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LORIS robustly predicts patient outcomes 
with immune checkpoint blockade therapy 
using common clinical, pathologic and 
genomic features

Tian-Gen Chang    1,7, Yingying Cao1,7, Hannah J. Sfreddo2,7, 
Saugato Rahman Dhruba    1, Se-Hoon Lee    3, Cristina Valero    2, 
Seong-Keun Yoo    4,5,6, Diego Chowell4,5,6, Luc G. T. Morris    2   & 
Eytan Ruppin    1 

Despite the revolutionary impact of immune checkpoint blockade (ICB) 
in cancer treatment, accurately predicting patient responses remains 
challenging. Here, we analyzed a large dataset of 2,881 ICB-treated and 841 
non-ICB-treated patients across 18 solid tumor types, encompassing a wide 
range of clinical, pathologic and genomic features. We developed a clinical 
score called LORIS (logistic regression-based immunotherapy-response 
score) using a six-feature logistic regression model. LORIS outperforms 
previous signatures in predicting ICB response and identifying responsive 
patients even with low tumor mutational burden or programmed cell death 
1 ligand 1 expression. LORIS consistently predicts patient objective response 
and short-term and long-term survival across most cancer types. Moreover, 
LORIS showcases a near-monotonic relationship with ICB response probability 
and patient survival, enabling precise patient stratification. As an accurate, 
interpretable method using a few readily measurable features, LORIS may help 
improve clinical decision-making in precision medicine to maximize patient 
benefit. LORIS is available as an online tool at https://loris.ccr.cancer.gov/.

Immune checkpoint blockade (ICB) has revolutionized our approach 
to cancer treatment. However, many patients do not respond to ICB 
therapy, creating a need to identify biomarkers to predict which 
patients may benefit from this treatment1–3. Although tumor muta-
tional burden (TMB) has been recognized as a biomarker to predict ICB 
efficacy in solid tumors4,5, current evidence fails to support the use of 
high TMB (with a US Food and Drug Administration (FDA)-approved 
threshold of 10 mutations per Mb) as a biomarker for response to ICB 
treatment universally, across all cancer types6. Other clinical, patho-
logic and genomic features reported to be associated with ICB response 
include programmed cell death 1 (PD-1) ligand 1 (PD-L1) expression in 
the tumor7, microsatellite instability (MSI)8–10, human leukocyte antigen 

class I (HLA-I) evolutionary divergence (HED)11, loss-of-heterozygosity 
(LOH) status in HLA-I (ref. 12), fraction of copy number alteration 
(FCNA) or tumor aneuploidy13,14, blood neutrophil–lymphocyte ratio 
(NLR)15,16, blood albumin level17, body mass index (BMI)18, sex19 and 
age20. Nonetheless, there remains an unmet need to identify factors 
for patient selection that are as readily measurable and provide more 
robust and accurate predictions for cancer ICB response and patient 
stratification than the approved TMB biomarker.

There have been a few attempts to integrate features from mul-
tiomics data into a single machine learning model to improve the 
predictive power of ICB response. For example, one study curated 55 
unique biomarkers from the literature and used a tree-based ensemble 
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from the UCSD Moores Cancer Center, consisting of 35 participants 
across eight cancer types (Kato et al. cohort26), which matched those 
in the Chowell et al. cohort.

We also used data from the Vanguri et al. cohort27, consisting 
of 246 participants with advanced NSCLC at MSK, the Stand Up To 
Cancer-Mark Foundation cohort, which included 309 participants 
with NSCLC (Ravi et al. cohort28), and a pan-cancer cohort of refractory 
metastatic tumors (META-PRISM, Pradat et al. cohort29) with 57 partici-
pants treated with ICB across 13 cancer types present in the Chowell 
et al. cohort. These very recently published studies were accessed 
and analyzed only after our model training and initial testing were 
completed and fixed.

To assess patient outcomes, three metrics were measured: objec-
tive response, progression-free survival (PFS) and overall survival 
(OS). Objective response was evaluated using the Response Evaluation 
Criteria in Solid Tumors (RECIST, version 1.1)30 and classified as com-
plete response (CR) or partial response (PR) for responders and stable 
disease (SD) or progressive disease (PD) for nonresponders. Among all 
ICB-treated participants, 825 (~29%) experienced an objective response 
while 2,056 (~71%) did not (Table 1). Across multiple cohorts, we evalu-
ated more than 20 clinical, pathologic and genomic features (Methods). 
Among these features, eight were measured for most participants: sex, 
age, cancer type, ICB drug class, systemic therapy history, TMB, blood 
albumin level and blood NLR (Table 1). Here, ‘systemic therapy history’ 
was a binary variable indicating whether the participant received chem-
otherapy or targeted therapy before immunotherapy. Additionally, 
the PD-L1 tumor proportion score (TPS) was assessed in many NSCLC 
samples and a small portion of other cancer types.

We first explored the correlation between features measured on a 
continuous scale at a pan-cancer level across all participants (Fig. 1b). 
TMB was positively correlated with FCNA (r = 0.18, adjusted P < 0.001) 
and age (r = 0.16, adjusted P < 0.001). PD-L1 TPS was positively cor-
related with blood platelets (r = 0.16, adjusted P < 0.05), which aligns 
with previous studies in ovarian cancer where platelets increased the 
expression of PD-L1 in tumors31. Interestingly, PD-L1 TPS was negatively 
correlated with FCNA (r = −0.14, adjusted P < 0.05). In addition, there 
was a strong positive correlation between blood hemoglobin and 
albumin level (r = 0.50, adjusted P < 0.001).

Next, we aimed to build a reliable ICB response predictor based on 
the measured features. To this end, we comprehensively built and evalu-
ated response predictors using 20 different machine learning archi-
tectures. For each model, we first tuned the optimal hyperparameters 
using fivefold cross-validation on the training set; we then evaluated its 
performance using 2,000 repeats of fivefold cross-validation to ensure 
unbiased results (equating to 10,000 random training–validation splits 
in total). Finally, the selected models were further tested on multiple 
unseen test cohorts (Fig. 1c).

Our study included two types of models: pan-cancer and cancer 
type specific (Fig. 1d). Pan-cancer models were developed, trained, 
evaluated and compared using a subset of 964 participants from the 
Chowell et al. cohort who received immunotherapy between 2015 and 
2017 (Chowell train). The unseen test cohorts included 515 participants 
from the Chowell et al. cohort who received immunotherapy in 2018 
(Chowell test), as well as participants from the MSK1, MSK2, Kato et al. 
and Pradat et al. cohorts (Extended Data Fig. 1a). Cancer-type-specific 
models were developed, trained, evaluated and compared using the 
Chowell et al. cohort (only participants with NSCLC); unseen test 
cohorts included participants from the MSK1 (only participants with 
NSCLC), Shim et al., Ravi et al. and Vanguri et al. cohorts (Extended Data 
Fig. 1a). Overall, this approach allowed us to thoroughly evaluate the 
generalizability of the models under various scenarios.

A pan-cancer model to predict immunotherapy response
We first developed a pan-cancer logistic regression model to predict 
the objective response to ICB therapy using the eight features shared 

model, identifying the 11 most predictive biomarkers for ICB response21. 
However, this approach relied on whole-exome sequencing (WES) and 
transcriptome sequencing, which are expensive approaches and not 
routinely measured in clinical settings. In another approach, a random 
forest model was developed using 16 genomic and clinical features 
to predict pan-cancer ICB response22. This model was tested only on 
data from the originating medical center, leaving open the challenge 
of additional testing on external and independent cohorts. Moreover, 
the ‘black box’ nature of these models has limited their interpretability, 
impeding their application in the clinic.

Because cancer drug response is a complex phenomenon, it is 
currently challenging to perfectly distinguish responders from nonre-
sponders. Therefore, assessing the response probability of a patient to 
a particular therapy is of great value, potentially allowing clinicians to 
make more precise treatment decisions. For instance, in a patient with 
a high probability of ICB response, immunotherapy might be prior-
itized over another therapy; in a patient with a lower probability of ICB 
response, other therapeutic avenues might be prioritized. While TMB and 
PD-L1 expression are the two major FDA-approved biomarkers for ICB 
therapy, they do have limitations in accurately predicting response. For 
example, patients with low TMB may have a similar or even higher prob-
ability of responding to ICB therapy compared to those with high TMB6,23. 
Similarly, tumors across all PD-L1 expression levels may respond to ICB  
treatments3,24. Unfortunately, there has been little progress in developing 
a scoring system that can predict the patient-level ICB response prob-
ability in a monotonic manner, whereby higher scores reliably correlate 
with higher response probabilities across the entire score range.

Here, we developed and validated a transparent ‘white box’ com-
putational model with a few clinically easy-to-measure features, which 
can help clinicians to determine the patient’s probability of respond-
ing to ICB therapy. First, we curated and comprehensively analyzed a 
large collection of persons with different types of cancer, with more 
than 20 clinical, pathologic and genomic features measured. We then 
developed and tested 20 machine learning models using repeated 
cross-validation to identify the most predictive model for ICB response. 
Finally, we found that a clinical score, derived from a six-feature logistic 
regression model, had a superior and robust performance in predict-
ing the objective response to ICB on both internal cross-validation and 
multiple independent datasets. Remarkably, this clinical score exhib-
ited a monotonic relationship with both the ICB response probability, 
spanning from 0% to 100%, and the patient survival probability after 
treatment. Our findings suggest that this approach can be a powerful 
tool for predicting patient clinical outcomes in ICB therapy.

Results
Overview
We compiled a dataset of 2,881 participants with ICB treatment across 
18 solid tumor types from multiple data sources (Fig. 1a, Table 1 and 
Extended Data Fig. 1a). All participants were treated with PD-1/PD-L1 
inhibitors, cytotoxic T lymphocyte-associated protein 4 (CTLA-4) 
blockade or a combination of both immunotherapy agents (Fig. 1a 
and Table 1). To disentangle the predictive capacity of our model for ICB 
response from its prognostic significance within the broader context 
of cancer survival in the absence of ICB treatment, we also curated 
a cohort comprising 841 non-ICB-treated participants from 15 solid 
tumor types (Extended Data Fig. 1a,b).

