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Despite the revolutionary impact ofimmune checkpoint blockade (ICB)
incancer treatment, accurately predicting patient responses remains
challenging. Here, we analyzed a large dataset of 2,881 ICB-treated and 841
non-ICB-treated patients across 18 solid tumor types, encompassing awide
range of clinical, pathologic and genomic features. We developed a clinical
score called LORIS (logistic regression-based immunotherapy-response
score) using asix-feature logistic regression model. LORIS outperforms
previous signatures in predicting ICB response and identifying responsive
patients even with low tumor mutational burden or programmed cell death
1ligand 1 expression. LORIS consistently predicts patient objective response
and short-term and long-term survival across most cancer types. Moreover,
LORIS showcases a near-monotonic relationship with ICB response probability
and patient survival, enabling precise patient stratification. Asan accurate,
interpretable method using a few readily measurable features, LORIS may help
improve clinical decision-making in precision medicine to maximize patient
benefit. LORISis available as an online tool at https://loris.ccr.cancer.gov/.

Immune checkpoint blockade (ICB) has revolutionized our approach
to cancer treatment. However, many patients do not respond to ICB
therapy, creating a need to identify biomarkers to predict which
patients may benefit from this treatment'>. Although tumor muta-
tional burden (TMB) has been recognized as abiomarker to predict ICB
efficacy insolid tumors*?, current evidence fails to support the use of
high TMB (with a US Food and Drug Administration (FDA)-approved
threshold of 10 mutations per Mb) as abiomarker for response to ICB
treatment universally, across all cancer types®. Other clinical, patho-
logic and genomic features reported to be associated with ICB response
include programmed cell death1(PD-1) ligand 1 (PD-L1) expressionin
the tumor’, microsatellite instability (MSI)*'°, human leukocyte antigen

class 1 (HLA-I) evolutionary divergence (HED)", loss-of-heterozygosity
(LOH) status in HLA-I (ref. 12), fraction of copy number alteration
(FCNA) or tumor aneuploidy™", blood neutrophil-lymphocyte ratio
(NLR)"'®, blood albumin level”, body mass index (BMI)*®, sex'” and
age”. Nonetheless, there remains an unmet need to identify factors
for patient selection that are as readily measurable and provide more
robust and accurate predictions for cancer ICB response and patient
stratification than the approved TMB biomarker.

There have been a few attempts to integrate features from mul-
tiomics data into a single machine learning model to improve the
predictive power of ICB response. For example, one study curated 55
unique biomarkers fromtheliterature and used atree-based ensemble
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model, identifying the 11 most predictive biomarkers for ICB response?.
However, this approach relied on whole-exome sequencing (WES) and
transcriptome sequencing, which are expensive approaches and not
routinely measured in clinical settings. Inanother approach,arandom
forest model was developed using 16 genomic and clinical features
to predict pan-cancer ICB response®. This model was tested only on
data from the originating medical center, leaving open the challenge
ofadditional testing on external and independent cohorts. Moreover,
the ‘black box’ nature of these models has limited their interpretability,
impeding their applicationin the clinic.

Because cancer drug response is a complex phenomenon, it is
currently challenging to perfectly distinguish responders from nonre-
sponders. Therefore, assessing the response probability of a patient to
aparticular therapy is of great value, potentially allowing clinicians to
make more precise treatment decisions. For instance, in a patient with
a high probability of ICB response, immunotherapy might be prior-
itized over another therapy; in a patient with a lower probability of ICB
response, other therapeuticavenues might be prioritized. While TMB and
PD-L1 expression are the two major FDA-approved biomarkers for ICB
therapy, they do havelimitationsinaccurately predicting response. For
example, patients with low TMB may have a similar or even higher prob-
ability of responding to ICB therapy compared to those with high TMB®%,
Similarly, tumors across all PD-L1 expression levels may respond to ICB
treatments>**. Unfortunately, there has beenlittle progressin developing
ascoring system that can predict the patient-level ICB response prob-
abilityinamonotonic manner, whereby higher scoresreliably correlate
with higher response probabilities across the entire score range.

Here, we developed and validated a transparent ‘white box’ com-
putational model with afew clinically easy-to-measure features, which
can help clinicians to determine the patient’s probability of respond-
ing to ICB therapy. First, we curated and comprehensively analyzed a
large collection of persons with different types of cancer, with more
than 20 clinical, pathologic and genomic features measured. We then
developed and tested 20 machine learning models using repeated
cross-validation toidentify the most predictive model for ICB response.
Finally, we found thata clinical score, derived from a six-feature logistic
regression model, had a superior and robust performance in predict-
ingthe objective response to ICB onbothinternal cross-validation and
multipleindependent datasets. Remarkably, this clinical score exhib-
itedamonotonicrelationship with both the ICB response probability,
spanning from 0% to 100%, and the patient survival probability after
treatment. Our findings suggest that this approach can be a powerful
tool for predicting patient clinical outcomes in ICB therapy.

Results

Overview

We compiled adataset of 2,881 participants with ICB treatment across
18 solid tumor types from multiple data sources (Fig. 1a, Table 1 and
Extended Data Fig. 1a). All participants were treated with PD-1/PD-L1
inhibitors, cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
blockade or a combination of both immunotherapy agents (Fig. 1a
andTable1). To disentangle the predictive capacity of our model for ICB
response fromits prognostic significance within the broader context
of cancer survival in the absence of ICB treatment, we also curated
acohort comprising 841 non-ICB-treated participants from 15 solid
tumor types (Extended Data Fig. 1a,b).

Thefirst data source was an MSK-IMPACT cohort, whichincluded
1,479 participants treated for 16 cancer types at Memorial Sloan
Kettering Cancer Center (MSK; Chowell et al. cohort*). The second data
source was a cohort from South Korea, whichincluded 198 participants
withadvanced non-small cell lung cancer (NSCLC) (Shim et al. cohort®).
Thethird datasource was an additional cohort from MSK, including 453
participants with 15 cancer types (MSK1 cohort) and 104 participants
witheither central nervous system (CNS) tumors or cancer of unknown
primary (MSK2 cohort). The fourth data source was a pan-cancer study

from the UCSD Moores Cancer Center, consisting of 35 participants
across eight cancer types (Kato et al. cohort*®), which matched those
inthe Chowell et al. cohort.

We also used data from the Vanguri et al. cohort”, consisting
of 246 participants with advanced NSCLC at MSK, the Stand Up To
Cancer-Mark Foundation cohort, which included 309 participants
with NSCLC (Ravi et al. cohort*), and a pan-cancer cohort of refractory
metastatic tumors (META-PRISM, Pradat et al. cohort®) with 57 partici-
pants treated with ICB across 13 cancer types present in the Chowell
et al. cohort. These very recently published studies were accessed
and analyzed only after our model training and initial testing were
completed and fixed.

To assess patient outcomes, three metrics were measured: objec-
tive response, progression-free survival (PFS) and overall survival
(0S). Objective response was evaluated using the Response Evaluation
Criteria in Solid Tumors (RECIST, version 1.1)*° and classified as com-
plete response (CR) or partial response (PR) for responders and stable
disease (SD) or progressive disease (PD) for nonresponders. Among all
ICB-treated participants, 825 (-29%) experienced an objective response
while 2,056 (-71%) did not (Table 1). Across multiple cohorts, we evalu-
ated more than20 clinical, pathologic and genomic features (Methods).
Amongthese features, eight were measured for most participants: sex,
age, cancer type, ICB drugclass, systemic therapy history, TMB, blood
albuminleveland blood NLR (Table 1). Here, ‘systemic therapy history’
was abinary variable indicating whether the participant received chem-
otherapy or targeted therapy before immunotherapy. Additionally,
the PD-L1tumor proportion score (TPS) was assessed in many NSCLC
samples and asmall portion of other cancer types.

Wefirstexplored the correlation between features measuredona
continuous scale at a pan-cancer level across all participants (Fig. 1b).
TMBwas positively correlated with FCNA (r= 0.18, adjusted P< 0.001)
and age (r=0.16, adjusted P < 0.001). PD-L1 TPS was positively cor-
related with blood platelets (r=0.16, adjusted P < 0.05), which aligns
with previous studies in ovarian cancer where platelets increased the
expression of PD-L1in tumors™. Interestingly, PD-L1 TPS was negatively
correlated with FCNA (r=-0.14, adjusted P < 0.05). In addition, there
was a strong positive correlation between blood hemoglobin and
albuminlevel (r=0.50, adjusted P< 0.001).

