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Notes on these slides:

This is an applied and interdisciplinary topic that covers cellular immunology, cell
signaling, gene engineering. Concepts will be more or less challenging based on your
background.

There is a lot of dense information. Key slides are highlighted, and review slides
emphasize the key concepts. You are not expected to know everything.

Many slides will contain copious text. That is intentional, for review later.



Terminology

Cell therapy is a treatment modality where the drug productis a cell (as opposed to a small molecule, protein, etc.)

Gene therapy is any treatment modality where the nucleic acids (typically DNA, but also RNA) are delivered and/or
directly manipulated

Immune therapy is any treatment that acts directly on and primarily by using the immune system

Gene therapy Immune therapy

Vaccines
Bispecific Abs
Checkpoint

Gene editing
for monogenic
disorders

HSCT for
sickle cell

Stem cells for
regenerative

Cell therapy



CAR T cells are a gene engineered cell therapy in which a patients T

cells are reprogrammed to recognize and Kill cancer
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Kershaw et al., 2013, Nat Rev Cancer 13:525
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A Chimeric Antigen Receptor binds surface proteins using an antibody-based or other binding domain, not
MHC-peptide. Because it is not MHC-restricted, it is universal.

It then delivers signals necessary for T cell activation: Signal 1 (CD3{) and Signal 2 (Costimulation, ex CD28)
It is a chimera of B cell-like antibody/antigen recognition and T cell signaling




MHC restriction makes it challenging to design universal T cell receptor therapies
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TCR recognizes a specific peptide in the
context of a specific MHC allele HLA is the most diverse gene locus in human populations

Janeway 9% edition (Satapornpong Frontiers 2020)

Creating a universal TCR based therapy is therefore challenging...
But not impossible (more on this later)




Instead of targeting unique peptide-MHC, use a CAR target lineage markers

Adapted from Kanatas et al, Car S
\
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A lineage marker tumor antigen is expressed or overexpressed on a tumor cell surface
and is not found on any critical normal tissues. B cell and plasma cell markers such as
CD19 and BCMA are the best example as you can live without B cells.




CAR T cells target normal B cells and plasma cells in addition to cancer

Hill Blood 2020 Schett et al. Lancet 2023
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CD19 CART cells kill normal B cells, and BCMA CAR T cells kill normal plasma cells. Patients experience months of
B cell aplasia and hypogammaglobulinemia after therapy. Infectious risk is present but managed with prophylactic
antibiotics and, if indeed, intravenous immunoglobulin supplementation. Ability to kill B cells also motivates use of
CD19 CART cells in autoimmunity. Targets like CD19 and BCMA are feasible because antigen expression is confined

to a normal cell whose temporary loss can be tolerated.



Sources of Binder Sequences

(adapted from Yvonne Chen)

Antigen-binding site

Fab region _|

Fc region _

Complete immunoglobulin

heavy chain Nanobodies
antibody

7 ‘\ Nanobody
& , \ V,H

monovalent biparatopic

Linker

scFv

scFvs

*most common

Natural ligands

Computationally designed binders Rodriguez-Nava et al., Biomedicines. 2023, 11(6):1610.

Xie et al., Nat. Biomed. Engr. 2024, https://doi.org/10.1038/s41551-024-01258-8

https://www.ptglab.com; https://www.rcsb.org/structure/3BPO



https://www.ptglab.com/
https://www.rcsb.org/structure/3BPO

‘Generations’ of CAR T cells and the role of costimulation
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Cappell and Kochenderfer, Nat Rev Clin Oncol, 2021

Some people talk about third and fourth generation CAR T cells. | hate it. While there have been many interesting
innovations in CAR design, nothing beyond second generation has proven superiority in patients, and we can’t add a
generation every time someone publishes a paper.




Costimulation is required foroptimal in vivo CAR function and proliferation

19z1 — no costimulation

1928z - CD28 costimulation
19BBz — 41BB costimulation
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History of CAR T cells at MSKCC
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What is the role of costimulation: Costimulation in normal T cells

Fatham Nature Reviews Immunology 2007
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In normal T cells, CD28 and 41BB are required for optimal T cell proliferation, expansion and persistence. In the
absence of costimulation, CD4 T cells T cells are ‘anergized, and become non-responsive. CD28 and 41BB
costimulation can amplify Signal 1 from the T cell receptor, and also provide unique proliferative and anti-
apoptotic signals. CD28 acts more directly to amplify TCR signals such as LCK and ZAP70, whereas 41BB
additionally acts via TRAF family receptors and promotes anti-apoptotic pathways via ATK and mTOR.



CD28 compared to 41BB induces stronger signaling, more T cell differentiation, and less

persistence
. . . Key Slide
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Stronger signaling from CD28 translates into faster expansion,
more effector differentiation, and less persistence.




CAR signaling via ITAMS can be engineered to modulate behavior
Yun Leukemia 2023

o | ] N [
w (] Tl P FF ]
TCR xx [N 27 T T F ]
CAR o (NN 22 001 1]
TCR - s [N 727 1T 01 ]
F ‘ ation i irl)i: i.
CD3 complex - sy L {J . - - - I:I m m u-nCion longevi
vJ CD28 CD28  [TAMI  ITAM2  ITAM3 _ Point Mutated _ _ .
YMNM PYAP ITAM effector-like memory-like naive-like
Motif  Motif
T T Feucht, Sun et al. Nat. Med. (2019)
ITAM cD28/
4-1BB R Control .o 1928¢ 10° 1XX
(o) 108 108 8 10°
ITAM ITAM E 107 107 = 107
S5 10° 10° g 10°
e 10° g 10°
7T CD3T 10° 10° S 10t
w10 < 10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Days Post CAR Injection

A TCR complex is composed of TCR and CD3 complex containing CD3yeg, CD36¢, and CD3T{. A TCR complex has 10 ITAMs
in total, with one in CD3y, CD36, and CD3g, and three in each CD3C chain. A single monomeric CAR molecule has three
ITAMs in its CD3Z domain.

Since 28z CARs have strong signaling, the Sadelain group hypothesized that attenuating the signaling would
modulate CAR function. Eliminating the 29 and 3™ ITAM of CD3 promotes 28 CAR survival and enhances function.



There are many potential T cell costimulation domains

Chen Nature Reviews Immunology 2013
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There are many surface proteins that can be said to ‘costimulate’ T cells. 41BB and CD28 are the main two used in CAR

T cells, but all of the above have been/are being explored with different mechanisms and strengths/weaknesses.



The hinge and transmembrane portion of a CAR also affect CAR T cell function

Guedan Molecular Therapy 2018

lgG-based hinges (derived from IgG1, IgG2 or IgG4)

Ig-based hinges from
native T-cell molecules

hinge
CH2 Mutated
CH3 e CH3 short | sp2g CD8a

hinge

Initially, the transmembrane and hinge regions were felt to be a spacer without much activity.
We now know that the length, flexibility of the hinge can impact CAR sensing and detection.
There are no great first principles, you just have to empirically try different designs for your CAR and target antigen.