The first data source was an MSK-IMPACT cohort, which included 
1,479 participants treated for 16 cancer types at Memorial Sloan  
Kettering Cancer Center (MSK; Chowell et al. cohort22). The second data 
source was a cohort from South Korea, which included 198 participants 
with advanced non-small cell lung cancer (NSCLC) (Shim et al. cohort25). 
The third data source was an additional cohort from MSK, including 453 
participants with 15 cancer types (MSK1 cohort) and 104 participants 
with either central nervous system (CNS) tumors or cancer of unknown 
primary (MSK2 cohort). The fourth data source was a pan-cancer study 
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Fig. 1 | Overview of the study. a, Description of the study aims and data used. The 
study aimed to develop and validate machine learning models to predict patient 
objective response probability and survival benefit following immunotherapy. 
b, Correlation among features measured on a continuous scale at the pan-cancer 
level (n = 2,881 participants). P values were determined by Spearman’s rank test, 
adjusted by Bonferroni correction. *, adjusted P < 0.05; **, adjusted P < 0.01;  
***, adjusted P < 0.001. c, Schematic representation of the training, validation 
and independent testing procedures used to develop and evaluate the predictive 

models. For each machine learning architecture, the hyperparameter was tuned 
with fivefold cross-validation. After determination of the hyperparameters, the 
models were evaluated using various performance metrics with 2,000 repeats 
of fivefold cross-validation. Lastly, the selected models were tested on multiple 
unseen test cohorts to assess their generalizability. d, The two types of models 
built, that is, the pan-cancer and NSCLC-specific models, and the corresponding 
training and test data used.
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among all participants. We performed fivefold cross-validation to 
identify the optimal hyperparameters. Feature importance analysis 
showed that a participant’s sex and ICB drug class information had 
little impact on the prediction (Extended Data Fig. 1c). After remov-
ing these two features, the best model found was a six-feature logistic 
LASSO (least absolute shrinkage and selection operator) regression 
model (LLR6), which included the following features in decreasing 
order of importance: TMB, systemic therapy history, blood albumin, 
blood NLR, age and cancer type (Extended Data Fig. 1d).

To double-check and assess the possible added value of the other 
features, we also developed and tuned a logistic regression model using 
all 16 features. However, the 16-feature model showed no improvement 
in performance over LLR6 on the cross-validation sets (Supplementary 
Table 1). In addition, we tested a five-variable logistic regression model 
without using TMB, LR5 (noTMB), but it performed worse than LLR6 
(Supplementary Table 1). Overall, our analysis suggested that the six 
selected features captured the most essential information for predict-
ing ICB response in participants with different types of cancer.

Table 1 | Characteristics of participants with ICB treatment in the study

Characteristic Total 
participants

Chowell et al.  
cohort22

Shim et al. 
cohort25

MSK1  
cohort

MSK2 
cohort

Vanguri et al. 
cohort27

Kato et al. 
cohort26

Ravi et al. 
cohort28

Pradat et al. 
cohort29

Sex, n (%)

   Female 1,280 (44.4) 668 (45.2) 58 (29.3) 172 (38.0) 42 (40.4) 134 (54.5) 17 (48.6) 165 (53.3) 24 (42.1)

   Male 1,601 (55.6) 811 (54.8) 140 (70.7) 281 (62.0) 62 (59.6) 112 (45.5) 18 (51.4) 144 (46.6) 33 (57.9)

Age, median, years 
(IQR)

63 (55–71) 64 (55–71) 62 (55–69) 63 (53–73) 53 (48–63) 68 (61–73) 62 (51–72) 64 (57–71) 66 (54–69)

Cancer type, n (%)

   NSCLC 1,456 (50.5) 538 (36.4) 198 (100) 128 (28.3) − 246 (100) − 309 (100) 37 (64.9)

   Renal 232 (8.1) 91 (6.2) − 137 (30.2) − − − − 4 (7.0)

   Melanoma 217 (7.5) 186 (12.6) − 30 (6.6) − − − − 1 (1.8)

   Head and neck 132 (4.6) 69 (4.7) − 61 (13.5) − − 2 (5.7) − −

   Bladder 119 (4.1) 82 (5.5) − 29 (6.4) − − 3 (8.6) − 5 (8.8)

   Sarcoma 88 (3.1) 67 (4.5) − 17 (3.8) − − 3 (8.6) − 1 (1.8)

   Gastric 82 (2.8) 64 (4.3) − 7 (1.5) − − 11 (31.4) − −

   CNS 75 (2.6) − − − 75 (72.1) − − − −

   Colorectal 75 (2.6) 46 (3.1) − 22 (4.9) − − 6 (17.1) − 1 (1.8)

   Endometrial 71 (2.5) 65 (4.4) − 4 (0.9) − − − − 2 (3.5)

   Hepatobiliary 62 (2.2) 52 (3.5) − 5 (1.1) − − 4 (11.4) − 1 (1.8)

   CLC 55 (1.9) 50 (3.4) − 4 (0.9) − − − − 1 (1.8)

   Esophageal 50 (1.7) 44 (3.0) − 5 (1.1) − − − − 1 (1.8)

   Pancreatic 40 (1.4) 35 (2.4) − 1 (0.2) − − 3 (8.6) − 1 (1.8)

   Mesothelioma 36 (1.2) 34 (2.3) − 1(0.2) − − − − 1 (1.8)

   Ovarian 31 (1.1) 31 (2.1) − − − − − − −

   Breast 31 (1.1) 25 (1.7) − 2 (0.4) − − 3 (8.6) − 1 (1.8)

   Unknown primary 29 (1.0) − − − 29 (27.9) − − − −

Drug class, n (%)

   PD-1/PD-L1 2,447 (86.0) 1,221 (82.6) 198 (100) 390 (86.1) 102 (98.1) 234 (95.1) − 245 (79.3) 57 (100)

   CTLA-4 7 (0.2) 5 (0.3) − 2 (0.4) − − − − −

   Combo 392 (13.8) 253 (17.1) − 61 (13.5) 2 (1.9) 12 (4.9) − 64 (20.7) −

Systemic therapy history, n (%)

   No 814 (28.3) 463 (31.3) 14 (7.1) 107 (23.6) 24 (24) 78 (31.7) − 123 (39.8) 5 (8.8)

   Yes 2,063 (71.7) 1,016 (68.7) 184 (92.9) 346 (76.4) 76 (76) 168 (68.3) 35 (100) 186 (60.2) 52 (91.2)

TMB, median, mutations 
per Mb (IQR)

5.9 (3.0–10.8) 5.3 (2.8–10.8) 7.3 (3.7–12.0) 5.3 (3.3–8.9) 3.9 (2.5–5.3) 7.9 (4.4–12.3) 7 (5–11) 7.4 (3.4–12.7) 7.1 (1.8–12.2)

Albumin, median, g dl−1 
(IQR)

3.9 (3.6–4.2) 3.9 (3.6–4.1) 4.1 (3.8–4.4) 3.9 (3.6–4.2) 4.1 (3.8–4.3) 3.8 (3.4–4.1) − − 3.9 (3.6–4.1)

NLR, median, (IQR) 4.3 (2.7–7.0) 4.4 (2.8–7.2) 3.1 (1.9–4.8) 4.1 (2.7–7.1) 4.1 (2.5–6.8) 4.9 (3.3–7.9) − − 4.5 (2.9–6.3)

PD-L1 TPS, median,  
% (IQR)

5 (0–66) 0 (0–60) 50 (1–72.5) 1 (0–50) 0 (0–50) 5 (0–60) − 25 (0–75) −

ICB response, n (%)

   Responder 825 (28.6) 409 (27.7) 61 (30.8) 116 (25.6) 14 (13.5) 61 (24.8) 5 (14.3) 121 (39.2) 19 (33.3)

   Nonresponder 2,056 (71.4) 1,070 (72.3) 137 (69.2) 337 (74.4) 90 (86.5) 185 (75.2) 30 (85.7) 188 (60.8) 38 (66.7)
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We also compared the performance of LLR6 with an established 
method, referred to as RF16 (Chowell et al.) hereafter, which is a 
16-feature random forest model reported recently22. As a result, LLR6 
outperformed RF16 (Chowell et al.) by having significantly higher 
values in five of seven different metrics on the cross-validation sets 
(Extended Data Fig. 2a). Notably, LLR6 exhibited a close-to-zero per-
formance difference between training and cross-validation, much 
smaller than that of RF16 (Chowell et al.) (Extended Data Fig. 2b), which 
suggests that LLR6 is less prone to overfitting than RF16 (Chowell et al.). 
Indeed, while RF16 (Chowell et al.) exhibited significantly higher area 
under the receiver operating characteristic curve (AUC) and area under 
the precision–recall curve (AUPRC) values than LLR6 on the training 
data, it experienced a substantial drop in performance on the unseen 
test data, ultimately resulting in even poorer performance than LLR6 
(Extended Data Fig. 2c). Interestingly, while the scores calculated from 
LLR6 and RF16 (Chowell et al.) were highly correlated, LLR6 scores 
exhibited a more uniform distribution across the range of 0 to 1. In 
contrast, scores generated from RF16 (Chowell et al.) tended to cluster 
within a narrower range between 0 and 0.6 (Extended Data Fig. 2d).

To further test if there were better machine learning architectures 
for predicting ICB response using all 16 features, we experimented with 
15 additional machine learning models, such as decision trees, Gaussian 
processes, support vector machine, XGBoost and deep neural net-
works. However, none of these models outperformed LLR6. While some 
complex models, such as XGBoost and a two-layer multilayer percep-
tron network, showed comparable performance to LLR6 (Supplemen-
tary Table 1), they exhibited much larger discrepancies in performance 
between the training and validation data (Supplementary Table 2), 
indicating a high risk of overfitting the data. We also compared other 
clinical and computational characteristics of LLR6 with other models. 
In short, LLR6 was the best model that simultaneously possessed the 
desirable properties of (1) superior performance and being less prone 
to overfitting; (2) use of only a few clinically measurable features;  
(3) high transparency and interpretability; and (4) short model  
training time, among others (Supplementary Table 3).

To directly assess the generalizability of LLR6, we applied it to five 
unseen datasets. We referred to the output calculated using LLR6 as 
the logistic regression-based immunotherapy-response score (LORIS) 
(Methods). As a baseline, we tested the FDA-approved TMB biomarker. 
Additionally, while we were unable to directly evaluate RF16 (Chowell  
et al.) on these external datasets because of the absence of many 
input features, we successfully constructed a six-feature random for-
est model (RF6) and optimized its hyperparameters using the same  
protocol as for the development of RF16 (Chowell et al.)22.

LLR6 consistently outperformed RF6 and the TMB biomarker 
across all datasets, even for cancer types not seen in the training data 
such as CNS tumors and cancer of unknown primary in the MSK2 
cohort. Specifically, LLR6 achieved 1–39% and 15–68% higher AUCs 
than RF6 and the TMB biomarker, respectively (Fig. 2a). Simultane-
ously, LLR6 consistently outperformed RF6 and the TMB biomarker 
by predicting significantly higher LORIS for responders compared 
to nonresponders on all datasets (Fig. 2b). In addition, LLR6 showed 
superior AUPRCs on most datasets (Fig. 2c).

To binarize the values of LORIS and RF6 scores, we used cutoffs of 
0.5 and 0.27, respectively, which maximized Youden’s index, defined as 
‘sensitivity + specificity − 1’, of the models on the training data, respec-
tively. Regarding TMB, the FDA-approved cutoff of 10 mutations per 
Mb was used. Using binarized scores, LLR6 predicted an odds ratio of 
1.4–4.1 for ICB objective response between high-LORIS and low-LORIS 
participants, which was higher than for RF6 (1.1–3.5) and the TMB 
biomarker (0.8–2.6) (Fig. 2c).

