; Lepper and Fan, 2010; Seale
et al., 2000), although in some specific muscles, such as the
diaphragm, prospective satellite cells also maintain Pax3 expression
(Relaix et al., 2004, 2005). Notch signaling is essential to maintain
the pool of Pax3/7" progenitors, and in its absence no satellite cells
can form (Vasyutina et al., 2007). During the peak of muscle mass
growth, which is during the fetal and perinatal stages, the pool of
satellite cell progenitors actively divides and represents up to 30%
of the mononucleated cells in the mouse muscle tissue (Allbrook
et al., 1971; Hellmuth and Allbrook, 1971). However, within
2 months after birth, these progenitors are reduced in number to a
small pool of quiescent Pax7" satellite cells, which account for only
a few percent of the mononucleated cells in adult muscle (Allbrook
et al., 1971; Cardasis and Cooper, 1975; Schmalbruch and
Hellhammer, 1976). In mouse, satellite cells become enclosed
under the basal lamina of myofibers during late fetal stages, at about
E18.5 (Relaix et al., 2005). Although Pax7 is not essential for the
specification of adult satellite cells per se, these cells are
progressively lost in Pax7 mutant mice (Giinther et al., 2013;
Oustanina et al., 2004; von Maltzahn et al., 2013). A majority of the
adult Pax7" satellite cells also expresses Myf3, but these are distinct
from proliferating Myf5* myoblasts which also express MyoD
(Beauchamp et al., 2000; Cornelison and Wold, 1997; Zammit
et al., 2004) (Fig. 3).

Skeletal myogenesis in the dish: learning from development
Skeletal muscle has been generated in vitro from PSCs using two main
approaches: directed differentiation and direct reprogramming, and
sometimes a combination thereof. Direct reprogramming is achieved
by the overexpression of selected transcription factors to reprogram
cells to the myogenic lineage (Table S1). Conversely, directed
differentiation approaches have employed several methodologies,
each aimed at recapitulating the early differentiation stages that take
place in the embryo to generate skeletal muscle (Table S2). Reviews of
the field have so far been mostly comparative, focusing on the different
methods used to generate skeletal muscles in vitro and their relative
success (Abujarour and Valamehr, 2015; Baker and Lyons, 1996;
Smith et al., 2016). In the following sections, we will discuss these
studies in the context of developmental and cell biology and consider
the extent to which they recapitulate in vivo myogenesis.

Directed differentiation of PSCs into skeletal muscle

The first report of skeletal myogenesis in vitro was provided by
Rohwedel et al. (1994), who differentiated mouse ESCs (mESCs)
into embryoid bodies (EBs) and observed the expression of MRFs
and the formation of myogenin* skeletal myocytes. EBs are three-
dimensional (3D) cell aggregates that differentiate spontaneously into
the three germ layers; however, they are usually very heterogeneous
and lineage specification cannot be properly controlled (Doetschman
et al.,, 1985; Robbins et al., 1990; Yamada et al.,, 1994). More
recently, adherent monolayer cultures of PSCs have been used to
generate more homogenous differentiation. The general principle of
directed differentiation approaches is to present specific signaling
molecules to the differentiating cells in vitro, as they would
experience them in vivo, thus recapitulating normal development.