Next, we aimed tobuild areliable ICB response predictor based on
the measured features. To this end, we comprehensively built and evalu-
ated response predictors using 20 different machine learning archi-
tectures. Foreach model, we first tuned the optimal hyperparameters
using fivefold cross-validation on the training set; we then evaluated its
performance using 2,000 repeats of fivefold cross-validation to ensure
unbiased results (equating to 10,000 random training-validation splits
intotal). Finally, the selected models were further tested on multiple
unseen test cohorts (Fig. 1c).

Our study included two types of models: pan-cancer and cancer
type specific (Fig. 1d). Pan-cancer models were developed, trained,
evaluated and compared using a subset of 964 participants from the
Chowell etal. cohort who receivedimmunotherapy between 2015 and
2017 (Chowell train). The unseen test cohortsincluded 515 participants
from the Chowell et al. cohort who received immunotherapy in 2018
(Chowelltest), as well as participants from the MSK1, MSK2, Kato et al.
and Pradatetal. cohorts (Extended DataFig. 1a). Cancer-type-specific
models were developed, trained, evaluated and compared using the
Chowell et al. cohort (only participants with NSCLC); unseen test
cohorts included participants from the MSK1 (only participants with
NSCLC), Shimetal.,Ravietal.and Vanguri et al. cohorts (Extended Data
Fig.1a). Overall, this approach allowed us to thoroughly evaluate the
generalizability of the models under various scenarios.

A pan-cancer model to predictimmunotherapy response
We first developed a pan-cancer logistic regression model to predict
the objective response to ICB therapy using the eight features shared
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Fig.1| Overview of the study. a, Description of the study aimsand dataused. The ~ models. For each machine learning architecture, the hyperparameter was tuned
study aimed to develop and validate machine learning models to predict patient with fivefold cross-validation. After determination of the hyperparameters, the

objective response probability and survival benefit following immunotherapy. models were evaluated using various performance metrics with 2,000 repeats
b, Correlation among features measured on a continuous scale at the pan-cancer of fivefold cross-validation. Lastly, the selected models were tested on multiple
level (n=2,881 participants). Pvalues were determined by Spearman’s rank test, unseen test cohorts to assess their generalizability. d, The two types of models
adjusted by Bonferroni correction. *, adjusted P < 0.05; **, adjusted P < 0.01; built, thatis, the pan-cancer and NSCLC-specific models, and the corresponding
*** adjusted P< 0.001. ¢, Schematic representation of the training, validation training and test data used.

andindependent testing procedures used to develop and evaluate the predictive
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Table 1| Characteristics of participants with ICB treatment in the study

Characteristic Total Chowelletal. Shimetal. MSK1 MSK2 Vangurietal. Katoetal. Ravietal. Pradat etal.
participants cohort? cohort® cohort cohort cohort” cohort”®  cohort® cohort®
Sex, n (%)

Female 1,280 (44.4) 668 (45.2) 58 (29.3) 172 (38.0) 42 (40.4) 134 (54.5) 17 (48.6) 165 (53.3) 24 (4227)
Male 1,601 (55.6) 811(54.8) 140 (70.7) 281(62.0) 62 (59.6) 112 (45.5) 18 (51.4) 144 (46.6) 33(57.9)
(Age,)median, years 63 (55-71) 64 (55-71) 62 (55-69) 63 (563-73) 53 (48-63) 68 (61-73) 62(51-72) 64 (57-71) 66 (54-69)

IQR
Cancer type, n (%)

NSCLC 1,456 (50.5) 538 (36.4) 198 (100) 128 (28.3) - 246 (100) - 309 (100) 37(64.9)

Renal 232(81) 91(6.2) - 137(30.2) - - - - 4(7.0)

Melanoma 217 (7.5) 186 (12.6) = 30(6.6) = = = = 1(1.8)

Head and neck 132 (4.6) 69 (4.7) - 61(13.5) - - 2(5.7) - -

Bladder 119 (4.1) 82(5.5) - 29 (6.4) - - 3(8.6) - 5(8.8)

Sarcoma 88(3.1) 67 (4.5) - 17(3.8) - - 3(8.6) - 1(1.8)

Gastric 82(2.8) 64 (4.3) - 7(1.5) - - 11(31.4) - -

CNS 75 (2.6) - - - 75 (72.1) - - - -

Colorectal 75 (2.6) 46 (3.1) - 22(4.9) - - 6 (17.1) - 1(1.8)

Endometrial 71(2.5) 65 (4.4) - 4(0.9) - - - - 2(3.5)

Hepatobiliary 62(2.2) 52 (3.5) - 5(1.1) - - 4(M.4) - 1(1.8)

CLC 55 (1.9) 50 (3.4) - 4(0.9) - - - - 1(1.8)

Esophageal 50(1.7) 44 (3.0) - 5(11) - - = = 1(1.8)

Pancreatic 40(1.4) 35(2.4) - 1(0.2) - - 3(8.6) - 1(1.8)

Mesothelioma 36(1.2) 34 (2.3) - 1(0.2) - - - - 1(1.8)

Ovarian 31(1.1) 31(21) - - - - - - -

Breast 31(1.1) 25(1.7) - 2(0.4) - - 3(8.6) - 1(1.8)

Unknown primary 29(1.0) - - - 29(27.9) - - - -

Drug class, n (%)

PD-1/PD-L1 2,447 (86.0) 1,221(82.6) 198 (100) 390 (86.1) 102 (98.1) 234 (95.) - 245 (79.3) 57(100)

CTLA-4 7(0.2) 5(0.3) - 2(0.4) - - - - -

Combo 392(13.8) 253(17.) - 61(13.5) 2(1.9) 12(4.9) - 64 (20.7) -
Systemic therapy history, n (%)

No 814 (28.3) 463 (31.3) 14.(7.) 107 (23.6) 24 (24) 78 (31.7) - 123(39.8) 5(8.8)

Yes 2,063 (71.7) 1,016 (68.7) 184 (92.9) 346 (76.4) 76 (76) 168 (68.3) 35(100) 186 (60.2) 52(91.2)
TMB, median, mutations 5.9 (3.0-10.8) 5.3(2.8-10.8) 7.3(3.7-120) 5.3(3.3-89) 3.9(25-5.3) 79(4.4-12.3) 7(5-1) 74(3.4-127) 71(1.8-12.2)
per Mb (IQR)

Albumin, median, gdl” 3.9 (3.6-4.2) 3.9(3.6-41) 41(3.8-44) 39(36-4.2) 41(3.8-4.3) 3.8(3.4-41) = = 3.9(3.6-4.1)
(IQR)
NLR, median, (IQR) 4.3(2.7-7.0) 4.4(2.8-7.2) 31(1.9-4.8) 41(2.7-71) 41(25-6.8) 4.9(3.3-79) - - 4.5(2.9-6.3)
PD-L1TPS, median, 5 (0-66) 0 (0-60) 50 (1-72.5) 1(0-50) 0 (0-50) 5 (0-60) - 25 (0-75) -
% (IQR)
ICB response, n (%)
Responder 825 (28.6) 409 (27.7) 61(30.8) 116 (25.6) 14 (13.5) 61(24.8) 5(14.3) 121(39.2) 19 (33.3)
Nonresponder 2,056 (71.4) 1,070 (72.3) 137(69.2) 337(74.4) 90 (86.5) 185(75.2) 30(85.7) 188 (60.8) 38(66.7)

among all participants. We performed fivefold cross-validation to
identify the optimal hyperparameters. Feature importance analysis
showed that a participant’s sex and ICB drug class information had
little impact on the prediction (Extended Data Fig. 1c). After remov-
ingthese two features, the best model found was a six-feature logistic
LASSO (least absolute shrinkage and selection operator) regression
model (LLR6), which included the following features in decreasing
order of importance: TMB, systemic therapy history, blood albumin,
blood NLR, age and cancer type (Extended Data Fig. 1d).

