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Stem Cells derived from Embryos




mouse embryo development: the 15t week
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Derivation of embryonic stem (ES) cells from

mouse blastocyst stage embryos
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Stem cells

from the mammalian blastocyst

ES cells
TS cells
Xen cells ES cells (ESCs)

= Derived from the EPIBLAST of the mammalian blastocyst.
» They approximate to the:
(1) Morphology of EPIBLAST cells
(also can add FGFl

(2) Gene expression profile inhibitors)

(3) Developmental potential of EPIBLAST
= ES cells grow indefinitely while maintaining their developmental potential (pluripotency) @




Testing developmental potential /in vitro and in vivo
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Taken from Tam and Rossant, 2003, Development 7:155.




Testing developmental potential in vivo m

* From the Greek meaning "she-goat”

= The Chimera was a mythical fire-breathing creature with the
body of a goat, the head of a lion and the tail of a serpent

* mouse chimeras can be generated by
aggregation or injection mouse chimeras

= used as a tool for investigating the Corgbine_t\:o 8-ce1ll6
€mDryos Into one -

developmental potential of cells in vivo . cell embryo
= aggregation chimera
(with 4 parents)
Cell division slows so
that blastocyst is
normal size

Very rare examples of
human chimeras (XX--
XY) formed by fusion?




Embryonic stem cells (ESCs) form chimeras when injected into pre-implantation embryos

adult mouse chimeras




Pluripotent stem cells representing different epiblast
states can be isolated from mouse embryos
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Derivation of pluripotent epiblast stem cells (EpiSCs) from postimplantation mouse (& rat) epiblast

Mouse embryos Dissected mouse Mouse epiblast colony Mouse epiblast colony Mouse EpiSCs
5.75 dpc epiblast day 1 day 2 p32

Primitive
streak

Rat epiblast colony

Rat embryos at 7.5 dpc  Dissected rat epiblast Rat EpiSCs p7
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Brons et al., Nature 2007




EpiSCs are pluripotent: capable of
differentiating into the three primary germ layers
in vitro and in vivo
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MESCs and mEpiSCs have distinct gene expression

a Relative gene expression b Histone methylation
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In vivo differentiation potential of mEpiSCs revealed by chimeric embryo formation

24-48 hour Correct
Asad culture differentiation

EpiSCs
ES

E7.5 ells
embryo

+ Epiblast stem cells (EpiSCs) form chimeras when injected into post-implantation epiblast
* Embryonic stem cells (ESCs) do not form post-implantation chimeras

+ EpiSCs do not integrate if they are injected after gastrulation

Huang et al., Cell Reports 2012
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Derivation of stem cells from
all 3 lineages of the mouse blastocyst stage embryos

trophoblast
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Overexpression of Cdx2 in ES cells directs them to a TS cell fate

TS cell morphology in ES cells expressing Cdx2

Placental contribution of ES-derived TS cells
generated by expression of Cdx2

Niwa et al., 2005, Cell 123:917-929.




Overexpression of Tead4 in ES cells directs them to a TS cell fate
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Nishioka et al., 2008, Dev Cell 16:398




XEN cells

screen by morphology

gene expression

no factors added? l

Kunath et al., 2005,
Development 132:1649-61.
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Overexpression of Gata6 (or Gata4) in ES cells directs them to a XEN cell fate
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Fujikura et al., 2002, Genes and Development 123:917-929.
Niwa et al., 2007, BMC Developmental Biology 123:917-929.




Wnt3a and Activin (Nodal) drive primitive endoderm (PrE) differentiation of naive pluripotent cells (ESCs)
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Mouse & human embryonic & extra-embryonic stem cells & their corresponding developmental potencies
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Fu et al., Nature Materials 2020




Stem Cell-derived Embryo Models




Blastocyst-derived stem cells: applications

ES cells




Mimicking the in vivo signals driving gastrulation initiation

Extraembryonic signals

BMP, NODAL, WNT & FGF
converge on posterior epiblast
driving formation of PRIMITIVE STREAK
VT . & initiation of GASTRULATION

Wnt&Nodal

antagonists
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Micropatterned differentiation of pluripotent stem cells: MOUSE

gastrulation in the mouse embryo
pluripotent stem cell differentiation

micropattern differentiation
of mouse pluripotent stem cells
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Morgani et al., eLife 2018




Mimicking the in vivo signals driving gastrulation initiation

Extraembryonic signals

BMP4

BMP, NODAL, WNT & FGF
‘ converge on posterior epiblast
Wnt&Nodal driving formation of PRIMITIVE STREAK
antagonists & initiation of GASTRULATION
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Micropatterned (2D) differentiation of pluripotent stem cells

Standard culture Micropatterned culture
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EpiLCs correlate to the pre-gastrulation epiblast
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Does in vitro differentiation of pluripotent stem cells on micropatterns
employ comparable morphogenetic mechanisms as the embryo?
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Differentiating EpiLCs undergo EMT

0 hours 24 hours 48 hours 72 hours
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Activin/Nodal signaling inhibition affects EMT
(as it does in the embryo)
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E-CAD
center colony radius
FGF + ACTIVIN + BMP + WNT (control)

Accumulation of cells
at micropattern edge

N s ATV aRmiwy ™ T L AT
3 g . sl .