Primitive streak and mesoderm induction in vitro
The earliest stage of muscle differentiation in vivo occurs when
paraxial mesoderm precursors in the epiblast activate the pan-
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mesodermal marker T in the primitive streak. Several studies aimed
at recapitulating these early stages of mesoderm induction and
specification using PSCs have led to the identification of the BMP,
activin/Nodal, FGF, insulin (PI3K) and Wnt pathways as major
signals able to induce the specification of various T" mesodermal
subpopulations (reviewed by Murry and Keller, 2008). Initial
studies focused mostly on the differentiation of posterior primitive
streak derivatives such as lateral plate and extraembryonic
mesoderm, which produce hematopoietic and cardiogenic
progenitors (Kaufman et al., 2001; Mummery et al., 2003). These
studies identified BMP signaling as a key requirement for
hematopoietic progenitor specification and they established the
role of Wnt signaling for mesoderm induction in vitro (Chadwick
et al., 2003; Gadue et al., 2006; Johansson and Wiles, 1995;
Kattman et al., 2011; Lindsley et al., 2006; Nakanishi et al., 2009;
Yang et al., 2008; Zhang et al., 2008). More recent studies have
shown that treatment of PSCs with activin favors the differentiation
of anterior primitive streak derivatives such as endoderm, whereas
treatment with BMP triggers the differentiation of posterior streak
derivatives such as lateral plate and extraembryonic mesoderm
(Bernardo et al., 2011; Mendjan et al., 2014). Differentiation of late
primitive streak that generates paraxial mesoderm could be achieved
by treating PSCs first with activin, FGF and PI3K inhibitors to
induce anterior primitive streak fate and then with GSK3 inhibitors
(to activate Wnt signaling) and FGF to recapitulate the late primitive
streak environment (Mendjan et al., 2014). Alternatively, by treating
both mouse and human PSCs with BMP and Wnt activators
sequentially, several groups were able to generate paraxial
mesoderm progenitors (Chal et al., 2015; Mendjan et al., 2014;
Sakurai et al., 2009, 2012). Recent studies also highlighted the
importance of cell-cell and cell-ECM interactions in controlling
early stages of mesoderm differentiation: human PSCs (hPSCs)
exposed to identical media will adopt distinct cell fate depending on
their precise in vitro organization and volumetric cell density
(Kempf et al., 2016; Warmflash et al., 2014). Early stages of
gastrulation have also been recapitulated in vitro in 3D mouse PSC
cultures, termed gastruloids, where Tbx6 expression is observed
(ten Berge et al., 2008; van den Brink et al., 2014).

Induction of a presomitic mesoderm fate in vitro
Production of mouse or human paraxial mesoderm progenitors
characterized by expression of the presomitic mesoderm markers
Msgnl or Tbx6 can be achieved by treating PSC cultures with Wnt
activators alone or in combination with other factors, such as FGF,
without prior primitive streak induction (Borchin et al., 2013; Gouti
et al., 2014; Mendjan et al., 2014; Shelton et al., 2014). Xu et al.
(2013) also added forskolin to the Wnt/FGF combination, whereas
others used only FGF [in a 3D system (Hosoyama et al., 2014)],
only Wnt (Hwang et al., 2014), or Wnt followed by a Notch
inhibition step (Choi et al., 2016). In most instances, these protocols
require purification of the paraxial mesoderm progenitors by flow
cytometry using cell surface markers or lineage-specific fluorescent
reporters (for more details, see Box 1). In the mouse tail bud, Wnt
activates expression of Fgf8 (Aulehla et al., 2003), and thus treating
cultures with a Wnt pathway activator is also likely to result in FGF
activation. Accordingly, in mouse FGF treatment is dispensable for
paraxial mesoderm induction from mESCs (Chal et al., 2015). Wnt
is also required for the induction of the neuromesodermal (T'/
Sox2") progenitors from mouse and human PSCs in vitro (reviewed
by Henrique et al., 2015).

The generation of cells with a posterior presomitic mesoderm fate
from PSCs in vitro was analyzed using mESC reporter lines for

Box 1. Tools for characterizing PSC-derived myogenic
progenitors

Surface markers. A number of surface markers have been used to purify
myogenic precursors from PSCs induced to differentiate to the muscle
lineage by various protocols. Among them, PDGFRa (CD140a) and
VEGFR2 (Flk1, KDR, CD309) have been used to enrich for various
subtypes of early mesoderm produced in vitro (Nishikawa et al., 1998).
Notably, PDGFRa*/VEGFR2™ cells isolated from differentiating PSC
cultures have been proposed to correspond to putative paraxial
mesoderm progenitors, including premyogenic cells (Darabi et al.,
2012, 2008; Sakurai et al., 2009, 2012). Myogenic progenitors have also
been isolated from mouse or human PSC cultures using CD106
(VCAM1, SM/C2.6) (Chang et al., 2009; Mizuno et al., 2010), CD34
(Demestre et al., 2015), CD56 (NCAM1) (Young et al., 2016), CD56 and
CD73 (Barberi et al., 2007), CD82 (Uezumi et al., 2016), CXCR4
(CD184) and c-Met (Borchin et al., 2013). However, the usefulness of
these markers is limited by their overall poor lineage specificity. Notably,
PDGFRo and VEGFR2 are dynamically expressed on several
mesodermal populations including paraxial mesoderm and lateral plate
mesoderm and thus are not lineage-specific markers (Ding et al., 2013;
Ema et al., 2006; Motoike et al., 2003; Takebe et al., 2006).
Fluorescent reporters. Lineage-specific promoters have also been
used to drive the expression of a fluorescent protein (chiefly GFP) to
generate reporter cell lines. One of the first examples of this was the
brachyury-GFP mESC reporter line, which was used to analyze
mesoderm induction in vitro (Fehling et al., 2003; Gadue et al., 2006).
More recently, ESC lines that harbor fluorescent reporters for the
expression of key paraxial mesoderm/myogenic lineage markers,
namely Msgn1, Pax3, myogenin (Myog) and Pax7, have been used to
track the sequential differentiation of PSCs toward paraxial mesoderm
and skeletal muscle (Chal et al., 2015; Sudheer et al., 2016).