To double-check and assess the possible added value of the other
features, we alsodeveloped and tuned alogistic regression model using
all16 features. However, the 16-feature model showed noimprovement
inperformance over LLR6 onthe cross-validation sets (Supplementary
Tablel).Inaddition, we tested afive-variable logistic regression model
without using TMB, LR5 (noTMB), but it performed worse than LLR6
(Supplementary Table 1). Overall, our analysis suggested that the six
selected features captured the most essential information for predict-
ing ICB response in participants with different types of cancer.
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We also compared the performance of LLR6 with an established
method, referred to as RF16 (Chowell et al.) hereafter, which is a
16-feature random forest model reported recently?’. Asaresult, LLR6
outperformed RF16 (Chowell et al.) by having significantly higher
values in five of seven different metrics on the cross-validation sets
(Extended Data Fig. 2a). Notably, LLR6 exhibited a close-to-zero per-
formance difference between training and cross-validation, much
smaller than that of RF16 (Chowell et al.) (Extended Data Fig. 2b), which
suggeststhat LLR6is less prone to overfitting than RF16 (Chowell etal.).
Indeed, while RF16 (Chowell et al.) exhibited significantly higher area
under thereceiver operating characteristic curve (AUC) and areaunder
the precision-recall curve (AUPRC) values than LLR6 on the training
data, it experienced a substantial drop in performance on the unseen
test data, ultimately resulting in even poorer performance than LLR6
(Extended DataFig. 2c). Interestingly, while the scores calculated from
LLR6 and RF16 (Chowell et al.) were highly correlated, LLR6 scores
exhibited a more uniform distribution across the range of 0 to 1. In
contrast, scores generated from RF16 (Chowell et al.) tended to cluster
within anarrower range between O and 0.6 (Extended Data Fig. 2d).

Tofurther testif there were better machine learning architectures
for predicting ICB response using all 16 features, we experimented with
15additional machine learning models, such as decision trees, Gaussian
processes, support vector machine, XGBoost and deep neural net-
works. However, none of these models outperformed LLR6. While some
complex models, such as XGBoost and a two-layer multilayer percep-
tron network, showed comparable performance to LLR6 (Supplemen-
tary Table1), they exhibited much larger discrepanciesin performance
between the training and validation data (Supplementary Table 2),
indicating a high risk of overfitting the data. We also compared other
clinical and computational characteristics of LLR6 with other models.
Inshort, LLR6 was the best model that simultaneously possessed the
desirable properties of (1) superior performance and being less prone
to overfitting; (2) use of only a few clinically measurable features;
(3) high transparency and interpretability; and (4) short model
training time, among others (Supplementary Table 3).

Todirectly assess the generalizability of LLR6, we applieditto five
unseen datasets. We referred to the output calculated using LLR6 as
thelogisticregression-based immunotherapy-response score (LORIS)
(Methods). As abaseline, we tested the FDA-approved TMB biomarker.
Additionally, while we were unable to directly evaluate RF16 (Chowell
et al.) on these external datasets because of the absence of many
input features, we successfully constructed a six-feature random for-
est model (RF6) and optimized its hyperparameters using the same
protocol as for the development of RF16 (Chowell et al.)*.

LLR6 consistently outperformed RF6 and the TMB biomarker
across all datasets, even for cancer types not seen in the training data
such as CNS tumors and cancer of unknown primary in the MSK2
cohort. Specifically, LLR6 achieved 1-39% and 15-68% higher AUCs
than RF6 and the TMB biomarker, respectively (Fig. 2a). Simultane-
ously, LLR6 consistently outperformed RF6 and the TMB biomarker
by predicting significantly higher LORIS for responders compared
to nonresponders on all datasets (Fig. 2b). In addition, LLR6 showed
superior AUPRCs on most datasets (Fig. 2c).

Tobinarize the values of LORIS and RF6 scores, we used cutoffs of
0.5and 0.27, respectively, which maximized Youden’sindex, defined as
‘sensitivity + specificity — 1, of the models on the training data, respec-
tively. Regarding TMB, the FDA-approved cutoff of 10 mutations per
Mb was used. Using binarized scores, LLR6 predicted an odds ratio of
1.4-4.1forICB objective response between high-LORIS and low-LORIS
participants, which was higher than for RF6 (1.1-3.5) and the TMB
biomarker (0.8-2.6) (Fig. 2c).

LORIS identifies low-TMB responders toimmunotherapy
We further studied whether LORIS could predict patient survival
outcomes following immunotherapy. Our pan-cancer Kaplan-Meier

analysis revealed that participants with low LORIS (binned at 0.5)
had significantly worse survival compared to those with high scores
(OS: hazard ratio (HR) =3.2, 95% confidence interval (Cl) =2.6-3.9,
P=2x107,; Fig. 3a; PFS: HR=2.6, 95% Cl=2.2-3.0, P=2x107%;
Extended Data Fig. 3a). In contrast, using TMB (binned at 10 muta-
tions per Mb) to stratify participants resulted in moderate power (OS:
HR=1.3,95%Cl=1.1-1.6,P=0.01; Fig. 3a; PFS:HR = 1.5,95% Cl = 1.2-1.8,
P=8x107% Extended Data Fig. 3a). Notably, LORIS identified a sub-
stantial proportion of low-TMB participants who could benefit from
immunotherapy atasimilar level to high-TMB participants (Fig. 3aand
Extended Data Fig. 3a). Similar results were obtained when we used
the 50th percentilein each cancer type as the optimal cutoff for LORIS
binning and the highest 20th percentile for TMB binning (Fig. 3b and
Extended DataFig. 3b). Note that the highest 20th percentile was used
asitwasthe optimal threshold for TMB binning proposedina previous
study’. Indeed, when using the 50th percentile for TMB binning, akin
to the approach used for LORIS, a more pronounced trend emerged.
Specifically, participants with high LORIS scores, regardless of whether
they exhibited low or high TMB levels, tended to derive similar benefits
fromimmunotherapy. Conversely, participants with low LORIS scores
had alimited potential to benefit from immunotherapy (Extended
DataFig. 4a,b).

Totest the predictive power of LLR6 inindividual cancer types, we
calculated HRs for LORIS and TMB for each cancer type using multivari-
ate Cox proportional hazards regression that accounted for age, ICB
drug classand year of ICB start. Consequently, higher LORIS predicted
better OS (HR <1) for all except one individual cancer type (binned at
the 50th percentile; Fig. 3c), which was not true for the TMB biomarker
(binned at the highest 20th percentile; Fig. 3d). Similar results were also
observed for PFS (Extended Data Fig. 3c,d). Consistently, Kaplan-Meier
analyses show that survival following immunotherapy was worse in
low-LORIS participants for all 18 individual cancer types (Extended
DataFig.5).

We also examined whether higher LORIS could predict better
short-term and long-term patient survival, as both metrics are clinically
important ontheir own. We compared the survival probability between
participants with high versus low LORIS at various time points after
immunotherapy, including half a year, 1year, 2 years, 3 years, 4 years
and 5 years. Notably, higher LORIS predicted significantly better OS for
alltime points (difference in survival probability between high-LORIS
and low-LORIS participants: 0.21-0.33; Wilcoxon test Pvalues: 3 x 107
-3x107%Fig.3e).In contrast, TMB did not consistently predict better
OSfor alltime points (Fig. 3f). We also observed similar results for PFS
(Extended DataFig. 3e,f).

LORIS provides monotonic response and survival prediction
Next, we investigated the relationship between a participant’s LORIS
and their outcomes. Notably, we uncovered a unique characteristic
of the LORIS signature. Specifically, as the LORIS increased, there
was a consistent rise in the probability of objective response for par-
ticipants, ranging from 0% to 100% (Fig. 4a). This distinctive attri-
bute would allow clinicians to easily estimate the likelihood of ICB
response of a person with cancer by assessing the six input features.
In particular, LORIS enabled identification of the top 10% of partici-
pants who were highly likely to respond to ICB therapy (with aresponse
probability exceeding 50%) while excluding the bottom ~10% of par-
ticipants who were unlikely to respond (with a response probability
below10%).In contrast, the stratification power of TMB fell short. Only
the top 6% of participants with the highest TMB exhibited a response
probability exceeding 50%, while the lowest TMB scores proved inef-
fective in excluding nonresponsive participants altogether (Fig. 4b).
We further found that a higher LORIS consistently predicted better
OSfor participants across different percentiles. We were able to group
patient survival into as many as six categories based on LORIS within
eachcancertype, thatis, 0-10%,<10-20%,<20-50%,<50-80%,<80-90%
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Fig. 2| Robust prediction of pan-cancer objective response toimmuno-
therapy by asix-variable LLR model. a, Receiver operating characteristic curves
and corresponding AUCs with 95% Cls of LLR6 (blue curves), RF6 (green curves)
and the TMB biomarker (yellow curves) on the training set and across multiple
unseen test sets. In the figure, n represents the number of participants. The
dashed lines represent random performance, serving as a baseline withan AUC
of 0.5. This indicates the performance expected from a classifier making random
guesses. b, Distribution of LORIS, RF6 score and TMB alone in responders and

nonresponders on the training set and across multiple unseen test sets. P values
were determined by a two-tailed Mann-Whitney U'test. Box boundaries represent
the first and third quartiles; the central line marks the median. Whiskers extend
to the furthest nonoutlier points within 1.5 times the interquartile range. Outliers
are shown as points beyond the whiskers. ¢, AUPRCs and odds ratios of the ICB
objective response of LLR6 (blue bars), RF6 (greenbars) and the TMB biomarker
(yellow bars) on the training set and across multiple unseen test sets. The number
of participantsin different cohortsis displayedin a.

and <90-100%. Notably, the HR between the lowest-percentile (0-10%)
and highest-percentile (90-100%) groups was as high as 7.8 (95%
Cl=4.9-12.4, P=1x107%; Fig. 4c). However, we did not observe this
monotonic relationship with survival for the TMB biomarker (Fig. 4d).
Similar results were observed for PFS (Extended Data Fig. 4¢,d).

