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Mechanotransduction

Physical signal == Chemical signal

What does the nucleus have to do with this?



Classic notion: The nucleus as
gatekeeper of gene regulation

W

Cytoplasm

Gene transcription, from The Mermaid's Tale, Weiss & Buchanan, 2009



New notion: The nucleus as sensor of
critical cell body deformation

Cell surface mechanotransduction
Intermediate nuclear mechanotransductlon

‘ Surface deformation )
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Critical deformation === |mmediate nuclear mechanotransduction



Lecture overview

1) Common types of nuclear deformation
2) Physiological consequences of nuclear deformation

3) How do the individual components of the nucleus
respond to load?
a) The nuclear membrane under load
b) Chromatin under load
c) The nuclear lamina under load

4) Studied mechanisms of nuclear
mechanotransduction



1.
Common Types of Nuclear
Deformation



Two principal types of nuclear
deformation

Compression

b Self-regulation
Stiff substrate 1 l, ,I, l ;

Tight space
Physical load

Paracrine
regulation

[ Transcriptional regulators
® Lipid enzymes

4 Ca* Necrosis

—— Contractile actomyosin fibers
® Focal adhesions and LINC complexes |

Hypotonic shock

Niethammer, Ann Rev Cell Dev Biol,2021



Examples for nuclear compression

A Intraluminal crawling

—_—
shear stress leading edge

uropod

B Transendothelial migration
paracellular

(L o) _©

C Passing the BM

Salvermoser et al., Front Immunol, 2018

nuclear deformation

D Interstitial migration

restrictive pore

direction of movement

Blood

ECs

BM
Pericytes

Tissue



Nuclear compression during cell migration

HT1080 fibrosarcoma cells transplanted to mouse dermis

NLS-GFP

SHG

Denais et al., Science, 2016



Nuclear compression during cell migration

MDA-MB-231 breast cancer cell migrating through 2 x 5 um?
constrictions in microfluidic device.

Denais et al., Science, 2016



Nuclear compression during the cell cycle
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Nuclear compression on stiff substrates

NIH-3T3 cells on polyacrylamide gels of different stiffness
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Lovett et al., Cell Mol Bioeng, 2013



Nuclear swelling after hypotonic shock

Zebrafish wound
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] oral cavity
(fresh water = saliva)

esophagus

airways and
lungs

stomach

bladder



Nuclear swelling during cell death

mitochondria

aw U

nuclei

Golgi body

necrosis/necroptosis l ‘ apoptosis

nuclei swelling

cell shrinkage

.... %
membrane rupture / 90\/ nuclear fragmentation
release of cell content

Yamashita & Abe, 2020



Liver damage
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Necrosis after osmotic shock
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Morphological/molecular proxies
of nuclear membrane stretch

* Disappearance of nuclear membrane invaginations
(smooth surface)

* Increase of nuclear pore distance
* Insertion of hydrophobic protein residues



2.
Consequences of Nuclear
Deformation



Consequences of nuclear deformation

Compression

i

Cell differentiation

DNA damage/mutations

Nuclear rupture/cytosolic DNA sensing
Increase of cortical contractility/switch
to ameboid motility

Swelling

* Inflammatory signaling
» Extracellular chromatin release (NETosis)



Consequences of nuclear deformation:

Cell differentiation

i ~ Factors regulating stem cell fate
Soluble L
factors | Mesenchymal Substrate elasticity
stem cell
1 kPa (soft) 10 kPa 100 kPa (rigid)
(\ —

O

F |
©
Nae)
TS

Lineage: neuronal muscle bone

Even-Ram et al., Cell, 2006



Consequences of nuclear deformation:
Cell differentiation
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Consequences of nuclear deformation:
DNA damage

Nuclear membrane rupture
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Denais et al., Science, 2016



Consequences of nuclear deformation:
DNA damage

Mechanical stress on the nucleus causes DNA damage

(7 - -

Confined migration Cell compression
. | @@ Difustie DNA repar provens
Nuclear envelope rupture-associated DNA damage |7 (KUBO, BRCA1, 53891 |
50 &G
(N B l,f’u:;-‘_i':.x
ave

‘ jophzed. / \‘ : lf\tactA‘

Nuclear envelope rupture ST e, <y A
1 Deayed rapsr l
: : s L . ® -
Nuclear deformation-associated DNA damage = o ff_;,. : e’ )
Excess damage Basal damage
Replication
stress Contesting hypothesis: Deformation

during o
causes DNA damage and replication

stress independent from each other

Nuclear deformation

Sha et al., Curr Biol, 2021 Pfeifer et al., MBoC, 2018



Consequences of DNA damage

‘! _‘ "l’=ﬂ1
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Baumstark-Khan et al., Adv Biochem Engin Biotechnol, 2010