Msgnl expression (Chal et al., 2015; Sudheer et al., 2016) (Box 1).
Optimal induction of posterior presomitic mesoderm fate was
observed when mESCs were pretreated with BMP4 to differentiate
them into epiblast-like cells, followed by treatment combining a
Wnt activator (R-spondin 3 or the GSK3 inhibitor CHIR99021)
and a BMP inhibitor [LDN-193189 (Cuny et al., 2008)], which
prevented the induced presomitic mesoderm cells from drifting to a
lateral plate mesoderm fate (Chal et al., 2015). In the absence of
BMP inhibition, Msgnl™ cells started to activate Bmp4 and to
upregulate lateral plate markers in vitro (Chal et al., 2017a preprint).
Paraxial mesoderm and lateral plate mesoderm share common
precursors in the primitive streak, and grafts of the anterior streak
(territory fated to give rise to the paraxial mesoderm) into the mid-
streak level (territory fated to give rise to the lateral plate) is enough
to change the fate of the cells according to their new position
(Garcia-Martinez and Schoenwolf, 1992). These data indicate that
the fate of the precursors is not determined at the primitive streak
stage. Furthermore, exposure of paraxial mesoderm precursors to
BMP4 in vivo leads them to switch to a lateral plate mesoderm fate,
indicating that BMP4 acts as a lateral plate inducer (Tonegawa et al.,
1997). BMP signaling also has a well-established role in promoting
the formation of lateral plate mesoderm derivatives such as
hematopoietic and cardiovascular cell types both in vivo and
in vitro (Adelman et al., 2002; Tonegawa et al., 1997; reviewed by
Murry and Keller, 2008; Orlova et al., 2015). Sakurai et al. (2012)
also reported that high levels of BMP4 inhibit presomitic mesoderm
and myogenic differentiation from PSCs.

Posterior presomitic mesoderm identity of mESCs induced with
Wnt activation and BMP inhibition was confirmed using
microarrays comparing their transcriptome with that of
microdissected posterior presomitic mesoderm from E9.5 mouse
embryos (Chal et al., 2015). Remarkably, these posterior presomitic

2111

DEVELOPMENT



REVIEW

Development (2017) 144, 2104-2122 doi:10.1242/dev.151035

mesoderm cells induced in vitro also expressed cyclic genes such as
Hes7, suggesting that the segmentation machinery is activated in
vitro (Chal et al., 2015). Efficient differentiation to a posterior
presomitic mesoderm fate was also achieved by exposing hPSCs to a
medium that included the small molecules CHIR99021 and
LDN-193189, followed by FGF addition to the medium after 3
days of differentiation (Chal et al., 2016, 2015). In these conditions,
cells acquired a posterior presomitic mesoderm fate with over 90%
of cells positive for Tbx6 (Chal et al., 2016). Faster presomitic
mesoderm induction was also obtained by pretreating cells with
activators of the Wnt, FGF and TGFp pathways combined with
PI3K inhibition for 1 day prior to treatment with Wnt activator and
BMP inhibitor (Loh et al., 2016).

In mouse embryos, Msgnl expression is downregulated at
the determination front where embryonic segments are first
specified. This marks the level where the first stripes of
segmentation gene expression, such as Mesp2 or Ripplyl/2, are
observed and where Pax3 is first activated. Differentiation of
mouse ESCs to anterior presomitic mesoderm was studied
using a Pax3 reporter line, demonstrating that expression of
segmentation genes such as Ripply2 or those involved in somite
rostrocaudal patterning such as Uncx or Thx18 can be activated
by maintaining Wnt activation and BMP inhibition in cultured
cells (Chal et al., 2015). Similar activation of the segmentation
program was also reported in hPSCs using Wnt and FGF
inhibition (Loh et al., 2016).

Generation of skeletal myoblasts
The proliferating myoblasts that fuse to form adult myofibers in vivo
are derived from Pax3" precursors found in the dermomyotome.