LORIS has enhanced predictive power over prognosis

As biomarkers may have prognostic value, predictive value or both*,
wenextsoughttoexplorethe degreetowhich LORIS could prognosticate
patient outcome outside of the context of ICB therapy. To explore this,
LORIS scores were calculated for a cohort of participants with cancer
from 15 solid tumor types (n = 841) that were treated with stand-
ard therapies (non-ICB cohort) at MSK. While LORIS had moderate

prognostic value of patient survival in the non-ICB setting (AUCs for
0.5-year to 3-year 0S:0.60-0.61), the AUCs were significantly lower than
those observed for the ICB therapy group (AUCs: 0.73-0.83, DeLong’s
test P<1x107; Fig. 5a). Additionally, the correlation between higher
LORIS scores and improved survival in non-ICB-treated participants
lacked a clear monotonic trend, with a much smaller risk difference
between highest-scored and lowest-scored participants (HR =1.3,95%
Cl=0.8-2.1, P=0.13; Fig. 5b). Inindividual cancer types, LORIS also
exhibited areduced risk estimation capacity (Fig. 5c) and less statisti-
cal power in distinguishing short-term and/or long-term patient sur-
vival (Fig. 5d) within the non-ICB cohort. In addition, we conducted
comparative analysis using the LR5 (noTMB) model, excluding the
TMB component. The LRS (noTMB) model continued to demonstrate
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Fig. 3| LORIS predicts patient outcomes following immunotherapy for both
pan-cancer and individual cancer types. a, Kaplan-Meier analysis of OS. TMB
is binned at 10 mutations per Mb and LORIS is binned at 0.5. HRs with 95% Cls
are shown. Pvalues were determined by univariable Cox proportional hazards
regression. H, high; L, low. In the risk table, the numbers represent the numbers
of participants. b, Same as abut TMB is binned at the highest 20th percentile
and LORIS is binned at the 50th percentile for each cancer type. HRs with 95%
Cls are shown. Pvalues were determined by univariable Cox proportional
hazards regression. ¢,d, Forest plot of HRs of OS within each cancer type using
LORIS (binned at the 50th percentile) (c) or TMB (binned at the highest 20th
percentile) (d). Pvalues were determined by multivariable Cox proportional

hazards regression with adjustment for cancer type, age, ICB drug class and year
of ICB start. Squares positioned at midpoints symbolize point estimates of HRs
and the accompanying bars indicate 95% Cls. e,f, Comparison of half-year, 1-year,
2-year, 3-year, 4-year and 5-year OS stratified by cancer type for high versus low
LORIS (binned at the 50th percentile) (e) and high versus low TMB (binned at

the highest 20th percentile) (f). Median survival probability differences (A) are
displayed. Pvalues were determined by two-tailed paired Wilcoxon rank sum
test. Box boundaries represent the first and third quartiles; the central line marks
the median. Whiskers extend to the furthest nonoutlier points within1.5times
theinterquartile range. Data are from the combined Chowell test and MSK1 sets
(n=968 participants).
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Fig.4|Monotonicrelationship between LORIS and patient objective
response probability and survival following immunotherapy.

a,b, Relationship between LORIS (a) or TMB (b) and ICB objective response
probability. The average patient response probabilities with 95% Cls are shown
using 1,000 bootstrap replicates. The gray region represents participants with
an unlikely response toimmunotherapy (with a response probability below 10%),
while the green regions represent participants with alikely response

(with aresponse probability exceeding 50%). The arrows indicate the LORIS

b -

75

Response probability (%)

50
25 |
27
o4 ‘ ‘ /‘ ‘ ‘
0 10 20 30 40 50
T™MB
d TMB within histology [ =+ 0-10%
1.00 ] P=0.18
== 10-20% ] P-0.48
HR =17 (1.2-2.6) | == 20-50% ] po O.'|8
P=4x10" | + 50-80% e
0.75 80-90% J P=0:35
90-100% J P=0-14

OS probability
o
o
o
Il

0.25 4

0 20 40 60

Time (months)

Number at risk

- O 8 3 0
— 99 15 2 0
m— 290 39 n 0
289 4 10 2
94 20 8 3
105 17 3 0

and TMB threshold values. ¢,d, Kaplan-Meier analysis of LORIS (c) or TMB (d)
binned at the different percentiles in each cancer type. Pvalues next to the
legend indicate pairwise single-tail comparisons testing against the hypothesis
that ‘higher-scored participants do not have better survival than lower-scored
participants’ with univariable Cox proportional hazards regression. HRs with
95% Cls are shown for the lowest-percentile (0-10%) and the highest-percentile
(90-100%) groups with univariable Cox proportional hazards regression. Data
are from the combined Chowell test and MSK1 sets (n = 968 participants).

superior predictive power over its prognostic ability (Extended Data
Fig. 4e). Taken together, these results showed that LORIS has both
prognostic and ICB treatment predictive value butits predictive value
appears much stronger than, and not attributable to, its value asagen-
eral prognostic marker in persons with cancer.

Enhancing lung cancerimmunotherapy predictions with
LORIS

Our study demonstrated the superior capability of our pan-cancer
model in predicting ICB response. This success led us to probe a
subsequent question: Could the approach be extended to develop
cancer-type-specific models? To this end, we tested the potential of
using logistic LASSO regression (LLR) to create a specific model for
NSCLC, the cancer type with the largest sample size in our dataset.

We constructed, trained and assessed NSCLC-specific models
using asimilar protocol to our pan-cancer study, albeit with two minor
adjustments. First, we harnessed the entire Chowell et al. cohort
as our training data to ensure an adequate number of samples for
model training. Secondly, we replaced the cancer type feature in the
pan-cancer LLR6 model with PD-L1 TPS, as the former was redundant
for a single-cancer study and the latter is a key biomarker routinely
measured in persons with NSCLC. Consequently, a total of 324 partici-
pants withNSCLC inthe training dataset were evaluated with complete
measurement of the six input features.

As aresult, the NSCLC-specific LLR6 model was one of the best
models with 2,000 repeats of fivefold cross-validation compared to the
19 other models (Supplementary Table 4). More importantly, despite
thelimited datasize, it maintained the desirable property of anear-zero
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Fig. 5| LORIS exhibits enhanced predictive efficacy forimmunotherapy
withrespect toits prognostic value in the context of non-ICB treatments.

a, Receiver operating characteristic curves and corresponding AUCs with 95% Cls
of LORIS on 0.5-year, 1-year, 2-year and 3-year OS of participants treated with ICB
(blue curves) or non-ICB (orange curves) therapies. P values were determined by
two-tailed DeLong’s test (non-ICB, n = 841 participants; ICB, n = 968 participants).
The dashed lines represent random performance, serving as a baseline with an
AUC of 0.5. Thisindicates the performance expected from a classifier making
random guesses. b, Kaplan-Meier analysis of LORIS binned at the different
percentiles in each cancer type for the non-ICB cohort. Pvalues were determined
by univariable Cox proportional hazards regression (single tail). HRs with

95% Cls are shown for the lowest-percentile (0-10%) and the highest-percentile
(90-100%) groups (n = 841 participants). ¢, Forest plot of HRs of OS within each

cancer type using LORIS (binned at the 50th percentile) for the non-ICB cohort.
Pvalues were determined by multivariable Cox proportional hazards regression
withadjustment for cancer type and age. Squares positioned at midpoints
symbolize the point estimates of HRs and the accompanying bars indicate the
95% Cls. d, Comparison of half-year, 1-year, 2-year, 3-year, 4-year and 5-year OS
stratified by cancer type for high versus low LORIS (binned at the 50th percentile)
for the non-ICB cohort. Median survival probability differences (A) are displayed.
Pvalues were determined by two-tailed paired Wilcoxon rank sum test. Box
boundaries represent the first and third quartiles; the central line marks the
median. Whiskers extend to the furthest nonoutlier points within 1.5 times the
interquartile range. ICB data are from the combined Chowell test and MSK1 sets
(n=968 participants). Non-ICB data are from the MSK non-ICB cohort (n = 841
participants; Extended Data Fig.1).
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Fig. 6| Robust prediction of response toimmunotherapy inNSCLCwith LLR.