Putting it all together: FDA approved CAR T cells

Cappel NRCO 2023
Product Structure of CAR construct FDA approval (year)
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All target B cell (CD19) or plasma cell (BCMA) lineage markers
41BB is more popular than CD28 due to lower toxicity (more on this later)
Most use scFV designs, one (ciltacabtagene) uses a dual nanobody binder




CART cell production process

Key Slide

a T cell isolation 9 T cell Stimulation e Transduction

\\¢ CD3 Transgene
0 o =< cD28
I I ° OO OO /
h 7 N OC%OO Aoy
9 \_4 o
— Py — 5 gy, . >
) < = ) @ Virus
(P °q Cytokines
-1:, _ | 0‘/7’ » ("—2;
°e IL7/15)

Peripheral blood mononuclear cells are collected by large volume apheresis. 1) Typically, but not mandatory, T
cells are isolated for example by bead based magnetic purification, as monocytes can interfere with production.
2) Before transduction, T cells must be stimulated to induce cell cycling and proliferation. This is typically
accomplished with anti-CD3 and anti-CD28, which deliver Signal 1 and Signal 2 (just like CARs deliver these
signals to activate T cells). T cells also require cytokine support, such as IL2. 3) The CAR itself is delivered by viral
vectors, typically a lentiviral or sometimes gamma retroviral system. 4) Cells continue expansion, now

transduced with CAR, in large scale bioreactor systems.



Cells are typically shipped to centralized facilities for manufacturing, equipped with GMP grade clean
process for cell processing

The end resultis an infusion bag such as the ones below that are delivered intravenously to the patient
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Before CAR T cell infusion: Lymphodepletion

Cappel NRCO 2023 p N
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First, patient T cells are harvested by leukapheresis. These cells are sent to a manufacturing facility to be transduced
with a viral vector (more on this later). Once the cells are ready (can take 1-2 months), the patient must be prepared
for CART cell infusion with lymphodepleting chemotherapy (usually a combination of fludarabine and

cyclophosphamide).

Lymphodepletion serves several purposes. Most importantly, it ‘makes space’ forincoming CAR T cells by killing
normal lymphocytes and freeing up pro-survival cytokines such as IL-2, IL-7, IL-15. Secondly, it kills immune
suppressive cell subsets like Tregs and MDSCs. Finally, it can have a small amount of direct anti-tumor cytotoxicity.




Retroviral vectors are the mainstay of CAR therapy

2. Fusion 1. Binding 2~
<«
e r
Packaging Genome
Vector Type  Expression Genome Capacity Virus Size Cells Infected Integration
Lentiviral  Stable RNA <8kb 80-130  Dividing/Non-  Yes AN RNA
nm dividing Replication l 3. Reverse transcription
Incompetent
Gamma- Stable RNA <8kb 80-130  Dividing Yes kp MOVOVOK DNA double strand
retroviral nm X
AAV Transientor  Single- ~4.5 kb 18-26 Dividing/Non- No* p
Stable* stranded nm dividing 7
linear DNA \
4. Integration

Adenoviral Transient Double- 5-36 kb 105 nm Dividing/Non- No

stranded dividing /

linear DNA %
Adapted from Addgene

Retrovirus can mediate DNA integration. The two most commonly used for CARs are y-retrovirus and lentivirus.
Lentiviruses are the most common; these are enveloped retroviruses of the Retroviridae with an RNA genome
that is reverse transcribed to DNA, which is subsequently integrated. Wild type viruses replicate to promote
infection. Laboratory viruses (so-called 2" or 3" generation lentivirus) are rendered replication incompetent.



Retroviral vectors are the mainstay of CAR therapy

Third-generation lentiviral plasmids via Addgene
See also Milone Leukemia 2018 . delUs
Vector plasmid:;
Transfer plasmid
CMV |R[US AU3|RIUS
ChiTTeFl;iC < Promoter Transgene 3'SIN LTR 5LTR ILTR
Packaging
Packaging plasmids Vector RMNA genome:
pol '
Promoter —_ S-cap 4R{US AU3|R{-polyA
gag
e e | ﬂ Reverse transcription
Integrated provirus:
Envelope plasmid
delU3 AU3[R|US AU3|R|U5
Promoter env _— 5 TR 3 TR

In 379 generation lentiviral systems, the packaging system is split into two plasmids. The transfer plasmid
contains a chimeric 5’ LTR fused to a heterologous promoter (often CMV or RSV), eliminating the need for

transactivation by Tat.
To render the virus replication incompetent, a self-inactiving (SIN) vector is uses. On the vector plasmid,

enhancer/promoter sequences of the U3 region of the 3'-LTR have been deleted (AU3). During the reverse
transcription, this "defective" U3-region will be copied to the 5'-end, resulting in a provirus with this
enhancer/promoter-deletion in both LTRs. See also Miyoshi et al. (1998). Key Slide




Because viral promoter is impaired, you choose add an additional promoter

The heterologous CMV promoter initial expression of the virus, and once the gene is integrated, the defective del3
promoter can no longer drive expression. You therefore need to insert one more promoter that will drive the transgene
itself.

Strong constitutive promoters such as the human EEF1A1 gene that expresses the alpha subunit of eukaryotic
elongation factor, are often chosen. These promoters induce high gene expression in a variety of cell types.
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Lentiviral Problem #1: Variable expression of CAR

Semi-Random Insertion (retrovirus)
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Rodriguez-Marquez Science Advances 2022
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Even within a single product from a single patient using a single promoter, CAR expression from lentivirus is
‘variegated.’ Lentiviruses insert genes ‘semi-randomly’ across the genome, with a preference for open chromatin and
intronic intragenic regions (so within highly transcribed gene bodies). Furthermore, the same cell can be infected with
lentivirus multiple times, yielding high multiplicity of infection (MOI). The FDA requires low MOI, but even so, the

combination of semi-random insertion and MOI leads to variable expression.

This variability has functional consequences. In one study, CAR T cell products enriched in CARMg" T cells show a
significantly worse clinical response in several hematological malignancies (Rodriguez-Marquez et al).




Lentiviral Problem #2: Integration can disrupt normal gene function

CAR integration into wrong gene can be deadly. A patient presented with copious diarrhea
and was found to have a robust CAR infiltrate in the duodenum. The infiltrate was clonal;
the CAR itself had transformed into a malignancy.

