


The Origins of Mitochondria

1.5 billion years ago an “endosymbiotic” transformation of aerobic proto-
bacteria into anaerobic proto-eukaryotic cells occurred, concomitantly with
an increase in atmospheric oxygen generated by photosynthetic

cyanobacteria

Endosymbiosis created mitochondria and resulted in a radical change in
cellular metabolism, which started to oxidize metabolic substrates for

energy transformation



Mitochondrial structure




Mitochondria are involved in many cellular functions
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Some organs are highly reliant on mitochondria for energy

The total body content of ATP is 250 g \ “\‘\\

150 Kg of ATP are consumed by the human body
daily

550 liters of molecular oxygen are consumed daily

The brain consumes 20% of the ATP, despite
accounting for only 2% of body weight

~90% ATP in brain is produced by mitochondria



Pro and coms of mitochondria

On the upside:
*High production of ATP for each molecule of glucose utilized

«Compartmentalization and concentration of substrates and specialized enzymes
(especially of the Krebs cycle)

*Oxidation of NADH in mitochondria allows for faster rate of glycolysis in cytosol

*Fine tuning of intracellular Ca2+ concentration, especially in excitable cells, such as
neurons, heart, and muscle

Downsides:

*Complex coordination of iron and lipid homeostasis

» Intracellular production of toxic reactive oxygen species
*Undesired apoptosis in pathological conditions

*Complex coordination of mitochondrial biogenesis (under the control of two genomes)



Oxidative phosphorylation is central to all metabolism
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KREBS CYCLE (CITRIC ACID CYCLE )

Glucose Fatty acids

Coenzyme A

Acetyl Coenzyme A

Citrat th
itrate synthase Water

Oxaloacetate

Malate dehydrogenase

Isocitrate dehydrogenase

a—ketoglutarate

NAD*
a-ketoglutarate dehydrogenase
MADH

[ Succinyl-Coenzyme A]
Succinyl-CoA synthetase

Succinic dehydrogenase
GDP
GTP



Fatty acids
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The Oxidative Phosphorylation System

o
Complex Il ADP+P

ATP
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Mitochondrial cristae host the electron transfer chain
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ROS: Reactive Oxygen Species
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Reverse electron transfer (RET)

(NAD*) C-I = CoQ
Ischemia/reperfusion

ROS ROS ROS ROS

Water




Ca?* is taken up by mitochondria through the uniporter (MCU)

a Low [Ca?'] b High [Ca?*]

Intermembrane space

Inper . Mitochondrial
mitochondrial matrix

membrane

Nature Reviews | Molecular Cell Biology
16, 545-553 (2015)
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Ca2+ overload in mitochondria
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Mitochondrial permeability transition

*Mitochondrial permeability transition (MPT) is a sudden increase in the permeability of
the mitochondrial inner membrane to molecules <1,500 Da

*MPT results from opening of a mitochondrial permeability transition pore (PTP), a
proteinaceous pore in the mitochondrial membranes

Mouse brain mitochondria



Mitochondrial transport along microtubules
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Motor neuron: axon is 20,000x longer than cell



Mitochondria are dynamic organelles




Why are mitochondrial motility and localization important?

» Fast transport allows for shuttling mitochondria to sites of
energy need, for example to active synapses

» Localized production of ATP
 Localized buffering of Ca?*

* Mitochondrial turnover by mitophagy



Regulation of mitochondrial movement
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Immobile mitochondria localize at presynaptic sites
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Mitochondria are subject to fusion and fission
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Factors involved in mitochondrial fusion and fission
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Mitochondrial Biogenesis: “a tale of two genomes”

> 1,300 mitochondrial proteins are coded by nuclear DNA,
synthesized in cytosolic ribosomes, and imported into mitochondria

* Only 13 polypeptides are encoded by the mitochondrial DNA
(mtDNA) and synthesized in mitochondrial ribosomes.




Nuclear genome contribution in the assembly of
mitochondrial respiratory complexes

Nucleus Mitochondrion

factors for replication

l itoch ial DNA
1 and transcription of mtDNA kachncal D
1
1
1

-PolG
oo -TFAM
I 00 -TFB1M )
(@) -TFB2M inner membrane
-POLRMT
-Twinkle
\
e s -
_ g€t
proteins for
membrane transport
8 and OXPHOS assembly Gytb
-ANT1
(o)) -ND1 intermembrane space
\.' o, MM - COX1 x
° SURE1 ©® APases

-BCSIL
-SCO1

etc. outer membrane

respiratory chain subunits

~ -NDUFS1
0o -NDUFs2 espiratory chain
O o -SDHA
-SDHB

etc.