FGF + BMP + WNT + SB (TGF- type | receptor inhibitor)

¢ 4

e
v )
“v‘."l

'
A P . Ponpe y of PO Y I . 4 --.'f'l’i’
g y ¥ Sl * AN % cas o SRR S, ¢ A NN R Y REALS S

Merge > CDX2 Nuclei




Micropatterned differentiation of pluripotent stem cells: HUMAN 2D GASTRULOIDS
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Liu et al., Nature Comms. 2022
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Micropatterned differentiation of pluripotent stem cells: HUMAN 2D GASTRULOIDS
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Extended culture of 2D gastruloids to model human mesoderm development

g reveals distinct mesodermal populations
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Differential receptor availability drives micropatterned differentiation
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Mechanical Tension Promotes Formation of Gastrulation-like
Nodes and Patterns Mesoderm Specification in HESCs

Mechanics regulate hESC self-organization to specifiy mesoderm
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Muncie et al., Developmental Cell 2020
Schwarz & Hadjantonakis Developmental Cell 2020




Different differentiation protocols for different ESC-based embryo models

A) Monolayer Culture

Culture medium i) Anterior Neural derivatives
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3D GASTRULOIDS: MOUSE

N2B27 Chi = Wnt agonist
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Multi-axial self-organization properties of mouse ESCs into 3D gastruloids
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https://www.nature.com/articles/s41586-018-0578-0
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Collinear Hox gene expression in mouse 3D gastruloids
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3D Gastruloids generate cardiac structures

Specification and anterior localization
of cardiovascular progenitors
bFGF p Developmental Time
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Tissue spatial organization: development of
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Gastruloids generate cardiovascular
progenitors and form a vascular-like
structure

Both first and second heart field-like
progenitors are specified

Cardiac progenitors self-organize into
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- Cellular diversity and tissue-tissue
interactions mimic embryonic development

Rossi et al., Cell Stem Cell 2021




Gastruloids organize into trunk-like structures including neural tube and somites
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TLS scMap
(in vitro)

Integration
Cluster assignment
Certainty scores

Embryo scMap
(in vivo)
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3D GASTRULOIDS: HUMAN

Comparison between a 20 day old human embryo and a human gastruloid.
Left; False-colored Carnegie Stage 9 human embryo, with additional brain/neural folds and extraembryonic tissues (not colored).
Right; False-colored 72h human gastruloid. Coloring indicates estimated similarity of gene expression profiles.




3D GASTRULOIDS: HUMAN
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Lineage contributions of the mammalian blastocyst

GASTRULATION

zygote
(fertilized egg)
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INTEGRATED SYSTEMS
(comprising more than 1 stem cell type co-cultured)

aggregation of
different stem cells
in a microwell

TS ce 1 2\ /n vitro reconstituted

Blastoids OR

Rivron et al., Nature 2018
ES cells Li et al., Cell 2019




Stem cells representing epiblast (ESC) & trophectoderm (TE)
of the mammalian blastocyst stage embryo
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BLASTOIDS: Stem cell-derived blastocyst stage embryo-like structures




ES & TS cells can be combined to form a mouse blastocyst-like structure in vitro
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Mouse blastoids implant in utero & trigger the formation of deciduae

Rivron N. et al., Nature 2018




Human blastoids model blastocyst development & implantation
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Stem cell based human blastoid and endometrial (implantation) models
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The stages modeled by blastoids are from day 5 to 7.
This corresponds to the clinical stages ~ B3 - B6.

Implantation assay

Heidari Kohei et al., Nature Protocols 2023




Derivation of stem cells from
all 3 lineages of the mouse blastocyst stage embryos

trophoblast

zygote

(fertilized egg) ~32-140 cells

3-4 days in mice
(~1 week in human)
blastocyst




ETX embryos: Synthetic embryos comprised of ES-TS-XEN cells
that develop to post-implantation

Primitive
streak

ETX ETX ETX
embryo 1 embryo 3 embryo 5 embryo 6
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Middle plane
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Harrison S. et al., Science 2017
Sozen B. et al., Nature Cell Biology 2018




INTEGRATED SYSTEMS: ETX embryos
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Do ETX embryos employ comparable morphogenetic mechanisms as the
natural embryo?
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EMT events in ‘gastrulating’

ETX embryos

Sozen B. et al., Nature Cell Biology 2018
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Post-gastrulation synthetic embryos generation ex utero from mouse naive ESCs
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Post-gastrulation stem cell-derived embryo-like models generated ex utero from
mouse naive ESCs
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Stem cell-derived embryo-like models complete gastrulation to neurulation &
organogenesis (i.e. later development
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Stem cell-derived embryo-like models complete gastrulation to neurulation and
organogenesis (i.e. later development)
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Embryoid models recapitulate different stages of mouse & human development
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Mouse and human embryogenesis

Zernicka-Goetz et al., Nature Methods 2023




3D stem cell-based embryo humans in mouse and human
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