a, Receiver operating characteristic curves and corresponding AUCs with 95% Cls of
LLR6 (blue curves), PD-L1TPS (green curves) and TMB (yellow curves) on the training
setand across multiple unseentest sets. In the figure, n represents the number of
participants. The dashed lines represent random performance, serving as abaseline
withan AUC of 0.5. This indicates the performance expected from a classifier making
randomguesses. b, Odds ratio of ICB objective response of LLR6 (blue bars), PD-L1
TPS (greenbars) and TMB (yellow bars) on the training set and across multiple
unseentest sets. ¢, Distribution of LORIS, PD-L1 TPSand TMB in responders and
nonresponders on the training set and across multiple unseen test sets. Pvalues were
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as points beyond the whiskers. d,e, Forest plots of HRs of PFS (d) and OS (e) within
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symbolize the point estimates of HRs and the accompanying bars indicate the
95% Cls. The number of participantsin different cohortsis displayedina.
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Fig. 7| LORIS facilitates more precise ICB response prediction. a, Receiver
operating characteristic curves and corresponding AUCs of the NSCLC-specific
LLR6 model (blue curves), the PD-L1 TPS biomarker (green curves) and the
TMB biomarker (yellow curves) on gastric cancer, esophageal cancer and
mesothelioma. In the figure, n represents the number of participants. The
dashed lines represent random performance, serving as a baseline with an

Patient 3

AUC of 0.5. This indicates the performance expected from a classifier making
random guesses. b, Asummary of this study. LORIS, aclinical score derived from
this study, estimates ICB response probabilities using LLR that identifies and
integrates a few key features from three categories: tumor molecular data, blood
measurements and patient clinical information. LORIS provides precise, patient-
specific predictions of ICB therapy efficacy.

performance discrepancy between the training and cross-validation
data (Supplementary Table 5). This suggests aminimized risk of over-
fitting. Indeed, NSCLC-specific LLR6 consistently outperformed
both the TMB and the PD-L1 TPS biomarkers on all five external data-
sets, achieving 4-17% and 5-23% higher AUCs, respectively (Fig. 6a).

Moreover, the NSCLC-specific LORIS predicted an odds ratio of
2.5-4.7 for ICB response between high-LORIS and low-LORIS partici-
pants, which is much higher than predicted for the TMB (1.1-2.1) and
PD-L1TPS (1.7-2.9) biomarkers (Fig. 6b). In addition, responders con-
sistently had significantly higher LORIS than nonresponders across all
datasets (Fig. 6¢). Lastly, higher LORIS consistently predicted alower
risk (HRs <1) for both PFS and OS on all datasets, after adjusting for
sex, age and ICB drug class (Fig. 6d,e).

Toassess the additional value of constructing cancer-type-specific
models, we conducted acomparative analysis between NSCLC-specific
LLR6 and pan-cancer LLR6, as described above, specifically focusing
onpredicting the ICB response of participants with NSCLC (Extended
Data Fig. 6a-c). Remarkably, the NSCLC-specific LLR6 consistently
demonstrated higher AUCs across all datasets, with particularly notable
improvements observed in the Shim et al. and Vanguri et al. cohorts
(Extended Data Fig. 6a). Interestingly, the pan-cancer model dem-
onstrated a robust capability to predict survival in participants with
NSCLC, achieving impressively consistent HR values near 0.5 for both
PFS and OS across various datasets (Extended Data Fig. 6b,c). Addi-
tionally, we also constructed and compared a simplified two-variable
NSCLC-specific model (LLR2) using only TMB and PD-L1 TPS as input
(Extended DataFig. 6d-f). The LLR2 model exhibited slightly reduced

AUC values on most datasets (Extended Data Fig. 6d); it also demon-
strated compromised predictive capacity for patient survival, such as
an inability to differentiate OS in the Vanguri et al. cohort (Extended
DataFig. 6f).

Furthermore, to evaluate the added value of PD-L1 TPS informa-
tion, we applied the NSCLC-specific LLR6 model to other cancers,
including gastric cancer, esophageal cancer and mesothelioma.
Remarkably, even when tested across these distinct cancer types
without further training or adaptation, the model still demonstrated
superior predictive power for ICB response compared to using TMB
or PD-L1TPS alone (Fig. 7a), despite the limited sample size.

Additional analyses were performed to test our methodology’s
robustness. Firstly, the pan-cancer LLR6 model’s accuracy persisted
evenwhen excluding NSCLC data (Extended Data Figs. 7a-d and 8a-d).
Furthermore, retraining the model without using NSCLC data did not
furtherimprove its performance (Extended Data Fig. 9a). In addition,
removing the cancer type term from the model, which adjusts for vary-
ing TMB loads and responses across cancers, slightly reduced predic-
tive power but not significantly (Extended DataFig. 9b). Lastly, systemic
therapy history is typically not considered in ICB response prediction.
Excluding this feature to predict response with a five-feature logistic
LASSO model (LLR5) showed that both pan-cancer and NSCLC-specific
LLR5 models performed slightly worse than their full counterparts,
albeit notsignificantly (Extended Data Fig.10a,b). Equations for com-
puting pan-cancer and NSCLC-specific LORIS using LLR5 models are
included below (Methods). These results underscore the robustness
of our methodology.
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Insummary, we developed alogistic regression-based methodol-
ogy, identifying key predictors such as TMB, systemic therapy history,
albumin, NLR, age, cancer type (pan-cancer) and PD-L1 TPS (NSCLC)
to estimate patient ICB response probabilities (Fig. 7b). LORIS is now
publicly available at https://loris.ccr.cancer.gov to aid cancer immuno-
therapy researchers, clinicians and patients.

Discussion

The clinical utility of many machine learning models is markedly hin-
dered by their black box nature, which makes them difficult to inter-
pret® . Toaddress thisissue, we developed two interpretable models to
predict patient ICB response: a pan-cancer model and an NSCLC-specific
model. The clinical score derived here, LORIS, demonstrated a sub-
stantialimprovementin predicting ICB response compared to current
clinical biomarkers. Across multiple unseen datasets, the pan-cancer
LORIS had a15-68% increase in AUC over the TMB biomarker and the
NSCLC-specific LORIS showed 4-17% and 5-23% increases in AUC over
the PD-L1and TMB biomarkers, respectively. Remarkably, despite using
alimited set of features, LORIS matched or exceeded the performance
of more complex computational methods, even under stringent test-
ing conditions. Forinstance, when stratifying the Chowell et al. cohort
by the year of initiating ICB therapy—a method considered stronger
than random data splitting according to the TRIPOD guideline**—we
observed that the pan-cancer LORIS demonstrated superior predictive
power compared to the original approach®. This improvement was
evident across both repeated cross-validation and unseen test data
(Extended Data Fig. 2). Similarly, the NSCLC-specific LORIS achieved
comparable performance to the originalapproach (AUC = 0.77 versus
0.80) onthe Vangurietal. cohort, despite the original approach using a
notably larger feature set derived from radiology, histology and genom-
icsand its performance being measured through cross-validationrather
thanusingindependent data”. These findings showcase the versatility
of our approach, which is applicable to both pan-cancer studies and
when tailoring robust models to specific cancer types.

Fromatranslational perspective, our results demonstrated three
key findings. Firstly, LORIS predicts not only patient ICB objective
response but also short-term and long-term survival benefit following
immunotherapy better than existing methods. Moreimportantly, our
model successfully identifies low-TMB or low-PD-L1 TPS patients who
can still benefit from immunotherapy. Lastly, LORIS scores patients
by their response probabilities to immunotherapy in a much more
monotonic and consistent manner, leading to more accurate iden-
tification of likely responders and more effective exclusion of likely
nonresponders. Taken together, LORIS could be a reliable tool for
improving clinical decision-making practices in precision medicine
to maximize patient benefit.