CAR integration site analysis revealed integration in first intron of TP53

CAR Integration Site

B Most Abundant Clonotype in Duodenal-Biopsy Samples
100- Clonotypes T
Pooled low-abundance - I HI:I:H
integration sites ' ' ' ' ' ' .
7667500 7670000 7672500 7675000 7677500 7680000 7682500 7685000 7687500
B TP53 %~ chrl17-7683124
R 754 TANGOZ chr22+20025368 TP53 first intron (chr17: 7683124)
g B MADD *- chrl1+47318238
8 B UNK *~ chr17+75797145
3 M EIF2B3 * chrl+44937722 pes
< 504 PSMD13 * chr11-243972 2
E MIRG50 % chr22+22837573 Sy
g B CLOCK * chr4+55527395 A ORI
= IKZF4, LOC105369781 *~ pprs R A s
T BT chrl2+56010733 / &5 LN o s SR
B MBD2 *~ chr18+54166896 ¥33 " G By R
- : : - % |
[ - '-V. Y 1 ‘
L0 ‘e 8 .
0 . i 3 o’ Eaaa® 1
= » : s' o - d Pl

Perica et al., NEJM 2025



New Alternative: precisely deliver CAR to a specific gene locus
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Adapted form Joung et al. Nat biotech 20
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As an alternative to semi-random integration, site-specific insertion can be achieved using gene editing and homology

driven repair (HDR).

CRISPR-Cas9is used to specifically cut (induce a double strand break) at the location where we want the gene to be

insert.

This break can be repaired in one of two ways: non-homologous end joining (the typical process, which often generates
disrupted genes when you want a KO) or homology driven repair (HDR). HDR can occur when the cell has the right
proteins expressed (usually during DNA replication, aka a proliferating cell) and a donor template with homology to the
surrounding area. This donor template can be delivered for example by AAV, which does not frequently integrate and
instead delivers an episomal donor template to the nucleus. This episome is used to smuggle CAR DNA in nucleus.



New Alternative: CAR targeting to TRAC locus

Which gene do we target for CAR integration? The T cell receptor alpha (TRAC) locus is a good place to start. CARs don’t
really need their TCR, so we knock it out with CRISPR. The donor AAV contains left and right homology arms (LHA, RHA)
that trick the cell into repairing the genome with the CAR sequence in the middle. A single copy of the CAR gene is
expressed under the control of the TRAC promoter*. This site specific insertion leads to lower, homogenous and
predictable CAR expression compared to variegated retroviral (RV) expression.

Targeting the CAR transgene Homogeneous and Predictable CAR expression
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Clinical
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Eyquem, Mansilla-Soto et al., Nature 2017 >
CAR

Donors
CAR MFI

*this is a bit advanced, but it is usually a single copy because only one copy of the T cell receptor is typically
recombined during T cell formation, so this is another reason to use TRAC locus as opposed to another gene.
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TRAC-CART cells display superior in vivo activity

B-ALL Xenograft model Bone Marrow T cell phenotyping
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Eyquem et al., Nature 2017
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Summary Part 1: AKA what you need to know

A CAR consists of a binder recognizing a tumor antigen, a hinge/transmembrane
region, a costimulatory domain and a CD3( T cell signaling domain

CARs typically target lineage markers that ablate a tumor and its normal cell of
origin (CD19 on B cells/B cell leukemias, BCMA on multiple myeloma/plasma cells)

Second generation CARs include costimulation such as CD28 or 41BB which is
required for in vivo CAR T cell persistence and function.

CD28 compared to 41BB induces stronger signaling, which leads to greater

sensitivity to antigen, more rapid expansion, and more effector function, but shorter
persistence.



Summary Part 1: AKA what you need to know

Retroviral vectors deliver CAR transgenes semi-randomly with variable MOI, leading to
variable CAR expression

Retroviral vectors are self-inactivating; they can produce virus once but should not
replicate further due to a modification in their 3’ LTR.

In lentiviral systems, CAR is expressed off a promoter that you insert specifically for
the purpose.

Site-specific gene insertion can be achieved using gene editing following homology
driven integration; you should know the general process, using a double strand break
to target the integration and providing a homology template to promote repair.



Module 1: Exploring some CAR vectors

https://benchling.com/pericak/f /HUgfe7QYGj-
car-class/
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Module 1: Exploring some CAR vectors
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Some Definitions

Viral stuff

The retroviral psi (W) packaging element is a cis-acting RNA
element around 80-150 nucleotides in length that regulates
viral capsid packaging.

The HIV-1 Rev response element (RRE) is a highly structured,
~350 nucleotide RNA segment that regulates nuclear export.
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synthesis during reverse transcription.
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WPRE is the Woodchuck Hepatitis Virus Post-Transcriptional
Regulatory Element ,a DNA sequence that, when inserted into
the 3' untranslated region (UTR) of a gene, enhances the
expression of that gene. It does this by promoting mRNA export

from the nucleus and increasing the stability of the resulting
MRNA.
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Some Definitions

CAR stuff

The Kozak sequence is a specific short DNA sequence in
eukaryotic messenger RNA (mRNA) that enhances the
initiation of protein translation at the start codon, AUG.

A signal peptide is a short sequence of amino acids at the N-
terminus of a protein that acts as a "homing device" to direct
the protein to its correct destination. CARs can ‘borrow’ the
signal sequence from CD8aq, but other sequences can
increase expression.

A ‘linker’ joins the VH and VL segments of an antibody.
Frequently, the G4S flexible linker is used.

P2A sequences generate 2A peptides that are a class of 18-22
aa-long peptides which can induce ribosomal skipping during
translation of a protein. They are useful for generating
bicistronic vectors that express two genes off a single
promoter.

LNGFR is a transmembrane protein frequently used as a
neutral ‘marker’ in bicistronic vectors.



Problems with current CAR T cells #1: Toxicities




Acute Complications of CAR T cell Therapy

Adapted from Morris Nat Reviews Immuno 2021
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CRS is systemic inflammation associated with release of cytokines such as IL6 leading to fever, hypotension, and hypoxia.
ICANs is a neurologic syndrome associated with blood brain barrier breakdown leading to loss of speech and

consciousness.
They occur at specific times and with specific products, and they are related but distinct syndromes.



CRS pathophysiology

Morris Nature Reviews Immunology 2021 (), Tumour
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CRS depends on cross-talk between tumor, T cell, and macrophage/monocytes

Monocytes are major source of IL-1 and IL-6 (Norelli Nat Med 2018, Giavridis Nat Med 2018)

IL-6 is a systemic inflammatory cytokine that regulates acute phase response

IL-6 blocking drugs like Tocilizumab are used in combination with immune suppressing steroids like
dexamethasone to treat CRS




Grading and Treatment CRS: ASTCT Concensus

Fever Temperature
=380C
Hypotension None
Hypoxia None

Lee DW, et al. Biol Blood Marrow Transplant. 2019;25:625-38.

