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Lecture content

Organoid Technology: From Stem Cells to Mini-Organs
*Concept and development of organoids

*Self-organization and key properties of organoids
*Applications in developmental biology and disease modeling

Engineering the Cellular Microenvironment

*Multicellular organoids (assembloids)

-Biomaterials and synthetic matrices

Influence of physical and chemical cues on cell behavior
«Advanced hydrogels for 3D cell culture and organoid growth

Bridging Organoids and Complex Tissue Biology

*Single-cell analysis in organoid systems

*Organ-on-a-chip technologies

*Challenges and future directions in creating more complex tissue models



Lecture content

Discussion Paper:
Abilez et al. Gastruloids enable modeling of the earliest stages of human cardiac and
hepatic vascularization. Science. 2025 Jun 5;388(6751):eadu9375. PMID: 40472086.

Miao et al. Co-development of mesoderm and endoderm enables organotypic
vascularization in lung and gut organoids. Cell. 2025 Aug 7;188(16):4295-4313.e27.
PMID: 40592324.

Review Paper:

Onesto MM, Kim JI, Pasca SP. Assembloid models of cell-cell interaction to study
tissue and disease biology. Cell Stem Cell. 2024 Nov 7;31(11):1563-1573. PMID:
39454582.



What are “"Organoids™?

An organoid is a miniaturized and simplified version of an organ
produced in vitro in three dimensions that mimics the key
functional, structural, and biological complexity of that organ.

It is derived from@ne or a few cell from a tissue, embryonic stem
cells, or induced pluripotent stem cells, which can self-organize in

three-dimensional culture owinb&) their self-renewal and
differentiation capacities.

“Stem cells”

Wikipedia



What are “Stem cells”?

Can we study how stem cells form, maintain and repair
tissues using organoids?
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Why organoids?

Classical methods to study stem cells:

In vitro culture models

In vivo lineage tracing
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Human biology: requires a model system
that mirrors human physiology

It takes 3x-very long
time.

Difficult




Epithelial self-renewal in f ..m,
the small intestine v
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Lgr5+ stem cells in the intestine

Nick Barker



Lgr5+ stem cells in the intestine
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Nick Barker et al. Nature 2007



Intestinal organoids are
stable primary culture system
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Single Lgr5-expressing intestinal stem cells self-organize to crypt-villus structures
in vitro without necessity of a mesenchymal niche, making them the first organoids.

Toshiro Sato Nature 2009



Intestinal organoids are self-organizing epithelial structures
containing stem cells, progenitors and all differentiated cell types

» Can be cultured longer than 1
year without major genetic
changes (long-term longevity).

Lysozyme

« Self-organizing structure with
stem cells, progenitors and
differentiated cell types

Toshiro Sato Nature 2009



Adult Stem Cell-derived Organoids for Human Biology

Lung

Open a new era in
the study of human
organ biology
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Pluripotent Stem Cell (ESC and iPSC)-derived Organoids
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Why organoids as a model system?
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Lung Alveolar Organoids: tools for studying
stem cell differentiation and cell-cell interactions

Self-organizing organoids:
monitoring stem cell behaviors,
which replicate regeneration
processes

Organoid co-cultures:
deconstructing cell-cell
communication during
regeneration processes

H&E Sftpc (AT2: stem cells)
Ager (AT1: differentiated Mac2 (macrophages) Lee et al. Cell. 2014
cells) DAPI (nuclear) DAPI (nuclear) Lee et al. Cell. 2017

Choi et al. Cell Stem Cell. 2020



Dynamic Evolution of Tumors and the Surrounding Microenvironment
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How to validate transcriptomic data
from single-cell RNA-sequencing
and spatial transcriptomics




How do lung alveoli regenerate after injury?
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Dynamic changes in macrophages during injury repair
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Does macrophage affect AT2 cell behavior?