Consequences of nuclear rupture:
Cytosolic DNA-sensing
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Consequences of nuclear deformation:
Switch in cortical contractility

HelLa Kyoto
MYH9-eGFP Lifeact-mCherry
5 s interval

20 to 10 ym 10 to 5 ym
confinement confinement

Lomakin et al., Science, 2020



Consequences of nuclear deformation:
Switch in cortical contractility

HelLa Kyoto
MYH9-eGFP
Lifeact-mCherry
DAPI

5 s interval

2m confinement

HelLa Kyoto
MYH9-eGFP Lifeact-mCherry

5 s interval
20-10-5 pum confinement

Nucleated cell Enucleated
cytoplast

Spm

10um

Lomakin et al., Science, 2020



Consequences of nuclear deformation:
Switch in motility

Blastula cells (sphere stage)
cultured In:

2D environment 3D environment:
7 ym confinement

Myl12.1-eGFP (myosin 1)

Venturini et al., Science, 2020



Consequences of nuclear deformation:
A cellular sense of space and pressure

Noncritical

Critical

Shen & Niethammer et al., Science, 2020



Consequences of nuclear deformation:
inflammation/osmotic surveillance
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Consequences of nuclear deformation:
NETosis (chromatin puking)

Nature Reviews | Immunology

Thiam et al., PNAS, 2020 Papayannopoulos, Nat Rev Immun, 2017



3.
How do Nuclear Components
Respond to Load



The components of nuclear
mechanotransduction

Endoplasmic

Nucleoplasmic reticulum
reticulum
Nuclear pore

| a) Nuclear membrane (NM)
e b) Chromatin

c) Nuclear lamina
\

Y
Form composite structure
that responds to
mechanical stress as unit
(=complex mechanics)

T
LAD

Niethammer, Ann Rev Cell Dev Biol,2021



3a.
The nuclear membrane under load
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Nuclear membrane protein
composition

>250 NM-associated proteins
PL:Protein (w/w)~ 0.2-0.5
(PM~0.3-0.8)
NPC-proteins
LEM family proteins (INM, integral)
SUN-proteins (INM, integral)
KASH proteins (ONM, integral)
NM vs. ONM localization by diffusion-retention
lamin B associated via farnesyl anchor




The nuclear membrane under load

Tension

AAARAARAAARARR way ARFEAAR ANFRARAR
UUUUUUUULUELEY ™ UUUgsubugetuLgY

Vanni et al., Nat Comms, 2014



The nuclear membrane under load

flow

-. ER (relaxed)

ﬁiﬂﬂﬁﬁﬂﬂﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬂ
CEESEEE RS

o0

Membrane unfolding

1

Membrane tension
1 \J

Membrane flow




3b.
Chromatin under load



Chromatin structure

Histone post-translational

modifications

DNA
methylation

Epigenetic
modifications and
ions regulate
chromatin packing
and thus its
mechanical
properties

Alpsoy et al., Biology, 2021

Ac .

Histone variants
,"f/T j\ \

48

“beads on a string”

Nucleus

{ f” B,

Additioal
scaffolding

ATP ADP
.
Remodeling
complexes &
Histone H1 — g

CaZ+’ Mg2+

e

30 nm fiber



(a) Nucleus (resistive) Cytoskeleton (antagonistic)
Stiff
Chromatin Gel
Bendable
Lamin Meshwork

Y Ei>2“i§ HtiCbﬁiig ﬁﬁ

| Chromatin gel spring resists all extensions |

Actin compression

— Microtubules

push/pull

EI lamins bend easily | Lamin springs resist long extension |

o )

#10% 100%
Large Deformations

Chromatin resists | “emsemmes - e
small deformations

Abnormal shape . |

=>

disrupted I |
chromatin Migration through
organization |

Nuclear Bleb

disrupted
transcription -
in bleb

* DNA damage and mixing of
Rupture 3> nuclear and cytosolic contents

Stephens et al., Curr Opin Cell Biol, 2019 Current Opinion in Cell Biology




Chromatin-tethering to the NM
restricts small deformations in yeast

heh1A
heh1A  heh1A  heh2A  heh2A
a t=0s t=7.5s t=15s t=025s  t=30s t=37.5s t=45s  t=525s  t=60s heh1A  heh2A imalA heh2A imalA imalA imailA

z=4

z=6

3D

a
c t=0s t=7.5s t=15s t=22.5s t=30s t=37.5s t=45s t=52.5s t=60s .
Force applied
wild type '
+ TSA
wild type
+ TSA
+ MBC
heh1A
+ TSA )
Wild-type nucleus — stiffer nucleus, heh2A nucleus — softer nucleus,
heh2A chromatin flow restricted, chromatin chromatin flow unrestricted, chromatin
+ TSA mechanically buffers MT force flows in direction of MT force rather
than buffering the force
ima1A m‘wﬁ o
+ TSA m:'ﬂmmm ! s N
r\“ @) FoE g
Nuclear pore g € Spindle pole