Import and sorting of proteins with presequences
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Mammalian mitochondrial DNA

mtDNA encodes for:
7 subuntis of Complex |
0 subuntis of Complex II
1 subunit of Complex Il
3 subuntis of complex IV

2 subuntis of Complex V
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MmtDNA is only maternally inherited

@altemative
import to splicing import to
nucleus v mitochondria

mtDNA
degradation
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Spermatocyte
Spermatogenesis

During spermatogenesis, TFAM is phosphorylated and prevented
from being imported to mitochondria, resulting in mtDNA Nucleus Acrosome
degradation. Instead, TFAM is accumulated in the nucleus of Tail
mature spermatozoa. ~ |\ W

aire mitochondria TFAM

spermatozoon (no mtDNA)

(Nat Genet. 2023 ; 55(10): 1632—-1639. doi:10.1038/s41588-023-01505-9 )



Components of mtDNA nucleoids for DNA replication
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Mammalian DNA repair
mechanisms
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mtDNA transcription by POLRMT
creates poly-cistronic transcripts
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Maturation of mitochondrial transcripts |
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Regulation of mitochondrial biogenesis

“PGC-1a is a master regulator”

Acetylation
Caloric excess —» - —> i j

Oea NRF-1
NADY/NADH >~ (SR <ot
Energy f T /A NRF-2 Mitochondrial
deprivation nonyiation PGC-10 ) wap- PPARC mmp- biogenesis
fAMP/ATP > Prosi " ERRu Energy generation
E YY1
Exercise
. TORC1 _y MSOD2

1-‘ GSH/GPX [103’

Autophagy/ | ganaecence
mitophagy

TRENDS in Endocrinology & Metabolism

Source: (DOI:10.1016/j.tem.2012.06.006)



http://www.cell.com/trends/endocrinology-metabolism/abstract/S1043-2760(12)00107-5
http://www.cell.com/trends/endocrinology-metabolism/abstract/S1043-2760(12)00107-5
http://www.cell.com/trends/endocrinology-metabolism/abstract/S1043-2760(12)00107-5

Mitochondrial quality control mechanisms
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Mitochondria turnover: non-selective autophagy
and mitophagy have different roles

a Non-selective autophagy degrades b Mitophagy selectively
cytosolic proteins and organelles degrades mitochondria
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Mitochondrial recycling vs. autophagy

MITOCHONDRIAL LIFE CYCLE

Twig et al. EMBO J. 2008 January 23; 27(2): 433-444



PINK1/Parkin in mitochondrial quality control

Healthy mitochondria

Damaged mitochondria
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Mitochondrial DNA in inflammation and innate immunity
damage-associated molecular patterns (DAMPSs)

Dead / dying cells Virus Bacteria
Plasma 1: 1
membrane { i
: ' Se!f/pathoger;-&eﬁved DNA‘.W,‘
Mitochondria WW .
cGAS (cyclic GMP-AMP synthetase)
@0 o
ATP+GTP - cGAMP _, . f_
odo. T
OH O o] NH;
o
o
0 OH O
g ()J ‘ N> 0——P—0H
Ny N/ 8
NH,
ER
REVIEW ARTICLE OPEN B) Cheokk
Molecular mechanisms of mitochondrial DNA release and
\ activation of the cGAS-STING pathway
| | Jeonghan Kim@® 'S, Ho-Shik Kim®" and Jay H. Chung?®
/ IrRF3 (000 £
ERGIC ™) ) o
: Experimental & Molecular Medicine (2023) 55:510-519
& E
S A 995y
Pro-inflammatory Golgi \L /{[}f’r\
cytokins ; A :\f{{%;;j’xg
YC7 f%‘kﬁé
Typelinterferon ( ﬁ//( )
Nucleus ~



The mitochondrial integrated stress response (mtiISR)
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Mitochondria orchestrate proteostatic and
metabolic stress responses

Claes Andréasson™ @, Martin 0tt>™© & Sabrina Biittner>>™"

srnsss
MITOCHONDRIA
C : / , el FOLDING

"i 0,00
AGGREGATION

(,' LTI v
DEGRADATION

The mtISR is a transcriptional program activated by MPORT
mitochondrial damage/dysfunction caused by
proteotoxicity and regulated by mitochondria-to-
nucleus communication PROTEOTONIC %’% I
STRESS
—»e' SinE »
,5 & DEGRADATION ,fj/

o AGGREGATION %
g

NUCLEUS




mtISR involves OMA1 and DELE1 cleavage
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The role of the mtISR transcriptional program
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Recommendations for mitochondria transfer and transplantation nomenclature
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https://www.nature.com/articles/s42255-024-01200-x

Mitochondrial replacement in the oocyte to avoid
transmission of pathogenic mtDNA

Method one: Embryo repair
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