Ex vivo organoid co-culture
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How do inflammatory signals affect stem cell fate or state?
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Sustained IL-1[3 blocks the transition from DATPs to mature AT1
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Emergence of DATP-like cells in injured human lungs:
Impaired regeneration causes lung disease?

Normal donor Pulmonary fibrosis COVID-19 Lung adenocarcinoma
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Choi et al. Cell Stem Cell. 2020
Chen et al. Cell Res. 2020

Strunz et al. Nat. Comm. 2020
Kobayashi et al. Nat Cell Biol. 2020
Marjanovic et al. Cancer Cell. 2020
Melms et al. Nature. 2021

Delorey et al. Nature. 2021

Many more...
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Functional repair of the CFTR locus in primary colon stem
cells of a cystic fibrosis patient
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CFTR encodes an anion channel essential for fluid and electrolyte
homeostasis of epithelia. Mutations in this receptor cause cystic fibrosis

(CF), a disease that leads to the accumulation of viscous mucus in the
pulmonary and gastrointestinal tract. G Schwank, et al. Cell Stem Cell 2013



Functional repair of the CFTR locus in primary colon stem
cells of a cystic fibrosis patient

CRISPR/Cas9 gene editing in patient-derived organoids

genomic CFTR locus

5" -TATCATCTTTGGTGTTTCCTATGATGAATATAGATACAGARA-3'

Two patients were homozygous for the
I most common CFTR mutation, a
i@;_ ”I ;ﬂﬁﬁ\mﬂﬂﬂ ﬂm@ﬂmpﬁi_y deletion of phenylalanine at position
508 (CFTR F508 del) in exon 11, which

causes misfolding, endoplasmic
reticulum retention, and early
degradation of the CFTR protein.

5" -TATCATCTTTGGTGTTTCCTATGATGAATATAGATATCGAA-3'

CFTR corr. (2) CFTR corr. [1'_! CFTR F508del

5'-TATCATCTTTGGTGTTTCCTATGATGAATATAGATATCGARA-3 "



Gene correction for cystic fibrosis

Wt human CFTR opened Mutant CFTR Gene corrected CFTR
with forskolin does not open opened with forskolin
O0:59:57, {1} ‘ 00:43:55.060

Forskolin assay: forskolin induces CFTR-dependent fluid secretion into the organoid lumen that leads to a rapid
increase of the whole organoid area that can be quantified by time-lapse live cell microscopy




Significance of this achievement

The key test used is the forskolin-induced swelling (FIS) assay in patient-derived
organoids, which measures CFTR function. This test shows:

\Whether CFTR is functional
*How well different drugs might work
*Patient-specific responses

These tests are particularly valuable because:

*They can test drugs before giving them to patients
*They help predict which treatments will work best
*They can justify expensive treatments to insurers
*They reduce trial-and-error in treatment selection



Broad applications of this assay

In_Industry/Pharma:

*Drug screening and development
*Testing CFTR modulators
*Predicting drug responses
*Developing personalized treatments

In Health Insurance:

In Hospitals/Clinics:

Patient-specific drug testing
*Treatment response prediction
Diagnostic tool for CF variants
*Guiding treatment decisions

*Supporting coverage decisions for expensive CF drugs

*Providing evidence for treatment efficacy
*Determining drug reimbursement
*Cost-effectiveness assessment



Can we transplant organoids grown from a single stem cell
(resource for cell therapy)?

Transplantation of organoids grown from stem cells



Functional repair of the ATAT deficiency in human iPSCs
derived from patients
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Functional analysis of restored A1AT in corrected IPSC-
derived hepatocyte-like cells (gene and cell therapy)
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Gene editing and cell therapy

Schematic illustrating the routes of gene-edited cell therapy.
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Tracheal

BronchoAlveolar

Expanded utility belt for tackling bat viruses

Multispecies, multiorgan bat organoids
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Kim et al. Science. 2025



