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mammalian development takes place in utero
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mouse embryo development: the 15t week
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Development of the Pre-implantation Blastocyst in Humans
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Development of the Pre-implantation Blastocyst in
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trophectoderm

the mammalian blastocyst (end-point of preimplantation d@ve’ldpment)




Lineage contributions of the mammalian blastocyst
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» Mouse genetically tractable mammalian model. Can modify the genome at base pair resolution.

* Preimplantation development mirrors other mammalian embryos (e.g. duration of the cell cycles
and the timing of specific events differs).

* Preimplantation development can take place in vitro. Therefore early mammalian embryos are
easily accessible to experimental manipulation.

= Oocytes and embryos of a defined stage are easily obtained. This fact in particular has lead to
the use of the mouse model in experimental research using embryo micromanipulation
techniques, including the generation of transgenic and knock-out mice.




Bicoid

* Bicoid/

AXxis determination in the
Drosophila embryo
depends on localized maternal
components

Gregor T. et al., Cell 2007

Mammalian development does not depend on maternal products

Drosophila Zebrafish Mouse

Time of onset of zygotic transcription 3 hours 4 hours >24 hours

Time of early patterning 4 hours 5 hours ~5 days




normal
development

Martinez-Arias (2013) Development




The mammalian blastocyst
is a paradigm of self-organization and regulative development
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The mammalian blastocyst
is a paradigm of self-organization and regulative development
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How are the lineages established?




Polarized cell divisions drive epithelialization of blastocyst

inside cells

F-actin
P-ERM

8-cell stage

Johnson & McConnell, Seminars Cell Dev. Bio. 2004
Anani et al., Development 2014

Ziomek & Johnson, Cell 1980

...etal




The mammalian blastocyst
is a paradigm of self-organization and regulative development
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Blastocyst forms by swelling and discharge of microlumens
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Dumortier et al., Science 2019




Blastocyst forms by swelling and discharge of microlumens

: . . . . . Extraembryonic fluid
Compaction Tight junction formation Blastocoel formation

/—\ Basolateral fluid

Trophectoderm
Inner cell mass
@ Tight junction

Current Opinion in Genetics & Development

Schliffka & Maitre Current Opinion in Genetics & Development 2019




INn
Trophectoderm

Inner cell mass (TE)
(ICM)

expression is reciprocal
/

Niwa H. et al., Cell 2005
Marikawa & Alarcon Mol. Reprod. Dev. 2009
and others




Cdx2 mutants (try but) fail to make expanded blastocysts

Strumpf et al., Development 2005



Cdx2 is required for trophoblast cell fate specification

Cdx2

/\

Oct4
Nanog

Strumpf et al., Development 2005




At blastocyst stage Cdx2 is required to
— downregulate Oct4/Nanog
—maintain trophectoderm epithelial integrity
—promote trophoblast differentiation

« Conversely, Oct4 is required to maintain ICM
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Oct4 mutant (E4.25)

OCT4 (Poubf1)is required to maintain an ICM fate

Nuclei

Loss of OCT4 — blastocyst forms, but ICM not maintained

Inside cells take up trophectoderm fate

Nichols et al., Cell 2008

Ralston et al, Dev Bio 2010
Frum et al., Dev. Cell 2013

Le Bin et al., Development 2013
Stiraparo et al., PNAS 2021
and others...




A conserved role for OCT4 in the human embryo

ARTICLE

doi:10.1038/nature24033

Genome editing reveals a role for OCT4
in human embryogene51s

Norah M. E. , i\tshan Mu arthy!, I\lrsten E. Snijders?, Benjamin E. Powell®, Nada Kubikova®, Paul Blakeley’,
Rebecca Lea . Wa 3 2 :' < Ki le \Iauuh te Tens Kleinjung’, Jin-Soo Kim®#, Dagan Wells*,
Ludovic Vallier ;
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Fogarty et al., Nature 2017




Initially lineage-specific transcription factors are expressed by all cells

* There is initially no reciprocal relationship between CDX2 (TE) and OCT4 (ICM) !!
» What are the molecular mechanisms that initially interpret inside vs. outside positional information within the embryo?