SC h rei n e r et a I ., Nat Comm’ 20 15 complex Hehi Heh2 Imal LINC complex body Chromatin Centromeres  Microtubules



3C.
The lamina under load



Intermediate Filaments are rope-like
and lack intrinsic polarity

NH: COOH

1A) éﬂy\f\-——hﬁ Monomer

a-helical region in monomer

NH; COOH
{B) M Parallel Dimer
NH; coiled-coil dimer . AN
- 48 nm -
NH; coo COOH 2 .
i a Antiparallel
[{»] S d
-— T taggere
NH; COGH COOH K4, g8
Tetramer
Protofilament
Filament

(16 coiled-coils)

eight tetramers twisted into a ropelike filament



Lamins: Class V intermediate filaments

B-type lamins: Every animal cell. Not in yeast. Plant functional homolog: CROWDED NUCLEI (CRWN)
A-type lamins (Lamin A/C): Only expressed after gastrulation. Low in stem cells. Form homodimers.

Lamin polypeptide

Dimer 52

Polymer

Filament



Nuclear lamina structure &
connectivity

Endoplasmic
Nucleoplasmic — reticulum
reticulum / \

F-actin

Nesprin-3/4 ;‘J‘ | \ }\ Nesprin-1/2
\ I/

Il

— LINC

A FOGSS OO OO

-t } ~10-200 nm
[ thickness

'y =
Heterochromatin “@
an

T
LAD

Niethammer, Ann Rev Cell Dev Biol,2021



Lamina-cytoskeleton mechanically couple the
nucleus to the extracellular space

Perinuclear actin cap
e - - -
i G Direct mechanical regulation of

@ gene expression
® 0 (

Focal adhesions

B
l Stiffening of the nucleus
(Guilluy et al., Nat Cell Bio,
2014)
C

‘
- iT”
Jahed & Mofrad, 2018



The nuclear lamina under load:
a “molecular shock absorber”

EGFP-laminB1 3

Enyedi et al., Cell, 2016 Dahl et al., JCS, 2004

swollen

—

/|




The nuclear lamina under load:
a “molecular shock sensor”

Lamin A o
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lhalainen et al., Nat Mat, 2015

Histones
Emerin

Sun1/2
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Vi
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Dahl et al., JCS, 2004




4.
Mechanisms of nuclear
mechanotransduction



Structural intermediates of nuclear
mechanotransduction

AN

NM
; FORCE FORCE
Chromat!n
Lamin
Chemica I
deformation signal

Structural intermediate —

° [ ]
* e @ * L]
L]
FORCE . FORCE Enzymes and
- —_— transcription factors
. e |onsand proteins
‘ ® x Chemical signals

< ¥

Niethammer, Ann Rev Cell Dev Biol,2021




Mechanisms of Nuc
Mechanotransduct

Compression

Stiff substrate vlr 1 l’ l

Tight space
Physical load

ear
on

Self-regulation

[ Transcriptional regulators
= L|p2|d enzyInes Hypotonic shock
5 2 3
L dCa Necrosis
—— Contractile actomyosin fibers

Paracrine

regulation

® Focal adhesions and LINC complexes |

a) Mechanosensitive protein redistribution b) Mechanosensitive Ca?* release

e tothe nuclear membrane

* between cytoplasm and nucleus c) Direct mechanical control of
e within the nuclear membrane gene transcription

Niethammer, Annu Rev Cell Dev Biol,2021




Mechanosensitive protein redistribution
to the nuclear membrane



cPLA, directly senses nuclear swelling
and converts it into an inflammatory signal

Osmotic nuclear swelling

N

Ca2+
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cPLA2 translocation (no. of cells)
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Enyedi et al., Nat Cell Biol, 2013



cPLA, directly senses nuclear swelling
and converts it into an inflammatory signal

Exp: cPla, translocation in permeabilized Hela cells at constant [Ca?*]

Osmotic nuclear swelling

2+
\ Ca
| EGFP-laminB1 cPLA,-mk2

N\ EGFP-laminBiy

5-0xoETE

Enyedi et al., Cell, 2016



cPLA, directly senses nuclear swelling
and converts it into an inflammatory signal

l., Nat Cell Biol, 2020

Kaﬁkaneniet

Osmotic nuclear swelling

\ I/ Ca?

\ %
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cPLA, directly senses nuclear compression
and converts into activation of actomyosin contractility

Critical nuclear
confinement S Ca2t Progenitor cells under

\ mechanical confinement:

(i) confinement release

l Myl12.1-eGFP
(myosin Il)
AA
‘l’ Progenitor cells
RlIA expressing Myl12.1-eGFP (myosin Il)
Actomyosin

contraction/blebbing
motility Venturini et al., Science, 2020



How does cPLA, sense membrane deformation?