> G-0,0, @

Induction of such Pax3" precursors has been achieved by
maintaining mESC cultures in a medium containing a Wnt
activator and a BMP inhibitor (Chal et al., 2015). The RA
biosynthetic enzyme Aldhla2 (Raldh2) is expressed in mouse
Pax3" cells induced in vitro (Chal et al., 2015), suggesting that the
cultures are able to produce RA in sufficient amounts to promote
presomitic mesoderm-like cell maturation without the need for
external supply (Kennedy et al., 2009; Ryan et al., 2012).
Subsequent treatment of the cultures with HGF, IGF and FGF led
to efficient induction of myogenin® myocytes both from mouse and
human PSCs after 1 to 2 weeks of differentiation (Chal et al., 2015,
2016) (Fig. 4). In mESC cultures, these myocytes appear as
elongated mononucleated cells expressing slow MyHC and primary
myotome cells. The rapid increase in myogenin® myocytes was
accompanied by a concomitant decrease of Pax3* myogenic
progenitors. These were progressively replaced by a pool of Pax7*
myogenic progenitors, as observed in vivo (Chal et al., 2015;
Kassar-Duchossoy et al., 2005; Relaix et al., 2005). Several studies
have aimed at deciphering the respective contribution of individual
transcription factors including Pax3/7 and the MRFs during
myogenic differentiation of mESCs using engineered mutations or
siRNA-based knockdown (Table S2). Other studies with hPSCs
have reported different induction kinetics of the Pax3/7"
progenitors. Awaya et al. (2012) described the late differentiation
(50 days) of Pax3" and Pax7" cells that can be isolated with CD56
(NCAM1) and CD73 (NT5E) surface markers. Myosphere culture
of differentiating hPSCs has also been described, which produces
Pax7 expression after 6 weeks and myotube formation after 8 weeks
of culture (Hosoyama et al., 2014). Recently, Caron et al. (2016)
described a serum-based protocol to differentiate human myotubes

PSCs Mesoderm Presomitic Dermomyotomal Myoblasts/ Myocytes Satellite-like
progenitor progenitor progenitor progenitors myotubes and myofibers cells
Tbx6 Pax3 MyoD  Pax7 Myog MyHC Pax7
WNT+
) BMP+
Directed
differentiation —
Direct

reprogramming

Timeline

Mouse development

in vivo E7.0 E8.5 E9.5 E10.5 E16+
mESC d1-3 d3-4 d4-6 d46-9+ do+ d14+
hPSC d2-3 d3-5 d7+ d14+ d14-21+

Fig. 4. Skeletal myogenesis from pluripotent stem cells. Comparison of strategies to generate skeletal muscles from PSCs. The sequence of the
differentiation stages of MESCs and hPSCs into skeletal muscle and their corresponding markers is shown from left to right (top). A comparison of the approaches
to generating skeletal muscle from PSCs is shown in the middle. Directed differentiation approaches aim to recapitulate the developmental stages of paraxial
mesoderm specification and differentiation by manipulating signaling pathways such as Wnt and BMP. The sequence of developmental stages and important
signaling pathways associated with each stage are shown. Direct reprogramming approaches aim to bypass early developmental stages by overexpressing a
myogenic regulator, chiefly Pax3/7 or MyoD (iPAX3/7, iMYOD). In some instances, the cellular events occurring during differentiation remain largely unclear
(dashed line). Directed differentiation into skeletal muscle occurs according to slightly different timelines [days (d) of in vitro differentiation are indicated] using

mESCs as compared with hPSCs (bottom).
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within 26 days; although some cells in these cultures express Pax3,
no Pax7" cells were generated.

Direct reprogramming strategies using transcription factors

The discovery that treatment of fibroblast cultures with 5-azacytidine,
a demethylating agent, could induce cells to differentiate into
myoblasts (Constantinides et al., 1977; Taylor and Jones, 1979) led
to the demonstration that MyoD, whose locus is a target of
S-azacytidine, could reprogram fibroblasts to a muscle fate (Davis
et al.,, 1987; Weintraub et al., 1989). This in turn led to direct
reprogramming strategies whereby overexpression of a myogenic
factor — often MyoD — in PSCs forces their differentiation toward the
skeletal muscle lineage, bypassing de facto early developmental
stages (Dekel et al., 1992; Shani et al., 1992; reviewed by Comai and
Tajbakhsh, 2014) (Fig. 4, Table S1). MyoD overexpression is often
triggered after EB formation, and MyoD expression directly in PSCs
is inefficient unless BAF60c (SMARCD3) is co-expressed (Albini
et al., 2013). MyoD-reprogrammed hPSCs can generate myotubes
within 10 days (Rao et al., 2012) and are also able to engraft when
transplanted in mouse muscle (Goudenege et al., 2012; Ozasa et al.,
2007; Zheng et al, 2006) (Table S1). Moreover, MyoD-
reprogrammed myotubes have been used to model muscle diseases
such as Duchenne or Miyoshi muscular dystrophies (Shoji et al.,
2015; Yasuno et al., 2014; Young et al., 2016) (Table S1).