Dietrich and Hiiragi, Development 2007
Plusa et al., Development 2008




What is upstream of Cdx2?




Hierarchy of trophectoderm (TE) transcription factors

wild type

Strumpf et al., Development 2005
Yagi et al., Development 2007
Nishioka et al., MOD 2008




Outside cells of the preimplantation embryo form the trophectoderm (TE)

a process requiring the transcription factor Tead4
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Wrts/Lats active: Wrts/Lats inactive:
Scalloped/Tead inactive Scalloped/Tead active

Yagi et al., Development 2007 38-cell 32-cell 34-cell
Nishioka et al., Dev Cell 2008

Nishioka et al., Mechanisms of Development 2008 *Tead4 is genetically upstream of Cdx2 during TE formation in the embryo
Wicklow et al., PLOS Genet. 2014

: . *Tead4 coactivator protein Yap localizes to nuclei of outside cells
Posfai et al., eLife 2017 ) ] ] )
Frum et al., eLife 2018 *Tead4/Yap required for Cdx2 expression in outside cells

Frum et al., Development 2019 *Hippo signaling proposed to be controlled by cell polarity/contact in embryos
and others...




Outside cells of the preimplantation embryo form the trophectoderm (TE)

a process requiring the transcription factor Tead4

Live imaging YAP in 8-to-16 cell embryos

32-cell 34-cell

Gu et al., Open Biol. 2652
*Tead4 is genetically upstream of Cdx2 during TE formation in the embryo

o *Tead4 coactivator protein Yap localizes to nuclei of outside cells
Nishioka et al., Dev Cell 2008 *Tead4/Yap required for Cdx2 expression in outside cells
Nishioka et al., Mechanisms of Development 2008 . . . . .
Yagi et al., Development 2007 *Hippo signaling proposed to be controlled by cell polarity/contact in embryos
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A conserved trophectoderm (TE) program in human, cow & mouse embryos
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Gerri et al., Nature 2020




2" lineage decision in the mammalian embryo - Epi vs. PrE
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Position-dependent model for
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Gardner & Rossant, JEEM 1979
Gardner, JEEM 1982; 1984




Salt-and-Pepper expression of Nanog and Gata6 in E3.5 blastocyst ICM

. . =

Gatab6 = primitive endoderm (PrE) marker
Nanog = Epiblast (EPI) marker

Chazaud et al., Dev. Cell 2006




Current model for ICM differentiation
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Primitive Endoderm Plusa et al., Development 2008
Meilhac et al., Dev. Biology 2009
Ohnishi et al., Nature Cell Biol. 2014
and many others
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Restriction of NANOG and GATAG correlates with EPI/PrE cell fate choice
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Fgfd is the first marker to be asymmetrically expressed within the ICM
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Fgfr1 and Fgfr2 expression in ICM

i caTAG FGF4
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Nowotschin et al., Nature 2019




Fgfr1/;Fgfr2- embryos fail to form PrE lineage
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Fgf4 mutants phenocopy Fgfr1 ; Fgfr2 double mutants (Kang et al., 2013; Krawchuk et al., 2014)

Kang et al., Dev. Cell 2017
Molotkov et al., Dev. Cell 2017




Modulation of FGF signaling influences
ICM cell lineage specification
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Grb2’- mutants lack PrE, all ICM cells transform to Nanog-positive Epi cells
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Tsang et al., Science Signaling 2004

Chazaud et al., Developmental Cell 2006




Like FGF signaling mutants, Gata6’- embryos fail to specify primitive endoderm (PrE),
all ICM cells adopt a pluripotent epiblast (EPI) identity
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Bessonard et al., Development 2015
Saiz et al., eLife 2020