Temperature
=>380C

Not requiring
vasopressors

Low-flow nasal
cannula

Temperature
=380C

Requiring 1
vasopressor

High-flow nasal
cannula or
equivalent

Temperature
=>38°C

Requiring multiple
vasopressors

Intubation &

mechanical
ventilation
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Immune Effector Cell-Associated Neurotoxicity Syndrome

Day 4, MMSE 29/30

ICE score
3 \D\‘% W - f<% i Depressed level of Awakens
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Neurotoxicity Domain Grade 1

Santomasso JCO 2019
Neelapu NRCO 2017

Grade 2 Grade 3 Grade 4
3-6 0-2 0 (patient is unarousable and unable to
perform ICE)

Awakens to voiceflll Awakens only to tactile stimulus Patient is unarousable or requires

CONSCIoUsSNess spontaneously vigorous or repetitive tactile stimuli
to arouse; stupor or coma
Seizure NA NA Any clinical seizure focal or Life-threatening prolonged seizure
generalized that resolves (> 5 min); or repetitive clinical or
rapidly; or nonconvulsive electrical seizures without return to
seizures on EEG that resolve baseline in between
with intervention
Motor findings NA NA NA Deep focal motor weakness such as
hemiparesis or paraparesis
Raised ICP/cerebral edema NA NA Focal/local edema with or without M Diffuse cerebral edema on
hemorrhage on neuroimaging neuroimaging; decerebrate or

decorticate posturing; or cranial
nerve VI palsy; or papilledema; or
Cushing triad

Abbreviations: ASBMT, American Society of Blood and Marrow Transplantation; EEG, electroencephalogram; ICANS, immune effector cell-associated
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ICANS is a neurologic syndrome occurring after CART cell infusion which typically manifests with speech
disturbances such as aphasia, and can progress to in rare cases to obtundation, coma, cerebral
hernation and death.




Pathobiology of ICANS involves inflammatory cytokines and endothelial injury

Morris Nature Reviews Immunology 2022
Santomosso Cancer Discovery 2018
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- Pathophysiology of ICANS starts with the production of pro-inflammatory cytokines by CAR T cells and the activation of
bystander immune cells such as macrophages in the tumor microenvironment.

- Inflammatory cytokines and chemokines such as IL-1f3, IL-6, IL-10, the chemokines CXCL8 and CCL2, interferon-y, granulocyte—
macrophage colony-stimulating factor and tumor necrosis factor — diffuse into the bloodstream and, eventually, result in
disruption of the blood—brain barrier (BBB), with accumulation of cytokines and CAR T cells in the central nervous system (CNS)
together with activation of resident microglial cells.
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Class Effects of the Cell-Mediated Immune Response:
CRS and Neurotoxicity

Disease

DLBCL

MM

Trial ZUMA-14 TRANSCEND? KarMMa’ CARTITUDE-1
CART<ellagent ol | aciotoueel  mmeleucel | autoloscel | wideweel | Cltacabtagens
A A A A
N treated 55 101 269 68 128 97

CRS, % 89" 93" 42" 91" 841 95
Grade 23 CRS, % 241 137 2" 157 57 5

NT, % 60 64 30 63 18 17
Grade 23 NT, % 25 28 10 31 3 2

CD28 costimulated CART cells have much higher rates of serious Grade 3 or higher Cytokine Release Syndrome and
ICANS than 41BB costimulated CART cells

et

1. Maude. NEJM. 2018;378:439. 2. Shah. Lancet. 2021;[Epub]. 3. Schuster. NEJM. 2019;380:45. 4. Neelapu. NEJM. 2017;377:2531.
5. Abramson. Lancet. 2020;396:839. 6. Wang. NEJM. 2020;382:1331. 7. Munshi. NEJM. 2021;384:705.



Problems with current CAR T cells #2: Relapse



Response and Survival in CART cell therapy

Lymphoma :
Lymphoma ZUMA-1 ymp TRANSCEND NHL 001 - San Miguel NEJM 2023
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For both lymphoma and multiple myeloma, most patients (50-80%) will have a response,
that is, tumor initially shrinks or even completely disappears (complete response — CR).
However, most patients will also relapse. We think the best CARs cure about 40% of
patients with lymphoma, and maybe 25% of patients with myeloma (Jagganath JCO 2025).
This is impressive, as these patients failed all other treatments, and myeloma was thought
to be incurable. But the fact remains that the majority relapse.




Mechanisms of Resistance to CAR T cell therapies
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Rate of antigen loss varies by disease and construct

Adapted from Majzner Cancer Discovery 2018

Brown Nature Reviews Immunology 2019

a Antigen escape

Antigen
expression

Tumour cell

No/low
expression

Disease CAR construct Antigen Low/Negative References
relapse

Pediatric ALL CD19-BBC (Tisa-cel) [25% (15/61) Maude NEJM 2018
ELIANA

Pediatric ALL CD19-BBCZ (Seattle) 18% (7/40) Gardner Blood 2016

Adult ALL CD19-28¢ (MSKCC) 9% (4/44) Park NEJM 2018

Adult ALL CD19 (FCCRC) 7% (2/29) Turtle JCI 2016

Adult LCL CD19 (Axi-cel) 5% (5/100) Plaks Blood 2021
ZUMA-1

Myeloma BCMA-BBZ (lde-Cel) |4% (3/71) Munshi NEJM

There are a number of ways that tumor can resist CAR T cells, including expression of anti-apoptotic
proteins. However, the most straightforward way is to lose expression of the antigen that CAR targets,
such as CD19 or BCMA. Antigen loss varies by disease and CAR construct. It is not the majority of
relapses but is a sizeable fraction.




Mechanisms of antigen loss in multiple myeloma

BCMA: 3/71 patients GPRC5D: 6/12 patients
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The myeloma antigen BCMA is rarely lost, whereas loss of GPRC5D appears more common. The current thinking is that
BCMA is more central to myeloma biology and progression than GPRC5D. Thus there is a greater cost to BCMA loss.
BCMA is downregulated and adjusted in some patients, but GPRC5D frequently shows biallelic deletions at relapse.




Potential Solution: Target two antigens at same time.

Cronk Cancers 2020 Guedan Mol Therapy 2018 Key Slide

a. Coadministration b. Bicistronic

A Dual CAR B Tandem CAR C Looped
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c. Cotransduction d. Tandem

Antigen A on T-cell
Antigen B activation

If loss of a single antigen drives relapse, can you target two antigens simultaneously?

Dual antigen chimeric antigen receptor CAR T approaches. (a) Coadministration: involves production of two
separate CAR T cell products infused together or sequentially. (b) Bicistronic: allows expression of two different
CARs on the same cell. (¢) Cotransduction: encodes two CAR constructs with multiple vectors. With this process,
one will also obtain cells that express each CAR alone. (d) Tandem: encodes two CARs on same chimeric protein

using a single vector.
These designs generate an OR gate logic; expression of either antigen activates CAR T cell to Kill.




BCMA/GPRC5D tandem CAR for multiple myeloma

Zhou Lancet Hematology 2024
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Encouraging activity including against single antigen expressing disease
Short follow up, and not yet clear if/what will drive relapse




T cell factors
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T cell exhaustion is a state of persistent dysfunction under chronic antigen stimulation. Exhaustion is associated with
characteristic epigenetic, transcriptional, and functional changes. The term is probably overused, and inhibitory receptor
expression (PD-1, TIM3 etc) cannot readily distinguish active and exhausted cells. See Masopust et al. Nature Reviews
Immunology 2025 for current best practice on T cell states and naming.