In the chicken embryo, Pax3 overexpression can lead to ectopic
activation of the myogenic program in lateral plate or neural tube
cells (Maroto et al., 1997). Using both mouse and human PSCs,
Perlingeiro and colleagues developed direct reprogramming
methods using Pax3/7 overexpression combined with EB
formation to induce myogenic differentiation (Darabi et al., 2012,

2008, 2011; Filareto et al., 2013) (Fig. 4). As Pax3/7 are also
expressed in neural derivatives in vivo (Fougerousse et al., 2002;
Gerard et al., 1995; Goulding et al., 1991; Jostes et al., 1990), a
purification step using surface markers such as PDGFRo (CD140a)
or CD56 was needed to enrich in myogenic cells (Darabi et al., 2008,
2011; Quattrocelli etal., 2011) (Box 1). Pax3 overexpression acts on
the early PDGFRo" population, upregulating transcription factors
TcflS and Meox1 and preventing the cells from undergoing
cardiomyogenesis (Magli et al., 2013, 2014). Both Pax3- and
Pax7-reprogrammed mouse progenitors were shown to engraft when
transplanted in a mouse model. Pax3- or Pax7-reprogrammed hPSCs
can generate myogenic progenitors that are CD29 (ITGB1)/CD44/
CD56" and CXCR47/CD106 (VCAMI1)~ and which can engraft
into mouse muscle (Darabi et al., 2012; Filareto et al., 2015) (Box 1).
Overexpression of Mespl has also been used to produce putative
cardio-pharyngeal progenitors with the capacity to differentiate into
both cardiac and cranial paraxial mesoderms (Chan et al., 2013;
Lescroart et al., 2014). Other factors used for direct reprogramming
of PSCs into myogenic cells include other MRFs and a mutated
version of HMGAZ2, as well as the expression of growth factors such
as IGF2 or a modified HGF (Table S1). Despite some success, direct
reprogramming methods are nevertheless often undefined, as they
rely on EB formation in serum-containing media and often require
further cell sorting (Table S1, Box 1).

Myofiber maturation in vitro

Sarcomeres and structural assembly

Maturation of PSC-derived cell types has proven a major challenge
for most cell lineages, with differentiated cells often retaining a
fetal-like phenotype (Robertson et al., 2013). Mature striated

Sarcolemma/ECM

Laminin

NMJ/post-synapse

Satellite-like cells
B -

AchR (BTX)

MTJ

Myonuclei

Myofibrils/sarcomeres

Mitochondria

Mitotracker

Fig. 5. Cellular features of PSC-derived skeletal myofibers. Schematic of a myofiber (center) and the corresponding representative features detectable by
immunohistochemistry on skeletal myofibers differentiated from mESCs. In the central scheme, the elongated myofiber contains aligned striated myofibril bundles
composed of various MyHCs (yellows), dystrophin in a subsarcolemmal position (thin irregular black line), aligned mitochondria (green), myonuclei (gray) and
nascent T-tubule network (light blue lines). The fiber extremities form a specialized contact surface reminiscent of a myotendinous junction (MTJ), while at the
equatorial level the sarcolemma (solid black line) can harbor a postsynaptic element (brown) indicating post-neuromuscular junction (NMJ) assembly. Satellite
cells (purple) can be located under the basal lamina (black dotted line). Images show the various markers (green) and the location of the features illustrated in the
central scheme. In some cases, nuclei are counterstained with DAPI (blue). In the NMJ/post-synapse image, fibers are counterstained for MyHC (red). In the
satellite-like cells panel, fibers are visible in a merged phase-contrast image. Scale bars: 100 ym.
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myotubes have been generated in vitro from mESCs spontaneously
differentiated from EBs (Hirsch et al., 1998; Rohwedel et al.,
1998b), as well as from Pax7-reprogrammed hPSCs (Skoglund
etal., 2014). Demestre et al. (2015) compared these two methods in
their ability to produce human actinin® myotubes and reported that
myotubes generated by Pax7-mediated reprogramming were slower
to mature. Millimeter-long myofibers exhibiting MyHC™ and titin*
striations and containing large numbers of nuclei have also been
generated from mouse and human PSCs in adherent, serum-free
conditions (Chal et al., 2015) (Fig. 5). The maturation of the
myofibers was evidenced by the transition from slow to perinatal
MyHC expression, the formation of highly organized myofibrils,
the expression of Nfix, which is a secondary myogenesis marker
(Messina et al., 2010), and the assembly of individual basal
lamina (Fig. 5). Based on their morphological characteristics, the
authors suggested that these myofibers resemble perinatal fibers
(Chal et al., 2015; White et al., 2010). Remarkably, the formation of
such long striated myofibers is rarely observed when primary
myoblasts, myogenic lines (such as C2C12) or satellite cells are
differentiated in vitro, as they tend to form poorly organized
multinucleated myosacs.