Nanog’- embryos fail to specify epiblast (EPI),
all ICM cells adopt a pluripotent Primitive Endoderm (PrE) identity
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Frankenberg et al., Developmental Cell 2011
Allegre et al., Nature Comms. 2023




FGF/ERK signaling drives PrE vs. EPI specification in human embryos
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Exogenous FGF sufficient to drive human hypoblast specification ERK inhibition blocks hypoblast formation

Dattani et al., Cell Stem Cell 2024
primitive endoderm = hypoblast in higher mammals Simon et al., Nature Comms. 2025




Preimplantation embryo lineage composition is consistent despite variation in absolute size
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Asynchronous fate decisions by single cells collectively ensure
a consistent lineage composition
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Asynchronous fate decisions by ICM cells
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The cell counting mechanism involves FGF?
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Current model for ICM differentiation
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Differential cell movements between epiblast (EPI) and primitive endoderm (PrE)
contribute to fate segregation in the ICM
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cell movements among PrE and EPI

Moghe et al., Nature Cell Biol. 2025



Cell sorting involves active directed migration of PrE Acquisition of apical domain decreases surface tension

cells towards the surface via actin-mediated protrusions and is sufficient for retaining PrE cells at fluid interface
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time for a break?




mouse embryo development: the 1st week
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The Body Axes of the Mouse Embryo

e9.5
(midgestation)




Brachyury (T): a T-box transcription factor is a marker of the primitive streak

wholemount mRNA (chromogenic) in situ hybridization of T

Embryonic day (E) 6.25 |




Anterior pattern in the visceral endoderm prior to gastrulation

Chikara-Yoshida PNAS 2007




How is the proximal-distal (P-D) axis converted
to an anterior-posterior (A-P) axis?

wild-type, E5.75

AVE induction
section (profile) surface en face view section (profile) surface en face view

proximal

Stower M. and Srinivas S. Phil Trans Royal Soc. 2014
Hex-GFP

Migeotte et al., PLOS Biol 2010




Anterior Visceral Endoderm (AVE) cells exhibit collective
migration in the early mouse embryo

single optical section /time
E5.5-E6.5

0:00

Merge E5.5 and E6.5

epiblast

Hex- marks the collective migration of AVE cells

visceral
endoderm

Omelchenko, T. et al., Genes & Dev. 2014




Axis specification (movement of prospective AVE) in the mouse embryo
requires Nap1, a regulator of WAVE-mediated actin branching

& o wild type Nap7*° wild type Nap1*ie
\
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Nature Reviews | Molecular Cell Biology

Krause M. and Gautreau A. Nature Rev. Cell Biol. 2014

Membrane protrusions (lamellipodia) at the leading edge of cells,
drive cell migration in many normal and pathological situations

Hex-GFP transgenic mouse embryos

Rakeman, A., and Anderson, K.V. Development 2006




AVE cells extend lamellipodia that depend on Rac1 (a Rho GTPase)
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Nature Reviews | Molecular Cell Biology

Krause M. & Gautreau A. Nature Rev. Cell Biol. 2014

migrating AVE cells, Hex-GFP Migeotte I. et al., PLoS Biology 2010




Genes required for AVE migration affect the AP axis
(axis duplications)

M1un: an allele of Pten
Brachyury, E7.5




PTEN required for AVE migration affect the Anterior-
Posterior axis (axis duplications)

Brachyury, E7.5

Anterior Posterior

Hex-GFP E-cadherin




CONCLUSIONS SO FAR

PTEN is required for directional migration
of single cells and during collective cell migration

Loss of directional migration of the AVE
can cause AP axis duplication




Integrated approach identifies molecular underpinnings of
Anterior Visceral Endoderm (AVE) migration
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AVE is composed of transcriptionally and spatially distinct sub-populations

AVE transcriptional state is downregulated upon its lateral displacement
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Inhibitors of Nodal and Wnt signaling expressed in AVE




Inhibitors from the AVE localize the primitive streak to the posterior




Nodal (TGFB), Wnt and BMP (another TGFB) signals
required for gastrulation initiation