Preinfusion T cell quality

Fraietta JA et al. Nat. Med. 2018.
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The patients T cell ‘quality’ can massively influence CART cell efficacy. Even before cells are
infused, there is variability in T cell phenotypes.

Quality can be defined in a number of ways, although memory-like markers seem to predominate
Older, heavily pre-treated patients may be at risk of poor cell quality
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Can we engineer T cell quality in patients that lack it?

Doan Nature 2024

CAR p2A FOXO1 Chan Nature 2024
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1) The authors notice that FOXO1 regulon is upregulated in patients responding to CAR T cells.
FOXO1 is known to be involved in T cell memory and persistence. So they hypothesize
overexpression will enhance CAR function. 2) They engineer a bicistronic vector that expresses a
CAR and FOXO1 (linked with p2A). 3) It remodels the T cell to enhance quality and 4) improves CAR

function in vivo.



There are many proposed targets for gene editing to enhance CAR T cell function
Ahn Molecular Therapy 2024

2. co-stimulatory signaling

c-Jun O/E CAR -T
(Lyrnn et al., 2019)

1. TCR signaling 3.cytokine
.: IL-21,IL10
il T
‘g Regnase-1 STAT3

l Regnase-1 K/O CAR-T |

c-Jun Fos

AP-1 Transcription factor

T cell activation

(Zhang &l al., 2021)
NFAT (Wei et al., 2019 )
I TCF1 BATF O/E CAR-T

{Sec et al., 2021)

* IRF4 BATF
Persistent TCR engagement
wio AP-1
/‘\\ Long term persistence
of effector function
TOX = 'NR4A

DNMT3A K/O CAR-T
(Prinzing et al., 2021)

TETZ KIO CAR-T
{Fraietta et al., 2018)

Epigenetic regulator

(Jain e al., 2023)

-

{Khan et al., 2018
{Chen et al., 2018)
{Seon et al., 2019)

ENELD

(Pace et al., 2018),
[Jaim et al,, 2024},

(Niborski et al., 2021)

* T cell exhaustion

SUV3I9H1 K/O CAR-T



Genetic screens are an alternative strategy to define potential edits to enhance CAR therapy

CRISPR gRNA library

Cells of interest :ﬁ:ﬁ \?i(\e/loegtrzgsﬁr-e
FeX o o %03
£°3
>

Disease model

J

O

!’“J:
I 7"751‘ i

/E

> ¢
Cell isolation & -
gRNA sequencing

Knudsen Nature 2025

Datlinger Nature 2025

o .
a o« oo .
.o Ser e
Lt Boe o
5 .
| o of o ° o
e o o o
. . .
LRS- )
o o
2 10 oo, o, 0 .
MR Seee ®
5

T T T
-5 0 5 10

Log2 FC
gRNA enrichment/depletion

Cas9 as RNP or mRNA In-vivo
Cells perturbed in bulk Tissue of interest
retrieval
Late in vivo vs. End of Production CDKN1B
i Tumor only
PTPN2 @
5] ZC3H12A CPKN1B @ - -@-Control sgRNA
YR RuNxs -@-Target sgRNA 1
DTy - -@-Target sgRNA 2
"TEFBRz el
. ¥ SMARCB1 _
@ X T 7
DNMT1_IRF2 ®GATA3 3 |
EED: sgRNA target L x| %
*® | *
SMARCA4®- S -
2 : @ZFP36L1 Sl - .
PDCL JU,NB$ RASA2 -log(p-value) |
vourB10® . 0! )
IRF4® @ o’ 4
.STATS KDM1A O 8
- ‘ cimais @: T T T T 1
4 2 0 2 0 20 40 60 80

LFC cultured in IL-2

Candidate genes for KO can come from analysis of patient samples, or knowledge of T cellimmunology. Alternatively,
new candidates can be nominated using screening methods. Screening, particularly in vivo in mouse models, is a
technical challenge but is increasingly being done. Screens can be done with Cas9 or alternatives such as base
editors. The assumptions underlying screens must be carefully examined; is the most abundant cell always the best?




‘CARpool’ screening strategies can also be used to identify optimal CAR designs

Pooled Knockin Screens in Human T Cells

Human Primary Non-viral HDR Barcoded Modified
T Cells Template Library T Cell Population
—
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—
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Cas9 RNP

Roth et al., Cell 202



36 Library Members

Immune Checkpoints (13)

Truncations and switch receptors from:
PD1, CTLA4, CD200R, BTLA4, TIM3, TIGIT
(e.g. CD28 Switch)
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Summary: Relapse from CAR

Antigen loss
- Rate varies by tumor and T cell product
- Some antigens (GPRC5D) more likely to be lost than others

- Can potentially be overcome by combinatorial CARs targeting multiple antigens
- Tandems CARs are most common combinatorial strategy

T cell exhaustion and lack of memory

- T cell responses can be limited or low quality in some patients

- Engineering strategies such as FOXO1 overexpression can be used to overcome
- Screening methods can be used to nominate pathways for editing



Beyond B cell and plasma cell malignancies: How to target solid tumors



The ideal CAR target

Expressed on tumor surface at high levels (1000s molecules/cell)
Expressed on tumors from all patients (inter-patient heterogeneity)

Expressed on all tumor cells within the same patient (intra-patient
heterogeneity)

Not expressed on normal tissue, or at least not expressed on
tissues critical to life



All Protein coding genes
n = 20090

Membrane protein-coding genes
n = 5543

Evidence at protein level
n = 4875

No high expression in
Critical normal tissue
n=1731

Genes with quasi
H-score >= 150
n=763

The surface proteome is quite limited

1tFilter

2nd Filter

3 Filter

4t Filter

5thEilter

Cell surface

localization
n=348

6th Filter

2-step filtering
n=123

7t Filter

Levels in

HSCs/MPPs

8th Filter

[ 82 targets ‘

Kathad PLOS ONE 2024

Non membrane genes (removed 14547 genes)

No evidence at protein level (removed 668 genes) -
Evidence of protein existence for all protein-coding genes

Removed genes having high expression in one / more
critical normal tissue (removed 3144 genes)

Removed genes having quasi H-score (proxy of the tumor
overexpression) of < 150 (removed 968 genes)

Removed genes with non-surface localization (removed
415 genes) encoding surface protein

Consistency in the data (removed 225 genes)
o Consistency between mRNA and IHC data
o quasi.H score and TCGA FPKM correlation

Remove the genes with high expression in Hematopoietic
Stem Cells (HSCs) and Multipotent Progenitor cells
(removed 29 genes)
Annotation of Literature, Antibody, Protein family, Clinical
and Preclinical level

Key Slide

The universe of membrane
proteins is actually quite
small. Once proteins with
normal tissue expression
are excluded, you are left
with very few potential
targets. This is particularly
true for common epithelial
cancers where the normal
tissue is critical for survival.