Notably, a patient’s systemic therapy history, while not typi-
cally considered in ICB response prediction, had a significant role
in both models. Theoretically, chemotherapy reduces immune sys-
tem competency and could lead to reduced ICB response rates®.
Indeed, it was shown that first-line chemotherapy can influence the
tumor microenvironment and decrease the efficacy of subsequent
immunotherapy?®. It was also observed that resistance to anti-MAPK
(mitogen-activated protein kinase) targeted therapy could promote
an immune-evasive tumor microenvironment and cross-resistance
to subsequent immunotherapy in melanoma cases®. More recently,
it was found that removing systemic therapy history decreased the
predictive power of ICB response?. However, a patient’s systemic
therapy history may also be influenced by multiple clinical factors
guiding treatment decisions and, in time, may become less relevant
as ICB drugs move into first-line therapy for more indications. We
explored theimpact of excluding this feature on prediction accuracy.
Consequently, we found that its exclusion slightly compromised the
model’s predictive power; however, the effect was not significant
(Extended Data Fig.10a,b).

This study had afew limitations. Firstly, our study had aretrospec-
tive design; to further demonstrate the transformative value of LORIS
inclinical settings, more prospective studies need to be conductedin
the future. Secondly, although we curated alarge cohort with compre-
hensive clinical, pathologic and genomic features measuredin asingle
study, the sample size was still limited for most individual cancer types.
Asaresult, we could build cancer-type-specific models only for NSCLC.
Additionally, we did not have transcriptomic data for the participants,
which is an important factor in assessing tumor microenvironment
and predicting ICB response®-*°™*, Similarly, we opted not to include
detailed gene mutation or copy number alteration informationin the
current model because of ethical restrictions regarding the sharing
of such data. The use of federated learning** is required for training
and externally validating models that use this type of data. This, how-
ever, constitutes an independent research question and falls outside
the scope of the current study. Lastly, the PD-L1 TPS data were mainly
limited to participants with NSCLC and rarely measured in other cancer
types. Despite this limitation, our preliminary analysis showed that the
NSCLC-specific LORIS, whichincorporates the PD-L1 TPS information,
can also enhance the predictive power of ICB objective response in
other cancer types (Fig. 7a). However, as the sample size was still very
limited, further validationis needed to confirm theimportance of PD-L1
expressioninpredicting ICB response inindividual cancer types using
more extensive cohorts.

In summary, this study analyzed a large and diverse cohort of
participants with cancer treated withimmunotherapy, including their
clinical, pathologic and genomic data and ICB response information,
which allowed us to develop a robust machine learning model to pre-
dict patients’ objective response and survival following ICB therapy.
LORIS integrates a few easily measurable patient features and pro-
duces monotonicscores, which have the potential to facilitate clinical
decision-making and patient stratification (Fig. 7b). As our understand-
ing oftumorimmunology and the availability of comprehensive datain
larger cohorts continue toimprove, we expect to see the development
of even more accurate models for personalized precision therapy,
ultimately reducing cancer mortality.

Methods

Description of the ICB cohorts

The use of the participant data from the MSK1 and MSK2 cohorts
was approved by the MSK institutional review board. All participants
provided informed consent to a MSK IRB-approved protocol. All
other cohorts were published previously. All participant features were
collected before the start of ICB therapy. Covariate characteristics
aresummarizedin Tablelincludingsex, age, systemic therapy history,
cancer type and treatment type.

Chowell et al. cohort. The Chowell et al. cohort comprised 1,479
participants diagnosed with 16 different types of solid tumors. The
cohort data included measurements of 18 features. Sixteen of them
were previously reported, including tumor information (MSI status,
TMB, FCNA, HED and LOH in HLA-I), clinical information (sex, age,
systemic therapy history before immunotherapy, BMI, cancer type,
tumor stage and ICB drug class) and blood parameters (NLR and
levels of albumin, platelets and hemoglobin). TMB was calculated
as the total number of somatic nonsynonymous mutations in the
tumor normalized to the exonic coverage of the respective MSK-IMPACT
panels (in mutations per Mb). For more detailed information, please
refer to ref. 22. Two additional features, that is, tumor PD-L1 TPS
(available for a subset of participants) and the start year of receiving
ICB therapy were extracted from the electronic health records for
the purpose of this study and were not previously reported (Supple-
mentary Table 6). PD-L1 TPS was determined using the Dako PD-L1
IHC 22C3 pharmDx kit (Agilent Technologies), which is approved
by the FDA.
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Shim et al. cohort. The Shim et al. cohortincluded 198 participants
with advanced NSCLC, with 13 features measured. These features
included tumorinformation (PD-L1TPS, TMB and LOH in HLA-I), clinical
information (sex, age, systemic therapy history before immunother-
apy, smoking status, histology, Eastern Cooperative Oncology Group
(ECOG) performance status and ICB drug class) and blood parameters
(NLR and albumin levels). TMB was defined as the number of nonsyn-
onymous alterations, identified from WES. PD-L1 TPS was assessed
using the FDA-approved Dako PD-L1IHC 22C3 pharmDx kit (Agilent
Technologies) in the samples. For more detailed information, please
refer to ref. 25. Among these features, blood NLR and albumin levels
and participants’ systemic therapy history were extracted from the
electronic health records for the purpose of this study and were not
previously reported (Supplementary Table 6).

MSK1 and MSK2 cohorts. The participants in the MSK1 and MSK2
cohorts were treated and their tumors were profiled with the
MSK-IMPACT platform as part of standard clinical care. Participants
selected for this study were those with solid tumors diagnosed from
2014 through 2019 who received at least one dose of ICB at MSK. We
excluded participants with a history of more than one cancer, those
withoutacomplete blood count within 30 days before the first dose of
ICBandthose enrolledinblinded trials. We excluded participants who
received ICBinaneoadjuvant or adjuvantsetting and participants with
an unevaluable response. The final set consisted of 557 participants
with solid tumors from 17 different types. A total of 13 features were
measured inthe study, including tumor information (PD-L1 TPS (avail-
ableforasubset of participants), TMB and FCNA), clinicalinformation
(sex, age, systemic therapy history beforeimmunotherapy, cancer type,
ICB drug class and the start year of receiving ICB therapy) and blood
parameters (NLR and levels of albumin and platelets) (Supplementary
Table 6). The measurement of clinical and genomic features was the
same as for the Chowell et al. cohort.

Vanguri et al. cohort. The Vanguri et al. cohort included 247 parti-
cipants with advanced NSCLC, with 15 features measured. One sam-
ple with unknown primary tumor site was excluded. These features
included tumor information (PD-L1 TPS, TMB, FCNA and MSl status),
clinical information (sex, age, systemic therapy history beforeimmu-
notherapy, smoking status, tobacco use, histology, ECOG performance
status, ICB drug class and the panels used for TMB determination) and
blood parameters (NLR and albumin levels). TMB was calculated as the
total number of somatic nonsynonymous mutations in the tumor nor-
malized to the exonic coverage of the respective MSK-IMPACT panels
(in mutations per Mb). PD-L1immunohistochemistry was performed
on 4-um formalin-fixed paraffin-embedded tumor tissue sections
using a standard PD-L1antibody (EIL3N, dilution1:100; Cell Signaling
Technologies) validated in the clinical laboratory at the study institu-
tion. For more detailed information, please refer to ref. 27.

Kato et al. cohort. The Kato et al. cohort comprised 429 participants,
with 35 participants from eight solid tumor typesincludedin this study
onthebasis of three criteria: (1) participants received immunotherapy;
(2) their cancer types were included in the Chowell et al. cohort; and
(3) TMB was measured. Six features were assessed: tumor MSI sta-
tus, TMB, sex, age, systemic therapy history before immunotherapy
and cancer type. TMB was determined using panel next-generation
sequencing performed by a CLIA (Clinical Laboratory Improvement
Amendments)-certified laboratory. For more detailed information,
please refer toref. 26.

Ravi et al. cohort. The Ravietal. cohortincluded 393 participants with
NSCLC treated with anti-PD-L1 therapy, with 10 features measured;
atotal of 309 participants with TMB measured were included in this
study. These features included tumor information (PD-L1 expression

and TMB) and clinical information (sex, age, systemic therapy history
before immunotherapy, tumor stage, smoking status, tobacco use,
histology and ICB drug class). TMB was defined as the number of non-
synonymous alterations, identified from WES at the Genomics Platform
of the Broad Institute of Harvard and MIT (Massachusetts Institute of
Technology). For more detailed information, please refer to ref. 28.