Electron microscopy analysis of mouse and human PSC-derived
myofibers revealed that they exhibit highly organized sarcomeric
units, reminiscent of the cytoarchitecture found in vivo (Hirsch
et al., 1998; Skoglund et al., 2014). Myofibrils generated in these
fibers can exhibit the appropriate organization of MyHC, troponin
T, nebulin and titin, and undergo the stage-specific developmental
transitions through o-actins (cardiac to skeletal) and MyHC
(embryonic, fetal, and perinatal/fast) isoforms (Chal et al., 2015;
Hirsch et al., 1998; Mizuno et al., 2009; Rohwedel et al., 1998b).
Furthermore, desmin null mESCs have been used to demonstrate the
important role of desmin in the early formation of myotubes
(Hollrigl et al., 2002; Weitzer et al., 1995). While these studies are
encouraging, ultrastructural analyses have shown that hPSC-derived
myofibers have myofibrils that are less regularly organized than
those found in vivo, featuring irregular and misaligned Z-disks.
They also fail to form a mature T-tubule network, a hallmark of
adult myofibers (Skoglund et al., 2014). Although triad-like
structures could be identified, they were limited to the
subsarcolemmal space, lacking the orthogonal alignment to
myofibrils observed in vivo. This incomplete maturation could be
explained by the immature character of the fibers and the lack of
innervation in these cultures.

The formation of a basal lamina (endomysium) has been shown
to occur in vitro, as evidenced by the deposition of a continuous
sheath of laminin along individual fibers (Chal et al., 2015). The
dystrophin-associated glycoprotein complex (DGC), which links
the myofiber cytoskeleton to the basal lamina through the
sarcolemma, is also assembled in vitro. DGC components,
including dystrophin (Chal et al., 2015; Ozasa et al., 2007),
dystroglycan and integrins (Hirsch et al., 1998; Jacobson et al.,
2001; Tremblay and Carbonetto, 2006), were found distributed at
the sarcolemma of PSC-derived myofibers (Fig. 5, Tables S1 and
S2). During development, integrins a4 and o7 play a key role in
skeletal myogenesis and associate with integrin 1 to form receptors
for ECM proteins such as laminin (Menko and Boettiger, 1987,
Rosen et al., 1992). Intriguingly, differentiation of Jzghl null
mESCs showed that mutant myoblasts can still fuse and form
myotubes with apparently normal sarcomeres and costameres
(Hirsch et al, 1998; Rohwedel et al., 1998a). Moreover,
myofibers differentiated from Dagl null mESCs exhibit defects in
the assembly of postsynaptic elements including acetylcholine
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receptor (AchR) clusters (Jacobson et al., 2001). Dmd™** mPSC
lines were shown to exhibit defects in myogenic differentiation and
increased apoptosis (Chen et al., 2012), while Chal et al. (2015)
reported a branching defect characterized by an increased number of
split fibers, a phenotype also seen in Duchenne muscular dystrophy
(DMD) patients and the mdx mouse (Chan and Head, 2011).
Finally, myoblasts derived from DMD human iPSCs were shown to
exhibit fusion defects that could be corrected by dual inhibition of
TGFp and BMP signalings (Choi et al., 2016).