GASTRULATION: driven by multiple signals converging on posterior epiblast cells

Late streak (E7 5-7.75
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Extraembryonic signals
BMP4

( ;00“ multiple signals (BMP, NODAL, WNT, FGF)
“‘WNTJ converge on posterior epiblast
‘ ﬁ driving formation of PRIMITIVE STREAK

| FGF8 & initiation of GASTRULATION
‘ PS




Gastrulation is:

formation of definitive germ layers (mesoderm and endoderm) and
elaboration of the axes (A-P, D-V and L-R).

coordination of cell fate specification (concomitant loss of pluripotency) and
tissue morphogenesis.

an in vivo platform for developing a detailed mechanistic understanding of
the mechanisms of EMT (&MET).




Wnt3 expression restricted to the posterior of the embryo

Rivera-Perez and Magnuson, 2005




Wnt3 is required for primitive streak formation

Wnt3-- wt Wnt3-"- wt Wnt3--

?

.
avell

Lhx1 de Cerl

Liu, P. et al., Nature Genetics 1999




Bmp4 expression in the mouse embryo

Lawson et al., Genes & Development 1999




Nodal expression in the mouse gastrula as revealed by /acZ knock-in

Varlet, I. et al., Development 1997




Gastrulation in the mouse embryo:
transformation of 2 tissue layers into 3
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Gastrulation in the Mouse: EMT at the primitive streak
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Epithelial-Mesenchymal transitions (EMTs)
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Yang et al. Nat Rev Mol Cell Biol 2020




EMT (and MET) in metastasis

Primary Tumor

Local Invasion

Primary Site

Blood/Lymphatic Vessels

Systemic
Circulation

Blood Vessel
‘y Extravation

Distant Organ

Metastases

Yang J. et al., Cancer Research 2006




STAT3 RAS ER

R,

(NFxB) LIVi MAPK MTA3 Smad
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Fibronectin | markers
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Invasive carcinoma
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Kang, Y. and Massague, J. Cell 2004




Gastrulation EMT
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Gastrulation in chick: cells ingress individually at primitive streak (ps)

epiblast/ectoderm

9

cells ingressing

Voiculesku O. et al., eLife 2014




Gastrulation in mouse: cells ingress individually at primitive streak (ps)
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Ramkhumar N. et al., Nature Cell Biol. 2016




Gastrulation defective: Cells accumulate at the primitive streak (ps) of Crumbs2 mutants
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Fgf signaling is required for the gastrulation EMT




Fgf8 is expressed in the primitive streak




Fgf8 is required for the gastrulation EMT <~Fm@.$\w{»y¢;s;lm
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E-cadherin is downregulated as cells traverse the primitive streak

E-cadherin B3-catenin

Po— mesoderm is E-cadherin -ve

STAT3 RAS ER ‘
[
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Ciruna, B. & Rossant, J. Dev. Cell 2001




is not down-regulated in Fgf signaling mutants
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Ciruna, B. and Rossant, J. Dev Cell 2001



The Mouse Snail Gene Encodes a Zn
Finger Transcription Factor

A Key Regulator of the EMT

Snail mutants exhibit a failure of EMT at
gastrulation
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Fgf signaling is required for snail expression
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E-cadherin
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Posterior Onentation

Live imaging reveals distinct
mesoderm migration phenotypes
in extra-embryonic and
embryonic regions of the early
mouse embryo

Saykali et al., eLife 2019




Single cell transcriptomics identifies 10 populations relevant to early mesodermal development
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Single cell transcriptomics reveal that fate of mesoderm dictated spatially and temporally
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A single-cell resolution atlas of mouse gastrulation
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Spatial transcriptomics: molecular architecture of lineage allocation & tissue
organization in mouse embryo
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Molecular architecture of germ layer formation
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Time space and single-cell resolved tissue lineage trajectories and
laterality of body plan at gastrulation
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