Brown, CE et al., NEJM. 375,26 (2016)

ANTIGEN LOSS / HETEROGENEITY

After Resection, After Infusion
before Infusion (cycles 1-6)

‘ BRIEF REPORT ‘ Before Resection
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Regression of Glioblastoma after Chimeric
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Surface antigens for solid tumors are not only limited in number, but have poor expression characteristics. For
example, they have high intrapatient heterogeneity and low surface expression, such that tumor escape is possible.




If a single target can’t work, can we create logic gates to target multiple
Dannenfelser Cell 2020

in silico-guided tumor recognition for immunotherapy

tumor samples normal tissues
TCGA RNAseq data GTEx
(33 tumor types) putative TM (34 normal tissues)
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i \
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2- and 3-antigen AND or NOT logic gates improve tumor discrimination of CAR T cells. Adding antigens improves
precision at the cost of recall; 2-3 is optimal.



Potential CAR design architectures

Hamieh Cancer Discovery 2023
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A variety of combinatorial CAR designs are theoretically possible to design using various principles of synthetic
biology. Designing with good performance characteristics is challenging. The syn-notch system is perhaps the
most developed method of engineering combinatorial CAR behavior.




The synNotch system can be used to generate response circuits

wild-type Notch
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hotch
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domain

o

regulation of
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target
molecule

,. 4 recognition
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<« cleavage
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i factor

.
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environmental
INPUT

v
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transcriptional
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Roybal and Morsut et al. Cell. 2016



Module 2: SynNotch CAR circuits enhance solid tumor recognition and promote
persistent antitumor activity in mouse models

Mesothelloma Semmoma Gastric cancer Ovarlan cancer Pancreatic cancer

e vy

Novel tumor antigen signatures

ALPPL2 Tumor ALPPL2-
Ikali h h | tal-like 2 synNotch
(alkaline phosphatase placental-like 2) Antigen ALPPL2 synNotc

Antigen B S q

Normal tissue
Antigen B

Tumor:
Mesothelioma, seminoma, gastric,
ovarian, and pancreatic cancer

_______________________________

Normal tissue:

Placental trophoblasts (only) @
Eplthellord Sarcomatoid Ovarian
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Let’s return to using the T cell

CAR can only
recognize surface
antigen

TCR can target
intracellular

antigen - expand

iHLAA, B ) rR2m
applicability & A
T conerss \

disease subtypes

Adalted from Chris Klebanoff
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Membrane-associated proteins
~11% of the proteome

» Potential antibody and CAR targets
* Examples:

CD19, BCMA, mesothelin, HER2, etc
Intracellular proteins

~89% of the proteome

» Exclusively TCR targets because
intracellular proteins must be
presented by MHC for T cells to
recognize



The landscape of T cell antigens for cancer immunotherapy
Peri Nature Cancer 2023

e Peptide-
MHC
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Central tolerance:

Prevalence:
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Clonality:
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CG
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some cancers
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Only pathogen-driven
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High for virus-driven;
medium for bacteria
shared elsewhere
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Cancer with
high TMB
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High for driver mutations;
Low for bypass/late
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Translation abberation-
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To be determined
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Overexpressed tumor- and tissue-specific antigens are ubiquitously present in tumor cells; however, they are shared with healthy
tissues and thus have low tumor specificity and are hampered by central tolerance. Cancer Germline (or tesists) antigens are solely
expressed in the germline and become re-expressed in tumor cells, providing them with a medium tumor specificity and subjecting
them to central tolerance. Viral and bacterial antigens stem from former oncogenic pathogen infection, which renders them highly
tumor-specific with no expression in healthy tissue and a lack of central tolerance. Neoantigens arising from mutation, for example
single-nucleotide variations, indels or fusion genes arise from oncogenesis and are exclusively present in cancer cells, harbor a high
tumor specificity and no central tolerance. Aberrant translation-or transcription-derived neoantigens are a result of malfunctional
cellular transcription and translation machinery in cancer and are not encoded by the genome. As a rather new class of TSAs, their
prevalence and tumor specificity largely remain to be explored.




Two strateqgies for exp TCR to target tumor

A. Tumor-infiltrating lymphocytes (TILs) therapy

Jors % TCR
{ o9 . .o ® Not gene edited
;.i’ ] { ) y ({’\ Polyclonal

Private

Excised tumor cells Isolation of tumor-infiltrating Expansion of anti- Custom
from patient lymphocytes (TILs) tumor T cell

B. T cell receptor (TCR) engineering
TCR Engineered TCR

Transduction of %(ﬁl Gene edited
/] cancer specific TCR &
W, P . 2 I Monoclonal
|:. f\ G °
l ______ L4 %() Public
HLA restricted

T cell isolation from patient Engineer TCR T cells Expansion of gene
or allogenic donor's blood targeting a known antigen engineered T cells

Adapted from BioRender Want, et al (2023) Vaccines



Tumor Infiltrating Lymphocyte as treatment for cancer

Culture with
6,000 1U/ml IL2
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Melanoma TIL

Fresh digest

One week Two weeks

Some tumors are full of T cells with variable specificity, a fraction of which are tumor specific. This is most common in
tumors with high mutation burden, such as NSCLC and melanoma. These cells can be excised, re-expanded ex vivo, and

reinfused, with some efficacy. Notice that TILs are NOT gene edited. The therapy relies on intrinsic polyclonal T cell
responses present in tumor.



Lifileucel is an FDA approved TIL product for metastatic melanoma

Barras Science Immunology 2024
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Non gene modified TILs can induce responses in patients with melanoma, and potentially non-small cell lung

cancer (NSCLC). However, these cells are fundamentally dysfunctional and exhausted, limiting their long term
persistence an ability to truly clear tumor.




Two strateqgies for exp TCR to target tumor

A. Tumor-infiltrating lymphocytes (TILs) therapy

Jors % TCR
{ o9 . .o ® Not gene edited
;.i’ ] { ) y ({’\ Polyclonal

Private

Excised tumor cells Isolation of tumor-infiltrating Expansion of anti- Custom
from patient lymphocytes (TILs) tumor T cell

B. T cell receptor (TCR) engineering
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or allogenic donor's blood targeting a known antigen engineered T cells

Adapted from BioRender Want, et al (2023) Vaccines



Target antigens for T-cell cancer immunotherapy

1. Tissue differentiation antigens (analogous to CD19)
Eg. CEA, MART-1, gp100, HER-2, thyroglobulin, etc.

2. Shared non-mutated antigens unique to cancer (cancer-germline
antigens)
Eg. NY-ESO1, MAGE, SSX2, etc

3. Viral-associated antigens from oncogenic viruses
Eg. HPV EG/E7, EBV LMP1/2

4. Random or driver mutations unique to each individual cancer



Genetic redirection of peripheral T cells using gamma retroviral
vectors encoding exogenous TCRs

Modified from: Morgan RA et al., Cancer J., 2010.