C2-domain

(Ca2+

binding)

Caoetal., 2013



Can the mechanism be reconstituted in vitro on artificial
membranes?

3r ..
© ° [
£ ‘. £
o 257 - d
£ ’ ‘ £
— .. . F
'-9 2 r .o ¢ -g
outside: outside: outside: T -
M,,.(Sucrose)>0.26 Osm M,,..(Sucrose)=0.26 Osm M,,,.(Sucrose)<0.26 Osm o g
M. (Salts)=0.24 Osm M. (Salts)=0.24 Osm M. (Salts)=0.24 Osm % 1.5} E
B ... G
2 g
c 17 ¢
=] =
i m
0.5
Fllpper-TR AmOsm = 0 mOsm AmOsm = 100 mOsm
(fluorescence lifetime probe for membrane tension)
stretched relaxed
Under Relaxed State Under Tense State > »
255 1 18.5
00Q 00 ,00 OO0, & ~fry ™
— — —» < © 2450
. — > < E 24 |
— — > < o
—> < 5 235
g 23t
. . . . % 2 25 -
Lifetime < Lifetime T 5
Q 22t
S
o 215t
21 . . .
0 5 10 15

Shen et al., PNAS, 2022 Time [min]

[ wr ] snipey



cPLA, directly senses membrane deformation with its C2-

domain
a

relaxed R stretched R

min:sec  0:00 0:50 1:40 2:30 3:20 4:10 7:55 11:40 15:25 19:10 22:55 26:40
cPla,-C2 iy

-eGFP " |

Constant [Ca?'] in
Rupture ..

b stretched 5 l relaxed . a” Cond|t|0ns
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Sensing internal membrane stresses by protein insertion

C2-like domains

o " CPLA,-C2
ALOXS5-PLAT

PKC-C2

Stretch

-

°¢




Alox5a-PLAT cPla,-C2

Alox12-PLAT

Differential tension sensing among
membrane interaction domains

ARFGAP1-ALPS

AKT1-PH

Shen et al., PNAS, 2022



Mechanosensitive protein redistribution
between the nucleus and cytoplasm



Mechanosensitive nuclear translocation of YAP

Force on nucleus Force on nucleus/no F-actin Force on cytoplasm

YAP-eYFP
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f | ' Nuclear pore complex diameter ; |
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Osmotically shocked cells

Hyperosmotic Energy
shock depletion
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Nuclear envelope tension
INM-ONM distance
nuclear size

Zimmerli et al., Science, 2021



Mechanosensitive nuclear transliocation or YAP

The nuclear pore as a valve?

Soft substrate _~" {nucleus Qcytcplasm

‘g.,:—rh--g'
AN\ YAP
nuclear
pore
= YAP transport
y Force does not reach nucleus % ™. balanced

cell

"I nucleus Qcytoplasm
£ 3
~N
¢/)
Nuclear pores stretch
import increases

Elosegui-Artola et al., Cell, 2017



Mechanosensitive Ca4t release



Nuclear deformation regulates intracellular Ca?* release

Biaxial cyclic
mecham’cal strain
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Nuclear deformation mmmsp Ca2*

Science, 2020

\ Chromatin rheology (fluidization to prevent damage)



Nuclear deformation regulates intracellular Ca?* release
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The ER buffers nuclear membrane
tension
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(Shen et al., in review)



Direct mechanical regulation of gene
regulation

(from all outlined mechanisms to date the most hypothetical)



Forces on integrin may be transduced to the
nucleus to directly alter gene transcription

(Lmnb1/2)

Chromatin stretching ——» T DHFR transcription

Tajik et al., Nat Mat, 2016



Nuclear deformation may cause intermingling
of chromosome territories and associated
changes in transcription
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Frontier: How does nuclear mechanotransduction
contribute to physiology and pathophysiology?
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Bottom Line

* For decades, the plasma membrane as the
one and only mechanosensory surface of a
cell

* The nuclear envelope now emerges as
second sensory surface

* Nuclear mechanotransduction can
function downstream of cell surface
mechanotransduction (“intermediary
role”)

e Orit can detect nuclear deformation
independently of the cell surface
(“immediate role”)

Future challenges

* Non-invasive measurement of intracellular
forces

* Delineation of nuclear and cell surface
mechanotransduction mechanisms

* Delineation of mechanotransducive and
structural roles of nuclear components



For further details:

Annual Review of Cell and Developmental Biology

Components and
Mechanisms of Nuclear
Mechanotransduction

Philipp Niethammer

Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;

email: nicthamp@mskcc.org
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