Pradat et al. cohort. The Pradat et al. cohort comprised 1,031 par-
ticipants with different types of cancer; a total of 57 participants from
13 solid tumor types were included in this study on the basis of three
criteria: (1) participants received immunotherapy; (2) their cancer types
wereincluded inthe Chowell et al. cohort; and (3) TMB was measured.
Nine features were assessed, including tumor information (TMB and
FCNA), clinicalinformation (sex, age, systemic therapy history before
immunotherapy, ICB drugclass and cancer type) and blood parameters
(NLR and albumin levels). TMB was determined using WES. For more
detailed information, please refer to ref. 29.

Description of the MSK non-ICB cohort

This cohort comprised a subset of participants from a previously
study®. In brief, our selection process focused on participants first
diagnosed between 2015 and 2018, who presented with solid tumors
that underwent NGS during MSK-IMPACT and subsequently received
cancer therapy at MSK (n=14,577). Subsequently, we excluded partici-
pants who had a history of more than one primary cancer (n = 3,425),
those with cancer types comprising fewer than100 cases (n = 797) and
those with cancers of unknown primary origin (n =122). Furthermore,
participants who had ever received ICB treatment were also excluded
from our analysis (n =2,022)". For more detailed information, please
refer to ref. 45. Following these exclusion criteria, we selected par-
ticipants who had complete data available for the six features used by
the LLR6 model (n=4,872). To ensure consistency with the number
of participants in the combined Chowell test and MSK1 sets, which
were used in Figs. 3 and 4, we randomly sampled participants within
each cancer type. Itis worth noting that, for certain cancer types, the
total count of non-ICB-treated participants was lower than thatin the
combined Chowell test and MSK1sets, where all available participants
ofthat specific cancer type wereincluded. The final dataset comprised
841 participants with solid tumors originating from 15 different types
(Supplementary Table 6).

Dealing with missing data and extreme values

Blood NLRand albuminlevels were not accessible for the Katoetal. and
Ravi et al. cohorts. We input the average values of 3.8 and 6.2, respec-
tively, from participants in the Chowell train set to represent these
missing values for all participantsin both cohorts. The NSCLC-specific
LLR6 model included PD-L1 TPS as an input feature, which was not
available for numerous participants. Consequently, only participants
with available PD-L1 TPS data were included in the model’s training
andtesting. A breakdown of the participant count with available PD-L1
TPS data across various cohorts is provided in Extended Data Fig. 1a.
To mitigate the influence of extreme values in certain features, data
truncation was implemented. Specifically, TMB values were truncated
at50 mutations per Mb, blood NLR was truncated at 25and patient age
was truncated at 85 years.

TMB and NLR harmonization

TMB for different ICB cohorts was determined using two different plat-
forms, namely, WES (the Shim et al., Raviet al. and Pradat et al. cohorts)
and targeted tumor sequencing (other cohorts). We harmonized WES
TMB values (TMB,;, total mutation counts) to TMB values measured
by the MSK-IMPACT targeted gene panel (TMB,, mutations per Mb)
based on the linear relationship derived previously*. Specifically,
TMB,,s =1.05 x TMB,,;s/S, where Sis the total length of the exons used
for WES (in Mb).
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Derived NLR (dNLR) was measured for the Vanguri et al. cohort.
To harmonize it with the NLR in the merged MSK cohort, we used a
strategy similar to that used for TMB standardization. In this case,
an empirical relationship of NLR =2 x dNLR was used on the basis of
previous studies**5,

Patient outcomes following immunotherapy

Patient outcome following immunotherapy was assessed by measur-
ing objective response, OS and PFS for all cohorts described above.
Objective response was categorized on the basis of the RECIST version
1.1criteria®®, except for the CNS tumors in the MSK2 cohort, where the
Response Assessment in Neuro-Oncology (RANO) criteria were used
instead*’. The objective response was then dichotomized into respond-
ers (CRand PR) and nonresponders (SD and PD). PFS was defined as the
time from the firstinfusion of ICB to disease progression or death from
any cause. Participants without disease progression were censored at
their last disease assessment. OS was defined as the time from the first
ICB infusion to death from any cause and participants who were still
alive at the time of review were censored at their last contact.

Developing multivariable models of ICB response

Pan-cancer study. Although randomly splitting a single dataset into
modeltraining and validation sets was used for developing RF16 (Chow-
ell etal.) inref. 22, it is believed to be a weak and inefficient form of
validation, whereas splitting by time is a stronger approach®. Following
the TRIPOD guideline, we used participants who underwentimmuno-
therapy between 2015 and 2017 inthe Chowell et al. cohort as our train-
ing set (Chowell train, n = 964) and used the other participants in the
Chowell et al. cohort (who underwentimmunotherapy in 2018; n = 515)
asatestset. We investigated 20 machine learning classifiers to predict
participant ICB response, using the FDA-approved TMB biomarker as
abaseline model. Among these models, the decision treeand random
forest classifiers directly took the raw feature values as input. For all
other classifiers, all feature values were standardized by converting
them to z-scores before inputting to the models. We built, tuned and
evaluated all the multivariable machine learning models using the
scikit-learn package (version1.2.1) and pytorch-tabnet (version 4.1.0)
in the Python programming language. We determined the optimal
hyperparameter combination by using a random search approach
with the RandomizedSearchCV function to maximize the AUC scores
in afivefold cross-validation of the training data. We determined the
total number of different hyperparameter combinations for each
model as the minimum of 10,000 and the total number of all possible
combinations. The detailed combinations of hyperparameters and the
identified optimal combination for each of the 20 machine learning
classifiers are elaborated as follows:

(1) LR16: the 16-feature logistic regression classifier using all 16
features measured in the Chowell et al. cohort. All combina-
tions: solver = ‘saga’, penalty = ‘elasticnet’, class_weight =
‘balanced’, I1_ratio from O to 1 (step size 0.1), max_iter from
100 t0 1,000 (step size 100) and C from 107 to 10° (loga-
rithmic step size 1). Optimal combination: solver = ‘saga’,
penalty =‘elasticnet’, max_iter =100, I1_ratio = 0.1, class_
weight =‘balanced’ and C=0.01.

(2) LLRé: the six-feature logistic regression classifier using TMB,
systemic therapy history, blood albumin level, blood NLR,
age and cancer type. All combinations: same as above. Opti-
mal combination: solver = ‘saga’, penalty = ‘elasticnet’, max_
iter =100, I1_ratio =1, class_weight = ‘balanced’ and C=0.1.

(3) LR5(noTMB): the five-feature logistic regression classifier
subtracting TMB from the previous model. All combina-
tions: same as above. Optimal combination: solver = ‘saga’,
penalty = ‘elasticnet’, max_iter =100, I1_ratio = 0.4, class_
weight =‘balanced’ and C=0.01.

4)

(%)

(6)

@)

(8

)

(10)

(11)

(12)

RF16 (Chowell et al.): the 16-feature random forest classifier
with hyperparameters reported in ref. 22. Optimal combina-
tion: n_estimators =1,000, max_depth =8, min_samples_
leaf =20 and min_samples_split = 2.

RandomForest: the 16-feature random forest classifier
retrained using the protocol in this study. All combinations:
n_estimators from 200 to 2,000 (step size 200), max_features
from 0.1to 0.9 (step size 0.1), max_depth from 3 to 10 (step
size 1), min_samples_leaf from 2 to 30 (step size 2) and min_
samples_split from 2 to 30 (step size 2). Optimal combina-
tion: n_estimators =400, max_features = 0.1, max_depth=9,
min_samples_leaf =2 and min_samples_split =8.

RF6: the six-feature random forest classifier trained

using the same protocol as for the development of RF16
(Chowell et al.)*. All combinations: n_estimators from 100 to
1,000 (step size 100), max_depth from 2 to 20 (step size 2),
min_samples_leaf from 2 to 20 (step size 2) and min_samples_
split from 2 to 20 (step size 2). Optimal combination:
n_estimators = 900, max_depth =8, min_samples_leaf = 8 and
min_samples_split = 20.

