Building multicellular structures during development
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Outline of lecture

. How do cells generate force?

. How do cells respond to force?

. Roles of mechanical forces in tissue morphogenesis

. Open questions and challenges in the field




Actomyosin networks generate contractile force
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Kasza et al. (2011)
PMID 21130639



How do mechanical signals influence cell behavior?

substrate elasticity contols cell fate
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Force sensing by the nucleus

Compression
Force

Transcriptional regulators can move into the nucleus

Lipid enzymes can localize to the inner nuclear membrane

Protein complexes link actomyosin networks to the membrane

Niethammer (2021), PMID: 34213953




Force sensing at the plasma membrane

Piezo channel (closed) Piezo channel (open)
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Murthy et al. (2017), PMID: 28974772




Force sensing at cell-matrix and cell-cell adhesions

cell-matrix adhesions
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How cells respond to force: Insights from in vitro studies

binding partners phosphorylation localization

How do cells respond to physiological forces in vivo?

How do these force responses influence cell behavior?
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Movie of embryo expressing myristylated GFP by Eric Wieschaus




Coordinated apical constriction leads to furrow formation

cephalic
furrow

ventral furrow
mesoderm invagination




Coordinated apical constriction leads to furrow formation

apical constriction apical-basal shortening




Apical actomyosin contractility drives mesoderm invagination

Wild-type

Rho-kinase-GFP cell membrane

Coravos and Martin (2016), PMID: 27773487




Apical actomyosin contractility drives mesoderm invagination

00:00 min

Inject Rho-kinase
inhibitor

partway through
movie

Rho-kinase-GFP

Coravos and Martin (2016), PMID: 27773487




Genetic studies have identified key regulators of cell behavior

Transcriptional Signaling Force-generating
regulators molecules proteins

Twist GPCR myosin Il

G
Snail < F-actin

Rho GTPase

Martin (2020), PMID: 32132154




The cephalic furrow is a transient structure in the embryo

cephalic
furrow

cell division <= cell rearrangement

The ventral furrow leads to the permanent internalization of mesoderm cells

The cephalic furrow is transient, lasting only around 1.5 hours




What is the function of the cephalic furrow?

D. melanogaster

Eve (cephalic furrow and axis elongation)

Dey et al. (2025), PMID: 40903584




Optogenetic ablation
of the

Cephalic furrow

Interpretation: the cephalic furrow is a mechanical sink that releases compressive stress

Dey et al. (2025), PMID: 40903584




Patterned spatial cues generate planar polarized forces

Eve, Runt
transcription factors

Eve and Runt target genes
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Planar polarized forces Tissue elongation
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Cell rearrangements elongate the Drosophila body axis

cell
movement

tissue
elongation
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Cell rearrangements elongate the Drosophila body axis




Cell rearrangements elongate the Drosophila body axis

neighbor
exchange

rosette
formation

Blankenship et al. PMID: 17011486




Cell rearrangements elongate the Drosophila body axis
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Localized contractile and adhesive forces drive axis elongation
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Localized contractile and adhesive forces drive axis elongation

myosin | Sergio Simoes




Analyzing the distribution of forces in the embryo
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Fernandez-Gonzalez et al. PMID: 19879198




Actomyosin cables drive cell rearrangement

formation — rosette — resolution
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Rosettes as a general mechanism for epithelial elongation

mouse
neural plate

Jamie Mahaffey
Kathryn Anderson
MSKCC

Sutherland,
Hildebrand labs

chick neural plate mouse and frog kidney

Takeichi, Weijer labs Walz, Wallingford labs




Patterned spatial cues generate planar polarized forces

Eve, Runt
transcription factors

Eve and Runt target genes

VA TN

Planar polarized forces Tissue elongation




A positional Toll receptor code directs cell movements

Leulier and Lemaitre, 2008

Paré et al. (2014) PMID 25363762
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Toll receptors are sufficient to generate myosin cables
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Actomyosin cables drive cell rearrangement

formation — rosette — resolution
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Mechanical feedback stabilizes myosin Il at the cortex
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Epithelial tissues experience the strongest forces
at tricellular junctions

2

bicellular junctions (low tension)

tricellular and multicellular junctions (high tension)




Tyrosine phosphorylation is increased at tricellular junctions
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Localized tyrosine phosphorylation requires myosin activity

Control Rho-kinase inhibitor (Y-27632)

high tension low tension _TCJ
enrichment

water Y-27632

phosphotyrosine




Canoe/Afadin localizes to tricellular junctions under tension

Control Rho-kinase inhibitor (Y-27632)
high tension low tension

cell-surface
receptors

Rap1
GTPase
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Canoe-Venus Canoe/Afadin

Yu and Zallen (2020), PMID: 33243859




Canoe/Afadin localization requires mechanical force

laser ablation experiment

Canoe-Venus




Canoe/Afadin localization requires mechanical force

laser ablation experiment
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Canoe is required to maintain cell adhesion under tension

Wild type

myosin-GFP

canoe KD

Sawyer et al. PMID 21613546




Canoe reinforces cell adhesion at tricellular junctions

Wild type canoe KD

E-cadherin (all adherens junctions)
Sidekick (tricellular junctions)




Canoe reinforces adhesion under tension at tricellular junctions
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A vertex trap method to disrupt Canoe localization

Sidekick fused to
a GFP nanobody

cell membrane

Vo

actin cortex




Trapping Canoe at multicellular junctions arrests rearrangement
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A mechanism for generating dynamic adhesion under force
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LIM domain proteins bind to cell-cell contacts, cell-matrix
contacts, and actin stress fibers under tension
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Smith et al. PMID: 24933506




The LIM domain protein Ajuba is regulated by mechanical force

Control Rho-kinase inhibitor
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Razzell et al. PMID: 30006462




The LIM domain protein Ajuba is regulated by mechanical force

. high tension
Wild type  (Shroom expression)

Ajuba-GFP e Ajuba enrichment

at TCls

Myo-mCherry

WT Shroom

Razzell et al. PMID: 30006462




Ajuba stabilizes adhesion in regions of high tension

Wild type Ajuba




Mechanical forces at the leading edge are required for dorsal closure

Wild type




Ajuba mutants develop small, transient gaps during dorsal closure

Ajuba mutant
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Outline of lecture

. How do cells generate force?

. How do cells respond to force?

. Roles of mechanical forces in tissue morphogenesis

. Open questions and challenges in the field




How do cells sense and respond to mechanical force?

i

binding partners phosphorylation localization

What are the mechanosensors that detect mechanical forces in cells?
Are proposed in vitro mechanisms relevant in vivo?

How do mechanical signals influence cell behavior?