LORIS identifies low-TMB responders to immunotherapy
We further studied whether LORIS could predict patient survival 
outcomes following immunotherapy. Our pan-cancer Kaplan–Meier 

analysis revealed that participants with low LORIS (binned at 0.5) 
had significantly worse survival compared to those with high scores 
(OS: hazard ratio (HR) = 3.2, 95% confidence interval (CI) = 2.6–3.9, 
P = 2 × 10−28; Fig. 3a; PFS: HR = 2.6, 95% CI = 2.2–3.0, P = 2 × 10−33; 
Extended Data Fig. 3a). In contrast, using TMB (binned at 10 muta-
tions per Mb) to stratify participants resulted in moderate power (OS: 
HR = 1.3, 95% CI = 1.1–1.6, P = 0.01; Fig. 3a; PFS: HR = 1.5, 95% CI = 1.2–1.8, 
P = 8 × 10−6; Extended Data Fig. 3a). Notably, LORIS identified a sub-
stantial proportion of low-TMB participants who could benefit from 
immunotherapy at a similar level to high-TMB participants (Fig. 3a and 
Extended Data Fig. 3a). Similar results were obtained when we used 
the 50th percentile in each cancer type as the optimal cutoff for LORIS 
binning and the highest 20th percentile for TMB binning (Fig. 3b and 
Extended Data Fig. 3b). Note that the highest 20th percentile was used 
as it was the optimal threshold for TMB binning proposed in a previous 
study5. Indeed, when using the 50th percentile for TMB binning, akin 
to the approach used for LORIS, a more pronounced trend emerged. 
Specifically, participants with high LORIS scores, regardless of whether 
they exhibited low or high TMB levels, tended to derive similar benefits 
from immunotherapy. Conversely, participants with low LORIS scores 
had a limited potential to benefit from immunotherapy (Extended 
Data Fig. 4a,b).

To test the predictive power of LLR6 in individual cancer types, we 
calculated HRs for LORIS and TMB for each cancer type using multivari-
ate Cox proportional hazards regression that accounted for age, ICB 
drug class and year of ICB start. Consequently, higher LORIS predicted 
better OS (HR < 1) for all except one individual cancer type (binned at 
the 50th percentile; Fig. 3c), which was not true for the TMB biomarker 
(binned at the highest 20th percentile; Fig. 3d). Similar results were also 
observed for PFS (Extended Data Fig. 3c,d). Consistently, Kaplan–Meier 
analyses show that survival following immunotherapy was worse in 
low-LORIS participants for all 18 individual cancer types (Extended 
Data Fig. 5).

We also examined whether higher LORIS could predict better 
short-term and long-term patient survival, as both metrics are clinically 
important on their own. We compared the survival probability between 
participants with high versus low LORIS at various time points after 
immunotherapy, including half a year, 1 year, 2 years, 3 years, 4 years 
and 5 years. Notably, higher LORIS predicted significantly better OS for 
all time points (difference in survival probability between high-LORIS 
and low-LORIS participants: 0.21–0.33; Wilcoxon test P values: 3 × 10−5 
– 3 × 10−3; Fig. 3e). In contrast, TMB did not consistently predict better 
OS for all time points (Fig. 3f). We also observed similar results for PFS 
(Extended Data Fig. 3e,f).

LORIS provides monotonic response and survival prediction
Next, we investigated the relationship between a participant’s LORIS 
and their outcomes. Notably, we uncovered a unique characteristic 
of the LORIS signature. Specifically, as the LORIS increased, there 
was a consistent rise in the probability of objective response for par-
ticipants, ranging from 0% to 100% (Fig. 4a). This distinctive attri
bute would allow clinicians to easily estimate the likelihood of ICB 
response of a person with cancer by assessing the six input features.  
In particular, LORIS enabled identification of the top 10% of partici-
pants who were highly likely to respond to ICB therapy (with a response  
probability exceeding 50%) while excluding the bottom ~10% of par-
ticipants who were unlikely to respond (with a response probability 
below 10%). In contrast, the stratification power of TMB fell short. Only 
the top 6% of participants with the highest TMB exhibited a response 
probability exceeding 50%, while the lowest TMB scores proved inef-
fective in excluding nonresponsive participants altogether (Fig. 4b).

We further found that a higher LORIS consistently predicted better 
OS for participants across different percentiles. We were able to group 
patient survival into as many as six categories based on LORIS within  
each cancer type, that is, 0–10%, <10–20%, <20–50%, <50–80%, <80–90%  
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and <90–100%. Notably, the HR between the lowest-percentile (0–10%) 
and highest-percentile (90–100%) groups was as high as 7.8 (95% 
CI = 4.9–12.4, P = 1 × 10−18; Fig. 4c). However, we did not observe this 
monotonic relationship with survival for the TMB biomarker (Fig. 4d). 
Similar results were observed for PFS (Extended Data Fig. 4c,d).

LORIS has enhanced predictive power over prognosis
As biomarkers may have prognostic value, predictive value or both32,  
we next sought to explore the degree to which LORIS could prognosticate 
patient outcome outside of the context of ICB therapy. To explore this, 
LORIS scores were calculated for a cohort of participants with cancer  
from 15 solid tumor types (n = 841) that were treated with stand-
ard therapies (non-ICB cohort) at MSK. While LORIS had moderate 

prognostic value of patient survival in the non-ICB setting (AUCs for 
0.5-year to 3-year OS: 0.60–0.61), the AUCs were significantly lower than 
those observed for the ICB therapy group (AUCs: 0.73–0.83, DeLong’s 
test P ≤ 1 × 10−7; Fig. 5a). Additionally, the correlation between higher 
LORIS scores and improved survival in non-ICB-treated participants 
lacked a clear monotonic trend, with a much smaller risk difference 
between highest-scored and lowest-scored participants (HR = 1.3, 95%  
CI = 0.8–2.1, P = 0.13; Fig. 5b). In individual cancer types, LORIS also 
exhibited a reduced risk estimation capacity (Fig. 5c) and less statisti-
cal power in distinguishing short-term and/or long-term patient sur-
vival (Fig. 5d) within the non-ICB cohort. In addition, we conducted 
comparative analysis using the LR5 (noTMB) model, excluding the 
TMB component. The LR5 (noTMB) model continued to demonstrate 
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Fig. 2 | Robust prediction of pan-cancer objective response to immuno
therapy by a six-variable LLR model. a, Receiver operating characteristic curves 
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and the TMB biomarker (yellow curves) on the training set and across multiple 
unseen test sets. In the figure, n represents the number of participants. The 
dashed lines represent random performance, serving as a baseline with an AUC 
of 0.5. This indicates the performance expected from a classifier making random 
guesses. b, Distribution of LORIS, RF6 score and TMB alone in responders and 

nonresponders on the training set and across multiple unseen test sets. P values 
were determined by a two-tailed Mann–Whitney U test. Box boundaries represent 
the first and third quartiles; the central line marks the median. Whiskers extend 
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are shown as points beyond the whiskers. c, AUPRCs and odds ratios of the ICB 
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of participants in different cohorts is displayed in a.
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Fig. 3 | LORIS predicts patient outcomes following immunotherapy for both 
pan-cancer and individual cancer types. a, Kaplan–Meier analysis of OS. TMB 
is binned at 10 mutations per Mb and LORIS is binned at 0.5. HRs with 95% CIs 
are shown. P values were determined by univariable Cox proportional hazards 
regression. H, high; L, low. In the risk table, the numbers represent the numbers 
of participants. b, Same as a but TMB is binned at the highest 20th percentile 
and LORIS is binned at the 50th percentile for each cancer type. HRs with 95% 
CIs are shown. P values were determined by univariable Cox proportional 
hazards regression. c,d, Forest plot of HRs of OS within each cancer type using 
LORIS (binned at the 50th percentile) (c) or TMB (binned at the highest 20th 
percentile) (d). P values were determined by multivariable Cox proportional 

hazards regression with adjustment for cancer type, age, ICB drug class and year 
of ICB start. Squares positioned at midpoints symbolize point estimates of HRs 
and the accompanying bars indicate 95% CIs. e,f, Comparison of half-year, 1-year, 
2-year, 3-year, 4-year and 5-year OS stratified by cancer type for high versus low 
LORIS (binned at the 50th percentile) (e) and high versus low TMB (binned at 
the highest 20th percentile) (f). Median survival probability differences (∆) are 
displayed. P values were determined by two-tailed paired Wilcoxon rank sum 
test. Box boundaries represent the first and third quartiles; the central line marks 
the median. Whiskers extend to the furthest nonoutlier points within 1.5 times 
the interquartile range. Data are from the combined Chowell test and MSK1 sets 
(n = 968 participants).
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superior predictive power over its prognostic ability (Extended Data 
Fig. 4e). Taken together, these results showed that LORIS has both 
prognostic and ICB treatment predictive value but its predictive value 
appears much stronger than, and not attributable to, its value as a gen-
eral prognostic marker in persons with cancer.

Enhancing lung cancer immunotherapy predictions with 
LORIS
Our study demonstrated the superior capability of our pan-cancer 
model in predicting ICB response. This success led us to probe a 
subsequent question: Could the approach be extended to develop 
cancer-type-specific models? To this end, we tested the potential of 
using logistic LASSO regression (LLR) to create a specific model for 
NSCLC, the cancer type with the largest sample size in our dataset.

We constructed, trained and assessed NSCLC-specific models 
using a similar protocol to our pan-cancer study, albeit with two minor 
adjustments. First, we harnessed the entire Chowell et al. cohort 
as our training data to ensure an adequate number of samples for 
model training. Secondly, we replaced the cancer type feature in the 
pan-cancer LLR6 model with PD-L1 TPS, as the former was redundant 
for a single-cancer study and the latter is a key biomarker routinely 
measured in persons with NSCLC. Consequently, a total of 324 partici-
pants with NSCLC in the training dataset were evaluated with complete 
measurement of the six input features.