Bridging Organoids and Complex Tissue Biology

Limitation: lack of cellular and
mechanical complexity of tissues

Co-culture of epithelial
stem cells and their
stromal cells

Mac2 (macrophages)
DAPI (nuclear)




Advanced organoid models: Assembloids
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Advanced organoid models: Assembloids

Kim et al. Nature 2020



Advanced organoid models: Assembloids
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Advanced organoid models: Macroscale tubular structure

Alrway organOIdS Can we build trachea?
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Advanced organoid models: Macroscale tubular structure

PLA template POMS mold Can we build trachea?
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Advanced organoid models: Macroscale tubular structure
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Advanced organoid models: Macroscale tubular structure

6 h, infected epithelium 120 h, new oocysts

Modeling long-term
parasite infection:
Tubular organoids
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25h
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Real-time monitoring of the injury
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Nikolaev et al. Nature 2020



Advanced organoid models: Tunable matrices
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Advanced organoid models: Tunable matrices

Lung Homeostasis ‘

Lung posses viscoelasticity: lung’s respond to stress (Force/Area) in
a time dependent manner

P
Inhalation K() Exhalation Q

Instantenous elastic Time-dependent
' deformation viscous deformation

(Stress relaxation)



Building a tissue in vitro : Normothermic perfusion

Ex vivo human liver culture

Deceased human
oS0t transplant donor
livers

Not transplanted

KRT19/ RFP/

Sampaziotis et al. Science. 2021

Normothermic perfusion:
cardiopulmonary bypass technology
to keep organs in a physiological
state by simulating body
temperature and providing oxygen
and nutrients.

Technical Challenges:

 Availability & Accessibility
* Reproducibility
* Long-term maintenance



Building a tissue in vitro : Organ-on-a-chip
Hematopoietic vascular niche
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Building a tissue in vitro : Organ-on-a-chip
Organ to organ interaction

Bone marrow
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Building a tissue in vitro : Organ-on-a-chip
Organ to organ interaction

Systemic Circulation
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$% Cytokines
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immune system
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Neutrophil-mediated innate immune
responses to bacterial infection in the
lung-bone marrow multiorgan model

Georgescu et al. Cell stem cell 2024



Building a tissue in vitro : Bottom to Top

Structural, molecular, and functional features of in vivo tissues and organs

Complexity for proper function of tissues and organs (organoids — lack cellular
organization and organ-supportive tissues)

Geometry for in vivo tissue structure and function (organoids — heterogeneous in
size, shape, cellular composition)

Functional assay for quantifiability and reproducibility (organoids — highly
variable)

Physiologically relevant scaffold/ matrices

Systemic organ to organ interactions



Questions to be discussed....

« What are the current limitations of 3D organoid systems and how can organs-
on-a chip devices help to overcome them?

 How do we balance scaling up organoids with ensuring accurate tissue
representation?

» Development of cell type/organ/disease specific functional assays (quantifiable
and reproducible).

« What are the challenges of applying omics readouts to scaled-up experiments
with many samples, biologic/inter-individual variation, function/phenotype
varies over time points, etc. and how do we overcome those?



Discussion Papers:
Organ-specific vascularized organoid engineering

Abilez et al. Gastruloids enable modeling of the earliest stages of human cardiac and
hepatic vascularization. Science. 2025 Jun 5;388(6751):eadu9375. PMID: 40472086.

Miao et al. Co-development of mesoderm and endoderm enables organotypic

vascularization in lung and gut organoids. Cell. 2025 Aug 7;188(16):4295-4313.e27.
PMID: 40592324.



Limitation of this study?



Questions: leej49@mkscc.org



	Slide 1
	Slide 2
	Slide 3
	Slide 4: What are “Organoids”?
	Slide 5: What are “Stem cells”?
	Slide 6: Why organoids?
	Slide 7: Why organoids as a model system?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Why organoids as a model system?
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Questions to be discussed….
	Slide 51
	Slide 52
	Slide 53: Questions: leej49@mkscc.org 