Excitation-contraction coupling

During development, motoneuron input is important for proper
myofiber maturation and viability. However, in vitro, cultures of
PSC-derived muscle that do not receive motoneuron input
nevertheless achieve a relatively high level of functional
maturation, as evidenced by myofibrils and spontaneous
contractions (Caron et al., 2016; Chal et al., 2015; Choi et al.,
2016; Shelton et al., 2014). PSC-derived myofibers have been
further characterized by electrophysiological studies focusing on
calcium handling, ions currents and AchR cluster properties.
In vivo, early embryonic myofibers exhibit transient, low voltage-
activated calcium currents (T-type, ICaT), which are progressively
replaced during fetal stages by slow, high voltage-activated currents
(L-type, ICaL) (Beam et al., 1986; Cognard et al., 1986). Myofibers
derived from Pax7-reprogrammed hPSCs exhibit excitable
properties (Skoglund et al., 2014) but have immature ion handling
characterized by slow calcium buffering and a small potassium
conductance, which could explain the spontaneous fiber twitches
observed in these cultures (Skoglund et al., 2014).

In vivo, as myotubes mature, they upregulate AchR expression and
switch from the fetal y-subunit to the adult e-subunit (Buonanno and
Merlie, 1986; Mishina et al., 1986). Patch clamp and gene expression
analyses of mESC-derived myotubes have shown that this
developmental transition can also occur in vitro, as these cells start
to express the adult AchRe after 2 weeks of differentiation (Guan
et al., 1999; Jacobson et al., 2001; Rohwedel et al., 1998b, 1994;
Tremblay and Carbonetto, 2006) (Fig. 5B). However, it has been
shown that postsynaptic elements can form in vitro on myotubes in
the absence of neural input, and that these cells remain immature
(reviewed by Sanes and Lichtman, 1999). For this reason, there
have been several efforts to establish a co-culture system of
PSC-derived myogenic cells with rat embryonic spine or with PSC-
derived motoneurons. This system improved the maturation of
PSC-derived myofibers, as evidenced by AchR clustering and
electrophysiological recordings (Demestre et al., 2015; Puttonen
et al., 2015; Rohwedel et al., 1998b); however, electrophysiological
analysis suggested immaturity of neuromuscular junction activity
(Puttonen et al., 2015; Vyskocil and Vrbova, 1993).

Generation of satellite-like cells in vitro

In adult muscle, the pool of quiescent Pax7" satellite cells is closely
associated with the myofibers (reviewed by Brack and Rando, 2012;
Dumont et al., 2015), an arrangement that aides muscle repair
during regeneration (Lepper et al., 2011; Murphy et al., 2011;
Sambasivan et al., 2011). However, satellite cells are found in very
limited numbers and they cannot be amplified in vitro as they
differentiate and lose their regenerative properties in culture (Gilbert
et al., 2010; Montarras et al., 2005). The generation of Pax7" cells
from PSCs has been reported in several of the protocols discussed
previously but in most cases their characterization has remained
preliminary (Tables S1 and S2). Notably, the association of Pax7"
cells with mature myofibers and the location of the cells under the
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basal lamina, as it is seen in vivo, has only been reported by Chal
et al. (2015) (Fig. 5). One of the key characteristics of the Pax7"
satellite cells is their capacity to regenerate myofibers while being
able to self-renew and reconstitute the satellite stem cell
compartment when grafted in adult injured muscles. Several of
the myogenic differentiation protocols discussed above have
reported the production of myofibers when the progenitors
obtained in vitro were transplanted into injured adult muscle
(Tables S1 and S2). In some cases these produced donor-derived
Pax7" cells resembling satellite cells; however, in all cases the
transplanted cells were either the result of ‘bulk’ differentiation or
were isolated using surface markers resulting in a mixed population
of cells containing a fraction of putative Pax7" cells. The in vivo
potential of pure populations of PSC-derived Pax7" cells produced
in vitro was evaluated using a Pax7-fluorescent reporter mESC line
(Fig. 5). In differentiated cultures of this line, Pax7" cells first
experienced a proliferative phase between 2 and 3 weeks of
differentiation, followed by a reduction in the number of Pax7*
progenitors, with the remaining cells found closely associated to
mature fibers, as expected for satellite cells (Chal et al., 2015).
Similar dynamics could be observed in differentiated hPSCs, where
Pax7" cells could also be found closely associated to myofibers.
Furthermore, a significant proportion of the Pax7" cells
differentiated in vitro were found to be Ki67~, suggesting that
they are quiescent (Chal et al., 2015). When activated, satellite cells
are able to divide asymmetrically, thus allowing for self-renewal and
for the generation of a myoblast that will proliferate and contribute
to muscle regeneration. Pax7" cells generated in vitro from mESCs
can give rise to both myofibers and Pax7" satellite cells when
grafted in vivo in an mdx mouse model, suggesting that these cells
can behave like bona fide satellite cells (Chal et al., 2015). The
myofibers differentiated in vitro from mESCs exhibit characteristics
of perinatal fibers, suggesting that the associated Pax7" cells are
likely to correspond to perinatal satellite cells (Tierney et al., 2016).