As a result, the NSCLC-specific LLR6 model was one of the best 
models with 2,000 repeats of fivefold cross-validation compared to the 
19 other models (Supplementary Table 4). More importantly, despite 
the limited data size, it maintained the desirable property of a near-zero 
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random guesses. b, Kaplan–Meier analysis of LORIS binned at the different 
percentiles in each cancer type for the non-ICB cohort. P values were determined 
by univariable Cox proportional hazards regression (single tail). HRs with  
95% CIs are shown for the lowest-percentile (0–10%) and the highest-percentile 
(90–100%) groups (n = 841 participants). c, Forest plot of HRs of OS within each 
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Fig. 6 | Robust prediction of response to immunotherapy in NSCLC with LLR.  
a, Receiver operating characteristic curves and corresponding AUCs with 95% CIs of 
LLR6 (blue curves), PD-L1 TPS (green curves) and TMB (yellow curves) on the training 
set and across multiple unseen test sets. In the figure, n represents the number of 
participants. The dashed lines represent random performance, serving as a baseline 
with an AUC of 0.5. This indicates the performance expected from a classifier making 
random guesses. b, Odds ratio of ICB objective response of LLR6 (blue bars), PD-L1 
TPS (green bars) and TMB (yellow bars) on the training set and across multiple 
unseen test sets. c, Distribution of LORIS, PD-L1 TPS and TMB in responders and 
nonresponders on the training set and across multiple unseen test sets. P values were 

determined by a two-tailed Mann–Whitney U test. Box boundaries represent the 
first and third quartiles; the central line marks the median. Whiskers extend to the 
furthest nonoutlier points within 1.5 times the interquartile range. Outliers are shown 
as points beyond the whiskers. d,e, Forest plots of HRs of PFS (d) and OS (e) within 
each dataset using LORIS (binned at 0.44, which maximized Youden’s index on the 
training data), PD-L1 TPS (binned at 50%) or TMB (binned at 10 mutations per Mb). 
P values were determined by multivariable Cox proportional hazards regression 
with adjustment for sex, age and ICB drug class. Squares positioned at midpoints 
symbolize the point estimates of HRs and the accompanying bars indicate the  
95% CIs. The number of participants in different cohorts is displayed in a.
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performance discrepancy between the training and cross-validation 
data (Supplementary Table 5). This suggests a minimized risk of over-
fitting. Indeed, NSCLC-specific LLR6 consistently outperformed  
both the TMB and the PD-L1 TPS biomarkers on all five external data-
sets, achieving 4–17% and 5–23% higher AUCs, respectively (Fig. 6a).

Moreover, the NSCLC-specific LORIS predicted an odds ratio of 
2.5–4.7 for ICB response between high-LORIS and low-LORIS partici-
pants, which is much higher than predicted for the TMB (1.1–2.1) and 
PD-L1 TPS (1.7–2.9) biomarkers (Fig. 6b). In addition, responders con-
sistently had significantly higher LORIS than nonresponders across all 
datasets (Fig. 6c). Lastly, higher LORIS consistently predicted a lower 
risk (HRs < 1) for both PFS and OS on all datasets, after adjusting for 
sex, age and ICB drug class (Fig. 6d,e).

To assess the additional value of constructing cancer-type-specific 
models, we conducted a comparative analysis between NSCLC-specific 
LLR6 and pan-cancer LLR6, as described above, specifically focusing 
on predicting the ICB response of participants with NSCLC (Extended 
Data Fig. 6a–c). Remarkably, the NSCLC-specific LLR6 consistently 
demonstrated higher AUCs across all datasets, with particularly notable 
improvements observed in the Shim et al. and Vanguri et al. cohorts 
(Extended Data Fig. 6a). Interestingly, the pan-cancer model dem-
onstrated a robust capability to predict survival in participants with 
NSCLC, achieving impressively consistent HR values near 0.5 for both 
PFS and OS across various datasets (Extended Data Fig. 6b,c). Addi-
tionally, we also constructed and compared a simplified two-variable 
NSCLC-specific model (LLR2) using only TMB and PD-L1 TPS as input 
(Extended Data Fig. 6d–f). The LLR2 model exhibited slightly reduced 

AUC values on most datasets (Extended Data Fig. 6d); it also demon-
strated compromised predictive capacity for patient survival, such as 
an inability to differentiate OS in the Vanguri et al. cohort (Extended 
Data Fig. 6f).

Furthermore, to evaluate the added value of PD-L1 TPS informa-
tion, we applied the NSCLC-specific LLR6 model to other cancers, 
including gastric cancer, esophageal cancer and mesothelioma. 
Remarkably, even when tested across these distinct cancer types 
without further training or adaptation, the model still demonstrated 
superior predictive power for ICB response compared to using TMB  
or PD-L1 TPS alone (Fig. 7a), despite the limited sample size.

Additional analyses were performed to test our methodology’s 
robustness. Firstly, the pan-cancer LLR6 model’s accuracy persisted 
even when excluding NSCLC data (Extended Data Figs. 7a–d and 8a–d). 
Furthermore, retraining the model without using NSCLC data did not 
further improve its performance (Extended Data Fig. 9a). In addition, 
removing the cancer type term from the model, which adjusts for vary-
ing TMB loads and responses across cancers, slightly reduced predic-
tive power but not significantly (Extended Data Fig. 9b). Lastly, systemic 
therapy history is typically not considered in ICB response prediction. 
Excluding this feature to predict response with a five-feature logistic 
LASSO model (LLR5) showed that both pan-cancer and NSCLC-specific 
LLR5 models performed slightly worse than their full counterparts, 
albeit not significantly (Extended Data Fig. 10a,b). Equations for com-
puting pan-cancer and NSCLC-specific LORIS using LLR5 models are 
included below (Methods). These results underscore the robustness 
of our methodology.
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Fig. 7 | LORIS facilitates more precise ICB response prediction. a, Receiver 
operating characteristic curves and corresponding AUCs of the NSCLC-specific 
LLR6 model (blue curves), the PD-L1 TPS biomarker (green curves) and the 
TMB biomarker (yellow curves) on gastric cancer, esophageal cancer and 
mesothelioma. In the figure, n represents the number of participants. The 
dashed lines represent random performance, serving as a baseline with an 

AUC of 0.5. This indicates the performance expected from a classifier making 
random guesses. b, A summary of this study. LORIS, a clinical score derived from 
this study, estimates ICB response probabilities using LLR that identifies and 
integrates a few key features from three categories: tumor molecular data, blood 
measurements and patient clinical information. LORIS provides precise, patient-
specific predictions of ICB therapy efficacy.
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In summary, we developed a logistic regression-based methodol-
ogy, identifying key predictors such as TMB, systemic therapy history, 
albumin, NLR, age, cancer type (pan-cancer) and PD-L1 TPS (NSCLC) 
to estimate patient ICB response probabilities (Fig. 7b). LORIS is now 
publicly available at https://loris.ccr.cancer.gov to aid cancer immuno
therapy researchers, clinicians and patients.

Discussion
The clinical utility of many machine learning models is markedly hin-
dered by their black box nature, which makes them difficult to inter-
pret33–35. To address this issue, we developed two interpretable models to 
predict patient ICB response: a pan-cancer model and an NSCLC-specific 
model. The clinical score derived here, LORIS, demonstrated a sub-
stantial improvement in predicting ICB response compared to current 
clinical biomarkers. Across multiple unseen datasets, the pan-cancer 
LORIS had a 15–68% increase in AUC over the TMB biomarker and the 
NSCLC-specific LORIS showed 4–17% and 5–23% increases in AUC over 
the PD-L1 and TMB biomarkers, respectively. Remarkably, despite using 
a limited set of features, LORIS matched or exceeded the performance 
of more complex computational methods, even under stringent test-
ing conditions. For instance, when stratifying the Chowell et al. cohort 
by the year of initiating ICB therapy—a method considered stronger 
than random data splitting according to the TRIPOD guideline36—we 
observed that the pan-cancer LORIS demonstrated superior predictive 
power compared to the original approach22. This improvement was 
evident across both repeated cross-validation and unseen test data 
(Extended Data Fig. 2). Similarly, the NSCLC-specific LORIS achieved 
comparable performance to the original approach (AUC = 0.77 versus 
0.80) on the Vanguri et al. cohort, despite the original approach using a 
notably larger feature set derived from radiology, histology and genom-
ics and its performance being measured through cross-validation rather 
than using independent data27. These findings showcase the versatility 
of our approach, which is applicable to both pan-cancer studies and 
when tailoring robust models to specific cancer types.

From a translational perspective, our results demonstrated three 
key findings. Firstly, LORIS predicts not only patient ICB objective 
response but also short-term and long-term survival benefit following 
immunotherapy better than existing methods. More importantly, our 
model successfully identifies low-TMB or low-PD-L1 TPS patients who 
can still benefit from immunotherapy. Lastly, LORIS scores patients 
by their response probabilities to immunotherapy in a much more 
monotonic and consistent manner, leading to more accurate iden-
tification of likely responders and more effective exclusion of likely 
nonresponders. Taken together, LORIS could be a reliable tool for 
improving clinical decision-making practices in precision medicine 
to maximize patient benefit.

Notably, a patient’s systemic therapy history, while not typi-
cally considered in ICB response prediction, had a significant role 
in both models. Theoretically, chemotherapy reduces immune sys-
tem competency and could lead to reduced ICB response rates37. 
Indeed, it was shown that first-line chemotherapy can influence the 
tumor microenvironment and decrease the efficacy of subsequent 
immunotherapy38. It was also observed that resistance to anti-MAPK 
(mitogen-activated protein kinase) targeted therapy could promote 
an immune-evasive tumor microenvironment and cross-resistance 
to subsequent immunotherapy in melanoma cases39. More recently, 
it was found that removing systemic therapy history decreased the 
predictive power of ICB response22. However, a patient’s systemic 
therapy history may also be influenced by multiple clinical factors 
guiding treatment decisions and, in time, may become less relevant 
as ICB drugs move into first-line therapy for more indications. We 
explored the impact of excluding this feature on prediction accuracy. 
Consequently, we found that its exclusion slightly compromised the 
model’s predictive power; however, the effect was not significant 
(Extended Data Fig. 10a,b).

This study had a few limitations. Firstly, our study had a retrospec-
tive design; to further demonstrate the transformative value of LORIS 
in clinical settings, more prospective studies need to be conducted in 
the future. Secondly, although we curated a large cohort with compre-
hensive clinical, pathologic and genomic features measured in a single 
study, the sample size was still limited for most individual cancer types. 
As a result, we could build cancer-type-specific models only for NSCLC. 
Additionally, we did not have transcriptomic data for the participants, 
which is an important factor in assessing tumor microenvironment 
and predicting ICB response21,40–43. Similarly, we opted not to include 
detailed gene mutation or copy number alteration information in the 
current model because of ethical restrictions regarding the sharing 
of such data. The use of federated learning44 is required for training 
and externally validating models that use this type of data. This, how-
ever, constitutes an independent research question and falls outside  
the scope of the current study. Lastly, the PD-L1 TPS data were mainly 
limited to participants with NSCLC and rarely measured in other cancer 
types. Despite this limitation, our preliminary analysis showed that the 
NSCLC-specific LORIS, which incorporates the PD-L1 TPS information, 
can also enhance the predictive power of ICB objective response in 
other cancer types (Fig. 7a). However, as the sample size was still very 
limited, further validation is needed to confirm the importance of PD-L1 
expression in predicting ICB response in individual cancer types using 
more extensive cohorts.

In summary, this study analyzed a large and diverse cohort of 
participants with cancer treated with immunotherapy, including their 
clinical, pathologic and genomic data and ICB response information, 
which allowed us to develop a robust machine learning model to pre-
dict patients’ objective response and survival following ICB therapy. 
LORIS integrates a few easily measurable patient features and pro-
duces monotonic scores, which have the potential to facilitate clinical 
decision-making and patient stratification (Fig. 7b). As our understand-
ing of tumor immunology and the availability of comprehensive data in 
larger cohorts continue to improve, we expect to see the development 
of even more accurate models for personalized precision therapy, 
ultimately reducing cancer mortality.