TCR vectors Antigens Targeted
sd W sa
——-
TV G MART-1, gp100,

ITR IRES LTR p53

sd < MART-1, CEA,
TR TR NY-ESO-1
MAGE-A3 / A1-restricted,
MAGE-A3 / DPB*0401-restricted

Just as a CAR can be inserted into a T cell, a new T cell receptor can be genetically delivered with a lentiviral vector.
TCR recognize peptide in the context of MHC, so this TCR is specific for the combination. The tumor must express
the antigen or have the specific mutation, and the patient must express the given HLA.



Afamicel is an engineered TCR therap

Autologous T-Cell
with Engineered
T-Cell Receptor
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T-Cell Targeting T-Cells Targeting
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Cancer-testis antigens (CTAs) are a category of tumor-associated antigens. Normally silenced in adult tissues,
except testis and sometimes placenta. They are aberrantly re-expressed in some cancers such as synovial

sarcoma, a soft tissue tumor. They include MAGE-A4, PRAME, and NYESO-1.

Afamicelis an engineered TCR that recognizes an antigen from MAGE-A4 expressed in the context of HLA-A2 (the

most common HLA allele in people of northern European heritage.




Target neoantigens for T-cell cancer immunotherapy

There are common mutations that generate neoantigens. However, not all antigens bind all HLA alleles, so again the
patient must have both the HLA allele and the mutation to qualify for therapy.

Most common recurrent mutations X Mostcommon HLA alleles = Potential eTCR therapies
pWT: AHHGGWTTK pMut: ALHGGWTTK
RSy s e A common (public) PI3K

ﬁ

4

Doy B 40 P >
|

2P .;: Il neoantigen is presented in
HLA-A03:01

é \ b r ‘ J ‘Pgw‘ <
/\/,\j\f\[\f/dﬁw Chandran Nat Med 2022

~ 7

Gene Mutation HLA allele Expected frequency Observed frequency
BRAF VeDOE AD3:01 1.55% 1.51%
KRAS Gl12D A02:01 1.01% 1.06%
PIK3CA HI04TR co701 0.73% 0.80%
PIK3CA E545K A03:01 0.68% 0.70%
PIK3ICA E542K A03:01 0.44% 0.44%
Tress R248W A02:01 0.33% 0.34%
TPii R273C A02:01 0.29% 0.31%
TP33 R2480) C07:02 0.25% 0.23%
TPs3 Y220C A02:01 0.24% 0.19%
PIK3ICA REEQ CoT:02 0.16% 0.17%

Note: Expected frequency indicates the frequency of shared necantigens predicted by recurrent multations in combination with highly frequent
HLA alleles. Observed frequency, the frequency of shared neoantigens in 7748 tumor samples,




Off the Shelf cell therapies: In Vivo gene delivery



Autologous CART cells

Kourelis JCO 40, 2022

Mikhael JCO Practice 2022
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In vivo editing of CAR T cells
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Gene Delivery Platforms for in vivo Editing

Non-viral Lentivirus AAV

Transient mRNA delivery Stable DNA Integration Episomal

Mitchell Nat Rev Drug Discovery 2020
Haasteren Nat Biotech 2020



Viral delivery allows for stable DNA integration

Viral Gene Therapy
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Key Slide

Viral platforms mediate nuclear delivery and DNA integration

Existing nanoparticle platforms lack nuclear delivery capacity
Biorender. Adapted from “Viral vs Non-viral delivery.”




Part 1: Cationic Lipid Nanoparticles for Delivery of mRNA CAR

Targeting Ligands Key Slide

Provide selectivity for target cells

via enhanced binding and uptake
thus efficient internalization
reduced Off-Target toxicities

Stablllzers and Excipients
¢ |Improving the overall
stability

¢ Colloidal properties

. eg,

e Tween 80

¢ Polysorbate 80

PEGylated Lipid Cationic Lipid
¢ Improving the stability and * Positively charged
circulation time . ® e Crucial for binding
and condensing

¢ Reducing their recognition
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mRNA CAR Constructs ethanolamine (DOPE)

The therapeutic cargo, such as mRNA
encoding the CAR construct, is encapsulated
within the LNPs, thus protecting the mRNA

Kh awa r J N a n O b | Ote C h 2024 from degradation and facilitating its delivery

into target cells.

Non-viral, nanoparticle delivery systems include biodegradable polymers (PGA, PLGA),
poly(B-amino esters), inorganic platforms, and lipid-based platforms

lonizable cationic lipid nanoparticles (LNPs) have numerous favorable properties
including self-assembly, robust in vivo delivery, and existing manufacturing infrastructure




Intravenous delivery is most common route for T cell targeting

b
Hou Nature Rev Materials 2021 J!ﬂ}éii%ﬁbm e
Intraocular “// ; \
injection — |
Intranasal ———> - =

administration ’—>

@ Inhalation

Macrophage Intratumoural
injection ——=
i

Intradermal Subcutaneous Intramuscu lar
injection injection injection

T cells are readily accessible in circulation, whereas vaccines target APC
present in subcutaneous tissue.
LN (Chen PNAS 2022) and intratumoral delivery have also been explored.




Intravenously injected LNPs have strong preference for liver

Adsorption of serum proteins (“protein corona”) such as ApoE promotes liver uptake
(Dilliard PNAS 2021, Hosseini-Kharat Mol Therapy 2019, Voke Nat Comms 2025)

LNP
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LNP radiography in a rat 1 hour after LNP administration IV (Ci Drug Metab Dispos 2023)
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Two approaches to target LNPs to T cells

‘ Lipid Formulation ‘

PEGylated lipids (for example, PEG-DMG for
/_ MRNA-1273 or ALC-0159 for BNT162b2)

— lonizable lipids (for example, Lipid H/SM-102 for
mRNA-1273, ALC-0315 for BNT162b2 or LPO1 for
Intellia products)

“— Helper lipids (for example, DSPC for
MRNA-1273/BNT162b2)

Cholesterol (for mRNA-1273/BNT162b2)

Huang Nat Med 2022

Lipid formulation affects charge, stability, and size
indirectly impacts T cell vs. hepatic delivery

Key Slide

‘ Surface Functionalization

Parayath Nat Comms 2020
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Potential T cell delivery targets

CD4 Both subsets required in literature**
CD8
CD3 T cell specific, triggers T cell activation
Can promote transduction and internalization

CD5 Predominantly expressed on T cells, but some off-target
CcD7 hematopoietic expression
CD32a Fc and adhesion proteins with high expression but significant off-
CD2 target expression
CD58

d
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e 4CM
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= BCM+4CM ]]]
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@ — control