Biological relevance and open questions

The potential for PSCs to serve as developmental models, including
for skeletal muscle development, has been recognized for more than
20 years (Baker and Lyons, 1996; Keller, 1995; Rohwedel et al.,
2001; Wobus et al., 2001). However, these systems have been
criticized for their artificial nature and their simplicity compared
with the full complexity of organisms (Moretti et al., 2013).
Moreover, it is still unclear if in vitro differentiation encounters the
same developmental constraints as in vivo. A similar concern has
been raised about the physiological relevance and the proper
maturation of the cell types generated in vitro, which in most cases
reach only a fetal state (Robertson et al., 2013; Satin et al., 2008).
For skeletal muscle, this is evidenced by the neonatal properties of
the in vitro myofibers, including smaller size, immature metabolism
and a weak physiological response (Bursac et al., 2015). Parameters
that control the maturation of PSC-derived myofibers remain largely
unexplored and the use of integrated co-culture systems or
biomaterials has been seldom investigated (Chal et al., 2016;
Leung et al., 2013). Nevertheless, the recent availability of more
efficient myogenic differentiation protocols for PSCs will allow the
study of skeletal myogenesis with unprecedented accessibility and
resolution. A number of questions remain to be answered about the
nature of the muscle cell generated in vitro, in particular about their
axial/anatomical identities and fiber composition, and how these
relate to what is seen in vivo (Donoghue et al., 1992; Jarad and
Miner, 2009; Kieny et al., 1972; Nowicki and Burke, 2000;
Rosenthal et al., 1989).

A number of translational applications for PSC-derived skeletal
muscle cells can be envisioned. Although satellite cells represent the
ideal target population for muscle regenerative medicine (Collins
et al., 2005), their accessibility, number and manipulability remain
very limited. Furthermore, cell therapy approaches still face
significant challenges, including transplantation routes, scale up,
host immune response and functional integration (Tremblay and
Skuk, 2008). If these limitations can be overcome, then PSC-
derived myogenic cultures that recreate the satellite cell niche
in vitro may be a valuable source of cells for transplantation
(Cosgrove et al., 2009). In the near future, hPSC-based myogenic
cultures are likely to become an important preclinical model with
which to study disease mechanisms in place of primary cultures
generated from patient biopsies, which are subject to variability and
limited accessibility. Combined with the relative ease in deriving
novel hPSCs and progress in genome engineering, disease-specific
models can now be generated for a large spectrum of muscle
pathologies (Avior et al., 2016; Merkle and Eggan, 2013; Riiegg and
Glass, 2011), facilitating the development of in vitro therapeutic
approaches (Kazuki et al., 2010; Rohwedel et al., 2001; Tran et al.,
2013; van Deutekom et al., 2007).

Concluding remarks

Decades of developmental studies have provided a compelling
picture of skeletal muscle formation in vertebrate embryos;
however, important myogenic processes remain poorly studied
due to limited in vivo accessibility. PSC-based systems herald a new
area of ‘development-in-a-dish’, with the disciplines of
developmental and stem cell biology now merging closer than
ever. Directed differentiation methods can recapitulate many
aspects of bona fide skeletal myogenesis, allowing us to probe
key developmental mechanisms in an unprecedented manner. One
of the most exciting opportunities that PSC-based systems provide is
to understand the regulation of skeletal myogenesis as it occurs
during human development. In turn, this will help to provide more
relevant tissue models for diseases and therapeutic investigations.
Several key challenges remain on this front, the first of which is the
generation of physiologically relevant myofibers. This is likely to be
solved by rational design in combining the factors that control
skeletal muscle maturation with advances in bioengineering. The
second key challenge is the recreation of the satellite cell niche.
While there is evidence that coexistence of myofibers and Pax7"
progenitors allows for the occurrence of Pax7" satellite-like cells
in vitro (Chal et al., 2015), a precise understanding of the niche
environment and the molecular mechanisms at play remains to be
achieved. A sustained effort to better characterize the regulation of
skeletal myogenesis during development and in the adult is
therefore crucial for success in the clinic. Although PSC-derived
skeletal myogenesis is still a nascent field, this is a time of exciting
opportunities for the developmental biology, drug discovery and
regenerative medicine communities.
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