Methods
Description of the ICB cohorts
The use of the participant data from the MSK1 and MSK2 cohorts  
was approved by the MSK institutional review board. All participants 
provided informed consent to a MSK IRB-approved protocol. All  
other cohorts were published previously. All participant features were 
collected before the start of ICB therapy. Covariate characteristics  
are summarized in Table 1 including sex, age, systemic therapy history, 
cancer type and treatment type.

Chowell et al. cohort. The Chowell et al. cohort comprised 1,479 
participants diagnosed with 16 different types of solid tumors. The 
cohort data included measurements of 18 features. Sixteen of them 
were previously reported, including tumor information (MSI status, 
TMB, FCNA, HED and LOH in HLA-I), clinical information (sex, age, 
systemic therapy history before immunotherapy, BMI, cancer type, 
tumor stage and ICB drug class) and blood parameters (NLR and  
levels of albumin, platelets and hemoglobin). TMB was calculated  
as the total number of somatic nonsynonymous mutations in the  
tumor normalized to the exonic coverage of the respective MSK-IMPACT 
panels (in mutations per Mb). For more detailed information, please 
refer to ref. 22. Two additional features, that is, tumor PD-L1 TPS  
(available for a subset of participants) and the start year of receiving 
ICB therapy were extracted from the electronic health records for  
the purpose of this study and were not previously reported (Supple-
mentary Table 6). PD-L1 TPS was determined using the Dako PD-L1 
IHC 22C3 pharmDx kit (Agilent Technologies), which is approved  
by the FDA.
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Shim et al. cohort. The Shim et al. cohort included 198 participants 
with advanced NSCLC, with 13 features measured. These features 
included tumor information (PD-L1 TPS, TMB and LOH in HLA-I), clinical 
information (sex, age, systemic therapy history before immunother-
apy, smoking status, histology, Eastern Cooperative Oncology Group 
(ECOG) performance status and ICB drug class) and blood parameters 
(NLR and albumin levels). TMB was defined as the number of nonsyn-
onymous alterations, identified from WES. PD-L1 TPS was assessed 
using the FDA-approved Dako PD-L1 IHC 22C3 pharmDx kit (Agilent 
Technologies) in the samples. For more detailed information, please 
refer to ref. 25. Among these features, blood NLR and albumin levels 
and participants’ systemic therapy history were extracted from the 
electronic health records for the purpose of this study and were not 
previously reported (Supplementary Table 6).

MSK1 and MSK2 cohorts. The participants in the MSK1 and MSK2 
cohorts were treated and their tumors were profiled with the 
MSK-IMPACT platform as part of standard clinical care. Participants 
selected for this study were those with solid tumors diagnosed from 
2014 through 2019 who received at least one dose of ICB at MSK. We 
excluded participants with a history of more than one cancer, those 
without a complete blood count within 30 days before the first dose of 
ICB and those enrolled in blinded trials. We excluded participants who 
received ICB in a neoadjuvant or adjuvant setting and participants with 
an unevaluable response. The final set consisted of 557 participants 
with solid tumors from 17 different types. A total of 13 features were 
measured in the study, including tumor information (PD-L1 TPS (avail-
able for a subset of participants), TMB and FCNA), clinical information 
(sex, age, systemic therapy history before immunotherapy, cancer type, 
ICB drug class and the start year of receiving ICB therapy) and blood 
parameters (NLR and levels of albumin and platelets) (Supplementary 
Table 6). The measurement of clinical and genomic features was the 
same as for the Chowell et al. cohort.

Vanguri et al. cohort. The Vanguri et al. cohort included 247 parti
cipants with advanced NSCLC, with 15 features measured. One sam-
ple with unknown primary tumor site was excluded. These features 
included tumor information (PD-L1 TPS, TMB, FCNA and MSI status), 
clinical information (sex, age, systemic therapy history before immu-
notherapy, smoking status, tobacco use, histology, ECOG performance 
status, ICB drug class and the panels used for TMB determination) and 
blood parameters (NLR and albumin levels). TMB was calculated as the 
total number of somatic nonsynonymous mutations in the tumor nor-
malized to the exonic coverage of the respective MSK-IMPACT panels 
(in mutations per Mb). PD-L1 immunohistochemistry was performed 
on 4-μm formalin-fixed paraffin-embedded tumor tissue sections 
using a standard PD-L1 antibody (E1L3N, dilution 1:100; Cell Signaling 
Technologies) validated in the clinical laboratory at the study institu-
tion. For more detailed information, please refer to ref. 27.

Kato et al. cohort. The Kato et al. cohort comprised 429 participants, 
with 35 participants from eight solid tumor types included in this study 
on the basis of three criteria: (1) participants received immunotherapy; 
(2) their cancer types were included in the Chowell et al. cohort; and 
(3) TMB was measured. Six features were assessed: tumor MSI sta-
tus, TMB, sex, age, systemic therapy history before immunotherapy 
and cancer type. TMB was determined using panel next-generation 
sequencing performed by a CLIA (Clinical Laboratory Improvement 
Amendments)-certified laboratory. For more detailed information, 
please refer to ref. 26.

Ravi et al. cohort. The Ravi et al. cohort included 393 participants with 
NSCLC treated with anti-PD-L1 therapy, with 10 features measured; 
a total of 309 participants with TMB measured were included in this 
study. These features included tumor information (PD-L1 expression 

and TMB) and clinical information (sex, age, systemic therapy history 
before immunotherapy, tumor stage, smoking status, tobacco use, 
histology and ICB drug class). TMB was defined as the number of non-
synonymous alterations, identified from WES at the Genomics Platform 
of the Broad Institute of Harvard and MIT (Massachusetts Institute of 
Technology). For more detailed information, please refer to ref. 28.

Pradat et al. cohort. The Pradat et al. cohort comprised 1,031 par-
ticipants with different types of cancer; a total of 57 participants from 
13 solid tumor types were included in this study on the basis of three 
criteria: (1) participants received immunotherapy; (2) their cancer types 
were included in the Chowell et al. cohort; and (3) TMB was measured. 
Nine features were assessed, including tumor information (TMB and 
FCNA), clinical information (sex, age, systemic therapy history before 
immunotherapy, ICB drug class and cancer type) and blood parameters 
(NLR and albumin levels). TMB was determined using WES. For more 
detailed information, please refer to ref. 29.

Description of the MSK non-ICB cohort
This cohort comprised a subset of participants from a previously 
study45. In brief, our selection process focused on participants first 
diagnosed between 2015 and 2018, who presented with solid tumors 
that underwent NGS during MSK-IMPACT and subsequently received 
cancer therapy at MSK (n = 14,577). Subsequently, we excluded partici-
pants who had a history of more than one primary cancer (n = 3,425), 
those with cancer types comprising fewer than 100 cases (n = 797) and 
those with cancers of unknown primary origin (n = 122). Furthermore, 
participants who had ever received ICB treatment were also excluded 
from our analysis (n = 2,022)45. For more detailed information, please 
refer to ref. 45. Following these exclusion criteria, we selected par-
ticipants who had complete data available for the six features used by 
the LLR6 model (n = 4,872). To ensure consistency with the number 
of participants in the combined Chowell test and MSK1 sets, which 
were used in Figs. 3 and 4, we randomly sampled participants within 
each cancer type. It is worth noting that, for certain cancer types, the 
total count of non-ICB-treated participants was lower than that in the 
combined Chowell test and MSK1 sets, where all available participants 
of that specific cancer type were included. The final dataset comprised 
841 participants with solid tumors originating from 15 different types 
(Supplementary Table 6).

Dealing with missing data and extreme values
Blood NLR and albumin levels were not accessible for the Kato et al. and 
Ravi et al. cohorts. We input the average values of 3.8 and 6.2, respec-
tively, from participants in the Chowell train set to represent these 
missing values for all participants in both cohorts. The NSCLC-specific 
LLR6 model included PD-L1 TPS as an input feature, which was not 
available for numerous participants. Consequently, only participants 
with available PD-L1 TPS data were included in the model’s training 
and testing. A breakdown of the participant count with available PD-L1 
TPS data across various cohorts is provided in Extended Data Fig. 1a. 
To mitigate the influence of extreme values in certain features, data 
truncation was implemented. Specifically, TMB values were truncated 
at 50 mutations per Mb, blood NLR was truncated at 25 and patient age 
was truncated at 85 years.

TMB and NLR harmonization
TMB for different ICB cohorts was determined using two different plat-
forms, namely, WES (the Shim et al., Ravi et al. and Pradat et al. cohorts) 
and targeted tumor sequencing (other cohorts). We harmonized WES 
TMB values (TMBWES, total mutation counts) to TMB values measured 
by the MSK-IMPACT targeted gene panel (TMBMSK, mutations per Mb) 
based on the linear relationship derived previously46. Specifically, 
TMBMSK = 1.05 × TMBWES/S, where S is the total length of the exons used 
for WES (in Mb).
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Derived NLR (dNLR) was measured for the Vanguri et al. cohort. 
To harmonize it with the NLR in the merged MSK cohort, we used a 
strategy similar to that used for TMB standardization. In this case, 
an empirical relationship of NLR = 2 × dNLR was used on the basis of 
previous studies47,48.

Patient outcomes following immunotherapy
Patient outcome following immunotherapy was assessed by measur-
ing objective response, OS and PFS for all cohorts described above. 
Objective response was categorized on the basis of the RECIST version 
1.1 criteria30, except for the CNS tumors in the MSK2 cohort, where the 
Response Assessment in Neuro-Oncology (RANO) criteria were used 
instead49. The objective response was then dichotomized into respond-
ers (CR and PR) and nonresponders (SD and PD). PFS was defined as the 
time from the first infusion of ICB to disease progression or death from 
any cause. Participants without disease progression were censored at 
their last disease assessment. OS was defined as the time from the first 
ICB infusion to death from any cause and participants who were still 
alive at the time of review were censored at their last contact.