0 2 4 6 B 1012 14 16 18
weeks atier fumaor injection

*Sommermeyer Leukemia 2016



CAR mRNA design is a key area of study and innovation

Linear mRNA

Nucleotide modifications (N1-mW¥)
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MRNA expression and
stability




MRNA delivery results in transient CAR expression on cells

Robust and high but transient CAR expression can be achieved in vivo
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Parayath Nat Commun 2020

Repeat administration leads to potent effects
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Case Study #1: HN201, a CD8-targeted CAR-LNP for SLE

HN2301
Proprietary anti-CD8 l T cell
Antibody Fragment I e Reprogram
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Wang NEJM 2025
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Rapid appearance and loss of CAR expression
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Transient CAR expression is a different paradigm

Autologous CAR T cells | | In Vivo CAR-LNP
- Minimal/no off-target delivery - Transient delivery, both off-
- Expansion and persistence target and to T cells
drive response (Chow NRCO - Dosing will be key
2022) - frequency
- Dose thresholds - fixed duration
- Limited re-dosing - therapeutic index

Dosing, biological behavior, and trial design for CAR-LNP may resemble
bispecifics/TCEs more than ex vivo autologous CART cells




Part 2: Viral platforms for DNA delivery
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Haasteren Nat Biotech 2020

Episomal, non-integrating
Replicates with cell, durable expression
20-60% of patients have limiting ab titers
Immune reactions can occur

Current platform of choice for ex vivo and in
vivo delivery
Integrates genome directly in host DNA

Immune reactions require suppression



https://www.nature.com/articles/s41587-020-0565-5#auth-Joost-Haasteren-Aff1

Therapeutic SIN lentiviruses are replication-incompetent

Ali Jaballah JMB 2025
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Each virion can integrate once and (hopefully) should not drive replication of additional virus




Pseudotyped and functionalized lentivirus for targeted delivery

Viral envelope controlled during manufacture

Envelope Vector
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Case Study 2: ESO-T01 lentiviral in vivo platform

C:Es Biotec Xiu et al. Lancet 2025
Target directly to TCR

AstraZeneca /

ENV
Nanobody Mutant VSVG with
Anti-TCR VHH targeted deletions

MHCI*
Reduced immunogenicity
and complement-
regulated lentiviral

Reduced vector phagocytosis
Increased number of vectors
available for targeted

transduction
inactivation
T ; — Licensed fr.o.m Chromgtln Bioscience
cnréicauy yali?téi;argeted VHH ’ T cell-specific synthetic — T cell specific synthetic promoter
neration structure . . .
= prgnies Mitigate off-target CAR expression

Would not affect off-target integration

Figure S1: CAR construct and design mechanisms
(A) CAR construct of ESO-TO01. (B) Design mechanisms of ESO-TOI.
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Temperature (°C)

ESO-T01 lentiviral in vivo platform

— Patient 1
---- Patient 2

-— Patient 3
— — Patient 4

b e B e L ittt e T

Pt 1: sCR, clearance of EMD
Pt 2: sCR

Pt 3: clear marrow, persistent EMD

Pt 4: Prior CAR, + CSF

Xiu et al. Lancet 2025

Awaiting more patients,
longer follow up, and s/sx of
off-target integration




What is the risk of viral integration

We don’t know. But...

1.Lessons from HIV (in vivo ‘delivery’, replicating)
1.HIV can integrate in non-immune cells
2.HIV is rarely directly oncogenic but can drive clonal
expansion in T cells (Maldarelli Science 2014)

H3K36me3 H3K36me3 H2BKS5me1

HY o 1 1 1 tt ottt ot 1

active gene body Poletti Mol Therapy 2018



What is the risk of viral integration

We don’t know. But...

1.Lessons from HIV (in vivo ‘delivery’, replicating)
1.HIV can integrate in non-immune cells
2.HIV is rarely directly oncogenic

2.Lessons from gene therapy (ex vivo delivery, nhon-replicating)
1.Secondary malignancies in lentivirally transduced HSPC
2.CAR integration in tumor can be an escape mechanism

(Ruella Nat Med 2018)
3.Secondary malignancies can occur in CAR+ cells



Current in vivo editing landscape
Mullard Nat Rev Drug Disc 2024

Table 1] In vivo CAR immune cells in and approaching the clinic

Drug name Company Vector (cell-targeting mechanism) Therapeutic payload Lead indication Planned phase | start
INT2104 Interius Lentivirus (CD7 scFv) CD20 CAR B cell cancers 2024
INT2106 Interius Lentivirus (CD7 scFv) CD19 CAR Autoimmune 2025
UB-VV111 Umoja/Abbvie Lentivirus (CD3 scFv, CD80 and CD58) CD19 CAR; RACR B cell cancers 2024
UB-VV400/410 Umoja/IASO Lentivirus (CD3 scFv, CD80 and CD58) CD22 CAR; RACR B cell cancers 2024
UB-VV300/310 Umoja Lentivirus (CD3 scFv, CD80 and CD58) CD20 CAR NHL/Autoimmune 2026
KLN-1010 Kelonia Lentivirus (CD3 antibody) BCMA CAR Multiple myeloma 2025
Discontinued Sana Lentivirus Various CARs Discontinued Discontinued
CPTX2309 Capstan LNP (CD8 antibody) CD19 CAR (mRNA) Autoimmune diseases "Near future"
Undisclosed Orbital LNP (undisclosed cell-targeting moiety) CD19 CAR Autoimmune diseases "Near future"
ORN-145 Orna LNP (no cell-targeting moiety) CD19 CAR (circular RNA) B cell cancers Undisclosed
ORN-252 Orna LNP (no cell-targeting moiety) CD19 CAR (circular RNA) Autoimmune diseases 2026
ORN-328 Orna LNP (no cell-targeting moiety) BCMA CAR (circular RNA) Multiple myeloma 2026

MT-302 Myeloid LNP (no cell-targeting moiety)® TROP2 CAR (mRNA) Epithelial tumours 2023

MT-303 Myeloid LNP (no cell-targeting moiety)® GPC3 CAR (mRNA) Liver cancer 2024
Undisclosed Carisma/Moderna LNP (no cell-targeting moiety) GPC3 CAR (mRNA) Liver cancer Undisclosed

*To reduce off-tissue activity, Myeloid’s uses a CAR-CD89 fusion payload, requiring FcRy to be active. CAR, chimeric antigen receptor; NHL, non-Hodgkin lymphoma; RACR, rapamycin activated
cytokine receptor; scFv, single-chain variable fragment.



Non-viral

Delivery platform

Most Common Platform

T cell targeting Lipid formulation

Surface Functionalization
Gene delivery MRNA, non-integrating
Dosing Repeat dosing

Safety Off-target uptake in liver

Lentivirus

Pseudotyping

Integrating

One-time infusion

Viral infusion syndromes

Risk of integration




$ Memorial Sloan Kettering
. ) Cancer Center

Questions?
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