Developing multivariable models of ICB response
Pan-cancer study. Although randomly splitting a single dataset into 
model training and validation sets was used for developing RF16 (Chow-
ell et al.) in ref. 22, it is believed to be a weak and inefficient form of 
validation, whereas splitting by time is a stronger approach36. Following 
the TRIPOD guideline, we used participants who underwent immuno-
therapy between 2015 and 2017 in the Chowell et al. cohort as our train-
ing set (Chowell train, n = 964) and used the other participants in the 
Chowell et al. cohort (who underwent immunotherapy in 2018; n = 515) 
as a test set. We investigated 20 machine learning classifiers to predict 
participant ICB response, using the FDA-approved TMB biomarker as 
a baseline model. Among these models, the decision tree and random 
forest classifiers directly took the raw feature values as input. For all 
other classifiers, all feature values were standardized by converting 
them to z-scores before inputting to the models. We built, tuned and 
evaluated all the multivariable machine learning models using the 
scikit-learn package (version 1.2.1) and pytorch-tabnet (version 4.1.0) 
in the Python programming language. We determined the optimal 
hyperparameter combination by using a random search approach 
with the RandomizedSearchCV function to maximize the AUC scores 
in a fivefold cross-validation of the training data. We determined the 
total number of different hyperparameter combinations for each 
model as the minimum of 10,000 and the total number of all possible 
combinations. The detailed combinations of hyperparameters and the 
identified optimal combination for each of the 20 machine learning 
classifiers are elaborated as follows:

	 (1)	 LR16: the 16-feature logistic regression classifier using all 16 
features measured in the Chowell et al. cohort. All combina-
tions: solver = ‘saga’, penalty = ‘elasticnet’, class_weight =  
‘balanced’, l1_ratio from 0 to 1 (step size 0.1), max_iter from 
100 to 1,000 (step size 100) and C from 10−3 to 103 (loga-
rithmic step size 1). Optimal combination: solver = ‘saga’, 
penalty = ‘elasticnet’, max_iter = 100, l1_ratio = 0.1, class_
weight = ‘balanced’ and C = 0.01.

	 (2)	 LLR6: the six-feature logistic regression classifier using TMB, 
systemic therapy history, blood albumin level, blood NLR, 
age and cancer type. All combinations: same as above. Opti-
mal combination: solver = ‘saga’, penalty = ‘elasticnet’, max_
iter = 100, l1_ratio = 1, class_weight = ‘balanced’ and C = 0.1.

	 (3)	 LR5 (noTMB): the five-feature logistic regression classifier 
subtracting TMB from the previous model. All combina-
tions: same as above. Optimal combination: solver = ‘saga’, 
penalty = ‘elasticnet’, max_iter = 100, l1_ratio = 0.4, class_
weight = ‘balanced’ and C = 0.01.

	 (4)	 RF16 (Chowell et al.): the 16-feature random forest classifier 
with hyperparameters reported in ref. 22. Optimal combina-
tion: n_estimators = 1,000, max_depth = 8, min_samples_
leaf = 20 and min_samples_split = 2.

	 (5)	 RandomForest: the 16-feature random forest classifier  
retrained using the protocol in this study. All combinations: 
n_estimators from 200 to 2,000 (step size 200), max_features 
from 0.1 to 0.9 (step size 0.1), max_depth from 3 to 10 (step 
size 1), min_samples_leaf from 2 to 30 (step size 2) and min_
samples_split from 2 to 30 (step size 2). Optimal combina-
tion: n_estimators = 400, max_features = 0.1, max_depth = 9, 
min_samples_leaf = 2 and min_samples_split = 8.

	 (6)	 RF6: the six-feature random forest classifier trained  
using the same protocol as for the development of RF16 
(Chowell et al.)22. All combinations: n_estimators from 100 to 
1,000 (step size 100), max_depth from 2 to 20 (step size 2),  
min_samples_leaf from 2 to 20 (step size 2) and min_samples_ 
split from 2 to 20 (step size 2). Optimal combination:  
n_estimators = 900, max_depth = 8, min_samples_leaf = 8 and 
min_samples_split = 20.

	 (7)	 DecisionTree: the decision tree classifier. All combinations: 
splitter = ‘best’ or ‘random’, max_features from 0.1 to 0.9 (step 
size 0.1), max_depth from 3 to 10 (step size 1), min_samples_
leaf from 2 to 30 (step size 2), min_samples_split from 2 to 30 
(step size 2) and ccp_alpha = 0, 0.5, 1, 10 or 100. Optimal com-
bination: splitter = random, max_features = 0.7, max_depth = 7, 
min_samples_leaf = 8, min_samples_split = 2 and ccp_alpha = 0.

	 (8)	 GBoost: the GBoost classifier. All combinations: learning_ 
rate = 0.01, 0.03, 0.05, 0.1, 0.3 or 0.5, n_estimators from 
200 to 2,000 (step size 200), min_samples_split from 2 to 
30 (step size 2), min_samples_leaf from 2 to 30 (step size 
2), max_depth from 3 to 10 (step size 1) and max_features 
from 0.1 to 0.9 (step size 0.1). Optimal combination: learn-
ing_rate = 0.03, n_estimators = 200, min_samples_split = 12, 
min_samples_leaf = 4, max_depth = 6 and max_features = 0.1.

	 (9)	 AdaBoost: the AdaBoost classifier. All combinations: 
n_estimators from 200 to 2,000 (step size 200), learn-
ing_rate = 0.01, 0.05, 0.03, 0.1, 0.3, 0.5 or 1 and algo-
rithm = ‘SAMME’ or ‘SAMME.R’. Optimal combination: n_esti-
mators = 1,000, learning_rate = 0.3 and algorithm = SAMME.

	 (10)	 HGBoost: the HGBoost classifier. All combinations: learning_ 
rate = 0.01, 0.03, 0.05, 0.1, 0.3 or 0.5, max_iter from 200 to 
2,000 (step size 200), min_samples_leaf from 2 to 30 (step 
size 2), max_depth from 3 to 10 (step size 1) and l2_regulariza-
tion = 0 or from 10−4 to 102 (logarithmic step size 1). Optimal 
combination: learning_rate = 0.03, max_iter = 600, min_sam-
ples_leaf = 16, max_depth = 10 and l2_regularization = 100.

	 (11)	 XGBoost: the XGBoost classifier. All combinations: min_
child_weight = 1 or from 2 to 30 (step size 2), max_depth from 
3 to 10 (step size 1), n_estimators = 100 or from 200 to 1,000 
(step size 200), learning_rate = 0.01, 0.03, 0.05, 0.1, 0.3 or 
0.5, colsample_bytree = 0.5, 0.8 or 1, colsample_bynode from 
0.2 to 1 (step size 0.2) and colsample_bylevel from 0.2 to 1 
(step size 0.2). Optimal combination: min_child_weight = 6, 
max_depth = 7, n_estimators = 400, learning_rate = 0.01, 
colsample_bytree = 0.8, colsample_bynode = 0.2 and 
colsample_bylevel = 1.

	 (12)	 LightGBM: the LightGBM classifier. All combinations: learn-
ing_rate = 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1 or 0.3, 
max_depth from 3 to 10 (step size 1), n_estimators from 200 
to 2,000 (step size 200), num_leaves from 10 to 100 (step size 
10), colsample_bytree from 0.2 to 1 (step size 0.2) and min_
data_in_leaf from 2 to 30 (step size 2). Optimal combination: 
learning_rate = 0.03, max_depth = 3, n_estimators = 200, num_
leaves = 30, colsample_bytree = 0.8 and min_data_in_leaf = 30.
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	 (13)	 SupportVectorMachine: the support vector machine clas-
sifier. All combinations: C from 10−5 to 103 (logarithmic 
step size 0.5), gamma = ‘scale’ or ‘auto’ or from 10−4 to 102 
(logarithmic step size 0.5), kernel = ‘rbf’, max_iter = −1, 100 
or 1,000, tol from 10−5 to 10−1 (logarithmic step size 0.5) and 
class_weight = none or ‘balanced’. Optimal combination: 
C = 102.5, gamma = 10−3.5, kernel = ‘rbf’, max_iter = 1,000, 
tol = 0.001 and class_weight = none.

	 (14)	 kNearestNeighbors: the k-nearest neighbors classifier.  
All combinations: n_neighbors from 2 to 60 (step size 2),  
weights = ‘uniform’ or ‘distance’, algorithm = ‘auto’, ‘ball_
tree’, ‘kd_tree’ or ‘brute’, leaf_size from 2 to 30 (step size 
2) and p from 1 to 10 (step size 1). Optimal combination: 
n_neighbors = 58, weights = ‘distance’, algorithm = ‘brute’, 
leaf_size = 20 and p = 1.

	 (15)	 TabNet: the TabNet deep neural network classifier. All 
combinations: max_epochs = 50, n_d = 24 or 32, n_a = n_d, n_
steps = 3, 4 or 5, gamma = 1, 1.5 or 2, lambda_sparse = 0.0001, 
0.001 or 0.01 and momentum = 0.3, 0.4 or 0.5. Optimal 
combination: max_epochs = 50, n_d = 32, n_a = 32, n_steps = 5, 
gamma = 1.5, lambda_sparse = 0.0001 and momentum = 0.5.

	 (16)	 MultilayerPerceptron (one layer): the multilayer perceptron 
classifier (one layer). All combinations: solver = ‘sgd’, ‘lbfgs’ 
or ‘adam’, learning_rate = ‘constant’, ‘invscaling’ or ‘adaptive’, 
max_iter = 100, 200, 500 or 1,000, hidden_layer_sizes from  
2 to 40 (step size 1) in one hidden layer, activation = ‘logistic’, 
‘tanh’, ‘relu’ or ‘identity’, alpha from 10−6 to 10−1 (logarithmic  
step size 1) and early_stopping = false or true. Optimal 
combination: solver = ‘adam’, learning_rate = ‘adaptive’, 
max_iter = 200, hidden_layer_sizes = 19, activation = ‘tanh’, 
alpha = 10−2 and early_stopping = false.

	 (17)	 MultilayerPerceptron (two layers): the multilayer perceptron 
classifier (two layers). All combinations: max_iter = 100, 200, 
500 or 1,000, hidden_layer_sizes from 2 to 20 (step size 1) 
in two hidden layers, activation = ‘logistic’, ‘tanh’, ‘relu’ or 
‘identity’, alpha from 10−6 to 10−1 (logarithmic step size 1) and 
early_stopping = false or true. Optimal combination: max_
iter = 100, hidden_layer_sizes = (19, 19), activation = ‘tanh’, 
alpha = 10−5 and early_stopping = false.

	 (18)	 MultilayerPerceptron (three layers): the multilayer percep-
tron classifier (three layers). All combinations: hidden_layer_
sizes from 2 to 20 (step size 1) in three hidden layers, activa-
tion = ‘logistic’, ‘tanh’, ‘relu’ or ‘identity’ and alpha from 10−6 
to 10−1 (logarithmic step size 1). Optimal combination: hid-
den_layer_sizes = (6, 5, 6), activation = ‘relu’ and alpha = 10−1.

	 (19)	 MultilayerPerceptron (four layers): the multilayer perceptron  
classifier (four layers). All combinations: same as above.  
Optimal combination: hidden_layer_sizes = (3, 17, 2, 4),  
activation = ‘tanh’ and alpha = 10−3.

	 (20)	 GaussianProcess: the Gaussian process classifier. All combi-
nations: kernel = none, 1.0 × kernels.RBF (1.0), 0.1 × kernels.
RBF (0.1) or 10 × kernels.RBF (10), optimizer = ‘fmin_l_bfgs_b’ 
or none, max_iter_predict = 100, 500 or 1,000 and n_restarts_ 
optimizer from 0 to 30 (step size 5). Optimal combination: 
kernel = 10 × RBF (length_scale = 10), optimizer = none,  
max_iter_predict = 100 and n_restarts_optimizer = 0.

After hyperparameter tuning, it was observed that the logistic 
regression model with six features had a LASSO penalty proportion 
of 100%, making it an LLR model. For ease of reference, we referred to 
this model as LLR6 throughout the paper. The hyperparameters that 
were optimal for LLR6 were used to train the NSCLC-specific model. 
The regression coefficients, which included the intercept, from the 
pan-cancer LLR6 model were obtained by averaging the corresponding 
values obtained from the 10,000 training iterations described earlier. 

No further adaptation was performed on the test data. The LLR6 score, 
calculated using this model, was referred to as LORIS. The formula for 
pan-cancer LORIS is explicitly given as follows:

LORIS = 1
1+e−S

S = 0.0371 ×min(TMB, 50) − 0.8775

×PSTH + 0.5382 × Albumin − 0.033 ×min(NLR, 25)

+0.0049 ×min(Age,85) + CTCT − 2.0886

where PSTH is the participant’s systemic therapy history, a binary vari-
able that indicates whether the participant has received chemotherapy 
or targeted therapy before immunotherapy (1) or has not (0) and CTCT 
is the cancer type calibration term, which is equal to −0.3323 × bladder −  
0.3323 × breast − 0.102 × colorectal − 0.0079 × endometrial +  
0.55 × esophageal + 0.2306 × gastric + 0.0678 × head and neck −  
0.1189 × hepatobiliary − 0.0086 × melanoma + 0.1255 × mesothe
lioma + 0.0008 × NSCLC − 0.052 × ovarian − 1.1169 × pancreatic +  
0.5451 × renal + 0.0542 × sarcoma − 0.0033 × SCLC.

We also trained a five-feature logistic regression model (LLR5) 
without using a patient’s systemic therapy history. The formula for 
LORIS calculated using this model is as follows:

LORIS (LLR5) = 1
1+e−S

S = 0.0384 ×min(TMB, 50) + 0.5789

×Albumin − 0.046 ×min(NLR, 25)

+0.0087 ×min(Age,85) + CTCT − 3.0063

where CTCT is equal to −0.3821 × bladder − 0.5696 × breast −  
0.2294 × colorectal − 0.0646 × endometrial + 0.5489 × esophageal +  
0.4488 × gastric + 0.0193 × head and neck − 0.1316 × hepatobiliary +  
0.296 × melanoma + 0.076 × mesothelioma − 0.0005 × NSCLC −  
0.1136 × ovarian − 1.3838 × pancreatic + 0.5527 × renal + 0.0277 ×  
sarcoma − 0.06 × SCLC.

NSCLC study. The NSCLC-specific study aimed to replicate the 
pan-cancer study, with the difference that only participants with  
NSCLC were used for training and evaluating the models. We used the 
Chowell et al. cohort as training data, which included 324 participants 
with NSCLC with complete data (Extended Data Fig. 1a).

As previously mentioned, we used the optimal hyperparameters 
obtained from the pan-cancer study to train the NSCLC-specific LLR6 
model. We followed a similar approach to the pan-cancer modeling 
approach, calculating coefficients and intercepts for NSCLC-specific 
LLR6 on the basis of the average values of 10,000 training iterations, 
with 80% of the training data randomly selected for each iteration. The 
formula for LORIS calculated using NSCLC-specific LLR6 is as follows:

NSCLC-specific LORIS = 1
1+e−S

S = 0.0353 ×min(TMB, 50)

+0.0111 × PDL1 − 0.375 × PSTH + 0.2924 × Albumin

−0.0103 ×min(NLR, 25) + 0 ×min(Age,85) − 1.5593

Again, we also trained a five-feature logistic regression model 
(LLR5) without using the participants’ systemic therapy history. The 
formulation for LORIS calculated using this model is as follows:

NSCLC-specific LORIS (LLR5) = 1
1+e−S

S = 0.0362

×min(TMB, 50) + 0.013 × PDL1 + 0.3311 × Albumin

−0.0101 ×min(NLR, 25) + 0.0001 ×min(Age,85) − 1.9915

Model performance evaluation
To evaluate the performance of the models, we used 2,000 repeats 
of fivefold cross-validation on the training data. During each 
cross-validation fold, 80% of the training data were used for model 
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training and the remaining 20% were used for evaluation. We used 
multiple metrics, such as AUC, AUPRC, accuracy, F1-score, Matthews 
correlation coefficient50 and balanced accuracy51, to quantify the 
predictive power of the models. To determine the optimal threshold 
for the predicted response probabilities computed by the model, we 
maximized Youden’s index, defined as ‘sensitivity + specificity − 1’. We 
finally ranked the performance of each model using the geometric 
mean of four metrics: AUC, AUPRC, accuracy and F1-score. As overfit-
ting is a common problem in supervised models, we calculated the 
difference between the performance scores on the training data and 
cross-validation data for each cross-validation fold to estimate the 
extent of overfitting for each model.

Statistical analyses
We conducted various statistical analyses using Python (version 3.9) 
and R (version 4.1) to investigate the relationships between different  
variables and ICB response. Spearman’s rank test from the scipy pack-
age (version 1.10.1) was used to calculate correlation coefficients 
and raw P values among features measured on a continuous scale, 
which were then adjusted for Bonferroni correction. To compare the 
distributions of response probability generated by different models 
(for example, LLR6, RF6 and TMB) between responders and nonre-
sponders, we used the Mann–Whitney U test. DeLong’s test52 was used  
for comparison of AUCs. The 95% CIs of AUCs were calculated using 
1,000 bootstrapping replicates.

Survival analysis was performed using the R packages survminer 
(version 0.4.9) and survival version (3.3.1). We calculated HRs with 95% 
CIs and P values with univariable Cox proportional hazards regres-
sion using the coxph() function53. In pan-cancer analysis, to compare 
differences in half-year, 1-year, 2-year, 3-year, 4-year and 5-year sur-
vival probability between high-LORIS versus low-LORIS or high-TMB 
versus low-TMB groups, we used the paired Wilcoxon rank sum test. 
Multivariable analysis was performed with Cox proportional hazards 
regression in individual cancer types using the coxph() function, with 
adjustment for cancer type, age, drug class of ICB and year of ICB start. 
In NSCLC-specific analysis, multivariable analysis was performed with 
adjustment for sex, age and drug class of ICB.

To stratify participants on the basis of risk, two methods were 
used for each variable of interest: an absolute threshold (for all histolo-
gies) or a percentile threshold (within each histology). In the case of 
pan-cancer LORIS, the absolute and percentile thresholds were set at 
0.5 and 50%, respectively. These thresholds were determined using the 
training data to maximize Youden’s index for predicting ICB objective 
response. For NSCLC-specific LORIS, an absolute threshold of 0.44, also 
determined on the basis of the training data, was applied. Regarding 
TMB, absolute and percentile thresholds of 10 mutations per Mb and 
80% (that is, the highest 20% within each histology) were used, following 
ref. 5. For PD-L1 TPS in NSCLC, an absolute threshold of 50% was used.

For variables such as LORIS, PD-L1 TPS and TMB, we calculated 
the average values and 95% CIs using 1,000 bootstrapping replicates 
of the data to determine their relationship with ICB objective response 
probability. The response rate of participants falling within the range of 
x − 0.05 to x + 0.05 was used as a surrogate to estimate the probability 
of patient objective response at each specific LORIS value x. Likewise, 
the intervals of (x − 5%, x + 5%] and (x − 5, x + 5] were used for PD-L1 TPS 
and TMB values, respectively. As all the features were normalized by 
z-score before being put into the model, the feature importance for the 
logistic regression model was directly shown as the absolute values of 
the corresponding coefficients in the model (Extended Data Fig. 1c,d).

For all statistical tests used, data distribution was not assumed to 
be normal. No statistical methods were used to predetermine sample 
sizes but our sample sizes are substantially larger than those reported 
in previous publications22,25–29. The cohorts were already randomized as 
they were participants in clinical trials. The investigators were blinded 
to the response annotations until they became available.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The original data of the Chowell et al. cohort are available in Supple-
mentary Table 3 of ref. 22. The original data of the Shim et al. cohort are 
available in Supplementary Table 1 of ref. 25. The original data of the 
Vanguri et al. cohort are available at Synapse (https://www.synapse. 
org/#!Synapse:syn26642505) and cBioPortal (https://www.cbioportal. 
org/study/summary?id=lung_msk_mind_2020). The original data of the 
Kato et al. cohort are available in Supplementary Data 1 of ref. 26. The 
original data of the Ravi et al. cohort28 are available on Zenodo (https:// 
doi.org/10.5281/zenodo.7625517)54. The original data of the Pradat et al. 
cohort are available in the Supplementary Tables of ref. 29. Deidentified 
new data reported in this study for the MSK1 cohort, MSK2 cohort and 
MSK non-ICB cohort, as well as additional features of participants in 
the Chowell et al. and Shim et al. cohorts that have not been reported 
before are included in Supplementary Table 6 and are available online 
at Zenodo (https://doi.org/10.5281/zenodo.11186449)55. Source data 
are provided with this paper.

Code availability
All codes that are necessary to reproduce all the results in the paper 
are implemented in Python and R and are publicly available at GitHub 
(https://github.com/rootchang/LORIS)56 and Zenodo (https://doi.org/ 
10.5281/zenodo.11186449)55.
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Extended Data Fig. 1 | An illustration of cohorts used in this study (a-b) and 
feature importance by the logistic LASSO regression model (c-d). a. The 
relationship between cohorts used in this study, the number of participants 
in each cohort, and the number of participants with complete data for the 
pan-cancer model and the NSCLC-specific model. The cohorts shaded in light 
grey represent the training cohorts for the pan-cancer and NSCLC-specific 
models, respectively. In the figure, ‘n’ represents the number of participants. 
b. The cancer composition of the non-ICB cohort. Note that three cancer types, 

mesothelioma, cancer of unknown primary, and central nervous system cancer 
are not present in this cohort. c-d. Feature importance of from the 8-feature 
logistic regression classifier using features commonly measured across most 
participants (c) and feature importance of the final 6-feature logistic regression 
classifier LLR6 (d). Feature importance is calculated as the absolute values of the 
corresponding coefficients in the logistic regression models. Importance for 
cancer type is calculated as the average importance of individual cancer types.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Comparison between the pan-cancer LLR6 model 
and the RF16 (Chowell et al.) model. a. Comparison of the predictive power 
between the two models on 2,000-repeated 5-fold cross-validation sets using 
multiple metrics (n = 10,000 repetitions). Error bars, mean ± s.d. P values, 
two-tailed Mann-Whitney U test. Note that p values are only shown when values 
for LLR6 (blue bars) are significantly higher than RF16 (Chowell et al.) (green 
bars). b. Same as panel a, but the metrics represent the difference between those 
on the training sets and those on the corresponding cross-validation sets (n = 
10,000 repetitions). Error bars, mean ± s.d. P values, two-tailed Mann-Whitney 

U test. c. Receiver operating characteristic curves and corresponding AUCs 
of LLR6 (blue curves) and RF16 (Chowell et al.) (orange curves) on the training 
(n = 964 participants) and unseen test (n = 515 participants) sets. Note that 
while the performance of RF16 (Chowell et al.) is better on the training set, the 
performance of the much simpler LLR6 model is better on the unseen test set. 
d. Correlation between the scores from LLR6 and RF16 (Chowell et al.) on both 
training and unseen test sets, respectively. Spearman correlation coefficients are 
shown.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | LORIS predicts PFS following immunotherapy for 
both pan-cancer and individual cancer types. a. Kaplan–Meier analysis of 
PFS. TMB is binned at 10 mutations per Mb and LORIS is binned at 0.5. HRs with 
95% confidence intervals are shown. P values, univariable Cox proportional 
hazards regression. H, high; L, low. In the risk table, the numbers represent the 
number of participants. b. Same as panel a, but TMB is binned at the highest 20th 
percentile and LORIS is binned at the 50th percentile for each cancer type. HRs 
with 95% confidence intervals are shown. P values, univariable Cox proportional 
hazards regression. H, high; L, low. c, d. Forest plot of HRs of PFS within each 
cancer type using LORIS (binned at the 50th percentile; c) or TMB (binned at the 
highest 20th percentile; d). P values, multivariable Cox proportional hazards 

regression with adjustment for cancer type, age, ICB drug class, and year of ICB 
start. Squares positioned at midpoints symbolize point estimates of HRs, and 
the accompanying bars indicate 95% confidence intervals. e,f. Comparison of 
half-year, 1-year, 2-year, 3-year, 4-year, and 5-year PFS stratified by cancer type 
for high versus low LORIS (binned at the 50th percentile; e) and high versus 
low TMB (binned at the highest 20th percentile; f). Median survival probability 
differences (∆) are displayed. P values, two-tailed paired Wilcoxon rank sum test. 
Box boundaries represent the first and third quartiles; the central line marks the 
median. Whiskers extend to the furthest non-outlier points within 1.5 times the 
interquartile range. Data are from combined Chowell test and MSK1 sets (n = 968 
participants).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | LORIS has better prediction power of immunotherapy 
than TMB (a-d) and has enhanced predictive power over prognosis (e).  
a-b. Kaplan–Meier analysis of PFS (a) and OS (b). Both TMB and LORIS are binned 
at the 50th percentile for each cancer type. HRs with 95% confidence intervals are 
shown. P values, univariable Cox proportional hazards regression. H, high; L, low. 
Data are from combined Chowell test and MSK1 sets (n = 968 participants).  
c-d. Kaplan–Meier analysis of LORIS (c) or TMB (d) binned at the different 
percentiles in each cancer type. P values next to the legend indicate pairwise 
single-tail comparisons testing against the hypothesis that ‘higher scored 
participants do not have better survival than lower scored participants’ with 
univariable Cox proportional hazards regression. HRs with 95% confidence 

intervals are shown for the lowest-percentile (0–10%) and the highest-percentile 
groups (90–100%) with univariable Cox proportional hazards regression. Data 
are from combined Chowell test and MSK1 sets (n = 968 participants). e. Receiver 
operating characteristic curves and corresponding AUCs with 95% confidence 
intervals of LORIS on 0.5-year OS, 1-year OS, 2-year OS, and 3-year OS of 
participants treated with ICB (blue curves) or non-ICB (orange curves) therapies. 
P values, two-tailed DeLong’s test. ICB data are from combined Chowell test and 
MSK1 sets (n = 968 participants). Non-ICB data are from the MSK non-ICB cohort 
(n = 841 participants). The dashed lines represent random performance, serving 
as a baseline with an AUC of 0.5. This indicates the performance expected from a 
classifier making random guesses.
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Extended Data Fig. 5 | Kaplan–Meier analysis of survival in individual cancer 
types. Patients are grouped into LORIS-high (orange curves) and LORIS-low 
(blue curves) risk groups. LORIS is binned at the 50th percentile for each cancer 
type. HRs with 95% confidence intervals are shown. P values, univariable Cox 

proportional hazards regression. In the risk tables, the numbers represent the 
number of participants. Data are from combined Chowell et al., MSK1, and MSK2 
sets (n = 2032 participants). Abbreviations: SCLC, small-cell lung cancer; CNS, 
central nervous system tumor; Unknown primary, cancer of unknown primary.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Comparison of predictive performance between the 
NSCLC-specific LLR6, pan-cancer LLR6, and NSCLC-specific LLR2 models. 
a. Receiver operating characteristic curves and corresponding AUCs with 
95% confidence intervals of the NSCLC-specific (blue curves) and pan-cancer 
(orange curves) LLR6 models. P values are from DeLong’s test. In the figure, 
‘n’ represents the number of participants. b-c. Forest plots of HRs of PFS (b) 
and OS (c) within each data set using pan-cancer LORIS (binned at 0.5, which 
maximizes the Youden’s index on the training data) in a multivariable Cox model 
with adjustment for sex, age and ICB drug class. P values, multivariable Cox 
proportional hazards regression with adjustment for sex, age, and ICB drug 
class. Squares positioned at midpoints symbolize point estimates of HRs, and the 
accompanying bars indicate 95% confidence intervals. In the figure, the samples 
represent the number of participants. d. Receiver operating characteristic curves 

and corresponding AUCs with 95% confidence intervals of the LLR6 (blue curves) 
and LLR2 (orange curves) models. P values, two-tailed DeLong’s test. The LLR2 
model takes two variables, that is, patient TMB and PD-L1 TPS, as the input. In 
the figure, ‘n’ represents the number of participants. The dashed lines in a and 
d represent random performance, serving as a baseline with an AUC of 0.5. This 
indicates the performance expected from a classifier making random guesses. 
e-f. Forest plots of HRs of PFS (e) and OS (f) within each data set using LLR2 LORIS 
(binned at 0.46, which maximizes the Youden’s index on the training data).  
P values, multivariable Cox proportional hazards regression with adjustment for 
cancer type and age. Squares positioned at midpoints symbolize point estimates 
of HRs, and the accompanying bars indicate 95% confidence intervals. In the 
figure, the samples represent the number of participants.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of predictive performance of the pan-
cancer LLR6 model, the RF6 model and TMB biomarker on non-NSCLC 
participants. a. Receiver operating characteristic curves and corresponding 
AUCs with 95% confidence intervals of LLR6 (blue curves), RF6 (green curves), 
and the TMB biomarker (yellow curves) on the training set and across multiple 
unseen test sets. In the figure, ‘n’ represents the number of participants. The 
dashed lines represent random performance, serving as a baseline with an AUC 
of 0.5. This indicates the performance expected from a classifier making random 
guesses. b. Distribution of LORIS, RF6 score, and TMB alone in responders 
and non-responders on the training set and across multiple unseen test sets. 
P values, two-tailed Mann–Whitney U test. Box boundaries represent the first 

and third quartiles; the central line marks the median. Whiskers extend to the 
furthest non-outlier points within 1.5 times the interquartile range. Outliers are 
shown as points beyond the whiskers. c-d. Kaplan–Meier analysis of OS. TMB 
is binned at 10 mutations per Mb and LORIS is binned at 0.5 for panel c; TMB is 
binned at the highest 20th percentile and LORIS is binned at the 50th percentile 
for each cancer type for panel d. HRs with 95% confidence intervals are shown. 
P values, univariable Cox proportional hazards regression. H, high; L, low. In the 
risk tables, the numbers represent the number of participants. Data are from 
combined Chowell test and MSK1 sets, with all NSCLC patients excluded from the 
analysis (n = 633 participants).
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Extended Data Fig. 8 | Monotonic relationship between pan-cancer 
LORIS and patient objective response probability & survival following 
immunotherapy among non-NSCLC participants. a, b. Relationship between 
LORIS (a) or TMB (b) and ICB objective response probability. The average 
participant response probabilities with 95% confidence intervals are shown 
using 1,000-replicate bootstrapping. The grey region represents participants 
with an unlikely response to immunotherapy (with a response probability below 
10%), while the green regions represent participants with a likely response (with 
a response probability exceeding 50%). The arrows indicate the LORIS and TMB 
threshold values. c, d. Kaplan–Meier analysis of OS. LORIS (c) and TMB (d) are 

binned at the different percentiles in each cancer type. P values next to the 
legend indicate pairwise single-tail comparisons testing against the hypothesis 
that ‘higher scored participants do not have better survival than lower scored 
participants’ with univariable Cox proportional hazards regression. HRs with 
95% confidence intervals are shown for the lowest-percentile (0–10%) and the 
highest-percentile groups (90–100%) with univariable Cox proportional hazards 
regression. In the risk tables, the numbers represent the number of participants. 
Data are from combined Chowell test and MSK1 sets, with all NSCLC participants 
excluded from the analysis (n = 633 participants).
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Extended Data Fig. 9 | LORIS performance is maintained after removing 
NSCLC participants (a) or removing cancer type information (b).  
a. Comparison of predictive performance among non-NSCLC participants 
between the original pan-cancer LLR6 model and a new LLR6 model trained 
without including NSCLC participants. Receiver operating characteristic curves 
and corresponding AUCs with 95% confidence intervals of the original pan-
cancer LLR6 model (w/; blue curves) and a new LLR6 model trained without 
including NSCLC participants (w/o; orange curves). Number of participants 
in different cohorts is displayed in the figure. In the figure, ‘n’ represents the 
number of participants. P values, two-tailed DeLong’s test. Note that all NSCLC 

participants are excluded from the analysis. b. Comparison of predictive 
performance between the pan-cancer LLR6 model with and without the 
utilization of the cancer type calibration term. Receiver operating characteristic 
curves and corresponding AUCs with 95% confidence intervals of the original 
pan-cancer LLR6 model (LLR6; blue curves) and; orange curves). Number  
of participants in different cohorts is displayed in the figure. In the figure,  
‘n’ represents the number of participants. P values, two-tailed DeLong’s test.  
The dashed lines represent random performance, serving as a baseline with an 
AUC of 0.5. This indicates the performance expected from a classifier making 
random guesses.
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Extended Data Fig. 10 | Comparison of predictive performance between 
the LLR6 models and the LLR5 models that exclude a patient′s systemic 
therapy history. a. Receiver operating characteristic curves and corresponding 
AUCs with 95% confidence intervals of the pan-cancer LLR6 (blue curves) and 
LLR5 (orange curves) models. Number of participants in different cohorts is 
displayed in the figure. In the figure, ‘n’ represents the number of participants. 

P values, two-tailed DeLong’s test. b. Receiver operating characteristic curves 
and corresponding AUCs with 95% confidence intervals of the NSCLC-specific 
LLR6 (blue curves) and LLR5 (orange curves) models. Number of participants 
in different cohorts is displayed in the figure. In the figure, ‘n’ represents the 
number of participants. P values, two-tailed DeLong’s test.
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