DecisionTree: the decision tree classifier. All combinations:
splitter = ‘best’ or random’, max_features from 0.1to 0.9 (step
size 0.1), max_depth from 3 to 10 (step size 1), min_samples_
leaf from 2 to 30 (step size 2), min_samples_split from 2 to 30
(step size 2) and ccp_alpha=0, 0.5,1,10 or 100. Optimal com-
bination: splitter =random, max_features = 0.7, max_depth =7,
min_samples_leaf =8, min_samples_split =2 and ccp_alpha=0.
GBoost: the GBoost classifier. All combinations: learning_
rate =0.01, 0.03, 0.05, 0.1, 0.3 or 0.5, n_estimators from

200 to0 2,000 (step size 200), min_samples_split from 2 to

30 (step size 2), min_samples_leaf from 2 to 30 (step size

2), max_depth from 3 to 10 (step size 1) and max_features
from 0.1to 0.9 (step size 0.1). Optimal combination: learn-
ing_rate = 0.03, n_estimators =200, min_samples_split=12,
min_samples_leaf = 4, max_depth = 6 and max_features = 0.1.
AdaBoost: the AdaBoost classifier. All combinations:
n_estimators from 200 to 2,000 (step size 200), learn-
ing_rate=0.01, 0.05,0.03,0.1,0.3,0.5 or 1 and algo-

rithm =‘SAMME’ or ‘SAMME.R’. Optimal combination: n_esti-
mators =1,000, learning_rate = 0.3 and algorithm = SAMME.
HGBoost: the HGBoost classifier. All combinations: learning_
rate =0.01, 0.03, 0.05, 0.1, 0.3 or 0.5, max_iter from 200 to
2,000 (step size 200), min_samples_leaf from 2 to 30 (step
size 2), max_depth from 3 to 10 (step size 1) and 12_regulariza-
tion =0 or from 10™* to 10? (logarithmic step size 1). Optimal
combination: learning_rate = 0.03, max_iter = 600, min_sam-
ples_leaf =16, max_depth =10 and 12_regularization =100.
XGBoost: the XGBoost classifier. All combinations: min_
child_weight =1or from 2 to 30 (step size 2), max_depth from
3t010 (step size 1), n_estimators =100 or from 200 t0 1,000
(step size 200), learning_rate = 0.01, 0.03, 0.05, 0.1, 0.3 or
0.5, colsample_bytree = 0.5, 0.8 or 1, colsample_bynode from
0.2to1(step size 0.2) and colsample_bylevel from 0.2to 1
(step size 0.2). Optimal combination: min_child_weight =6,
max_depth =7, n_estimators =400, learning_rate = 0.01,
colsample_bytree = 0.8, colsample_bynode = 0.2 and
colsample_bylevel =1.

LightGBM: the LightGBM classifier. All combinations: learn-
ing_rate =0.001,0.003, 0.005, 0.01, 0.03, 0.05,0.10r 0.3,
max_depth from 3 to 10 (step size 1), n_estimators from 200
t02,000 (step size 200), num_leaves from 10 to 100 (step size
10), colsample_bytree from 0.2 to 1 (step size 0.2) and min_
data_in_leaf from 2 to 30 (step size 2). Optimal combination:
learning_rate = 0.03, max_depth =3, n_estimators =200, num_
leaves =30, colsample_bytree = 0.8 and min_data_in_leaf = 30.
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(13) SupportVectorMachine: the support vector machine clas-
sifier. All combinations: C from 107 to 10° (logarithmic
step size 0.5), gamma = ‘scale’ or ‘auto’ or from 10 to 10?
(logarithmic step size 0.5), kernel = ‘rbf’, max_iter = -1,100
or 1,000, tol from 107 to 107" (logarithmic step size 0.5) and
class_weight = none or ‘balanced’. Optimal combination:
C=10*%, gamma =107%, kernel = ‘rbf’, max_iter =1,000,
tol=0.001 and class_weight = none.
kNearestNeighbors: the k-nearest neighbors classifier.
All combinations: n_neighbors from 2 to 60 (step size 2),
weights = ‘uniform’ or ‘distance’, algorithm = ‘auto’, ‘ball_
tree’, ‘kd_tree’ or ‘brute’, leaf _size from 2 to 30 (step size
2) and p from1to 10 (step size 1). Optimal combination:
n_neighbors = 58, weights = ‘distance’, algorithm = ‘brute’,
leaf size=20andp=1.
TabNet: the TabNet deep neural network classifier. All
combinations: max_epochs=50,n_.d=24o0r32,n.a=n.d,n_
steps=3,4 or 5,gamma=1,1.5or 2, lambda_sparse = 0.0001,
0.001 or 0.01 and momentum = 0.3, 0.4 or 0.5. Optimal
combination: max_epochs =50,n_d=32,n_a=32,n_steps=35,
gamma = 1.5, lambda_sparse = 0.0001 and momentum = 0.5.
MultilayerPerceptron (one layer): the multilayer perceptron
classifier (one layer). All combinations: solver = ‘sgd’, ‘Ibfgs’
or ‘adam’, learning_rate = ‘constant’, ‘invscaling’ or ‘adaptive’,
max_iter =100, 200, 500 or 1,000, hidden_layer_sizes from
2t0 40 (step size 1) in one hidden layer, activation = ‘logistic’,
‘tanh’, ‘relu’ or ‘identity’, alpha from 10 to 10! (logarithmic
step size 1) and early_stopping = false or true. Optimal
combination: solver = ‘adam’, learning_rate = ‘adaptive’,
max_iter =200, hidden_layer_sizes =19, activation = ‘tanh’,
alpha=107and early _stopping = false.
MultilayerPerceptron (two layers): the multilayer perceptron
classifier (two layers). All combinations: max_iter =100, 200,
5000r1,000, hidden_layer_sizes from 2 to 20 (step size 1)
in two hidden layers, activation =‘logistic’, ‘tanh’, ‘relu’ or
‘identity’, alpha from 107 to 10! (logarithmic step size 1) and
early_stopping = false or true. Optimal combination: max_
iter =100, hidden_layer_sizes = (19, 19), activation = ‘tanh’,
alpha =107 and early_stopping = false.
MultilayerPerceptron (three layers): the multilayer percep-
tron classifier (three layers). All combinations: hidden_layer_
sizes from 2 to 20 (step size 1) in three hidden layers, activa-
tion = ‘logistic’, ‘tanh’, ‘relu’ or ‘identity’ and alpha from 1076
to 107 (logarithmic step size 1). Optimal combination: hid-
den_layer sizes=(6, 5, 6), activation = ‘relu’ and alpha=10".
MultilayerPerceptron (four layers): the multilayer perceptron
classifier (four layers). All combinations: same as above.
Optimal combination: hidden_layer sizes = (3,17,2, 4),
activation = ‘tanh’ and alpha=107.
(20) GaussianProcess: the Gaussian process classifier. All combi-
nations: kernel = none, 1.0 x kernels.RBF (1.0), 0.1 x kernels.
RBF (0.1) or 10 x kernels.RBF (10), optimizer = ‘fmin_|_bfgs_b’
or none, max_iter_predict =100, 500 or 1,000 and n_restarts_
optimizer from 0 to 30 (step size 5). Optimal combination:
kernel =10 x RBF (length_scale =10), optimizer = none,
max_iter_predict =100 and n_restarts_optimizer = 0.

(14)

1s)

(16)

(17)

(18)

(19

After hyperparameter tuning, it was observed that the logistic
regression model with six features had a LASSO penalty proportion
of100%, making it an LLR model. For ease of reference, we referred to
this model as LLR6 throughout the paper. The hyperparameters that
were optimal for LLR6 were used to train the NSCLC-specific model.
The regression coefficients, which included the intercept, from the
pan-cancer LLR6 model were obtained by averaging the corresponding
values obtained from the 10,000 training iterations described earlier.

No further adaptation was performed on the test data. The LLR6 score,
calculated using this model, was referred to as LORIS. The formula for
pan-cancer LORIS is explicitly given as follows:

LORIS = ﬁs = 0.0371 x min(TMB, 50) — 0.8775

x PSTH + 0.5382 x Albumin — 0.033 x min(NLR, 25)
+0.0049 x min(Age, 85) + CTCT — 2.0886

where PSTHis the participant’s systemic therapy history, abinary vari-
ablethatindicates whether the participant has received chemotherapy
ortargeted therapy beforeimmunotherapy (1) or hasnot (0) and CTCT
isthe cancer type calibration term, whichis equalto-0.3323 x bladder -
0.3323 x breast — 0.102 x colorectal - 0.0079 x endometrial +
0.55 x esophageal + 0.2306 x gastric + 0.0678 x head and neck -
0.1189 x hepatobiliary - 0.0086 x melanoma + 0.1255 x mesothe-
lioma +0.0008 x NSCLC - 0.052 x ovarian — 1.1169 x pancreatic +
0.5451 x renal + 0.0542 x sarcoma - 0.0033 x SCLC.

We also trained a five-feature logistic regression model (LLR5)
without using a patient’s systemic therapy history. The formula for
LORIS calculated using this model is as follows:

LORIS (LLR5) = 1;5 = 0.0384 x min(TMB, 50) + 0.5789

+e=$
xAlbumin — 0.046 x min(NLR, 25)
+0.0087 x min(Age, 85) + CTCT - 3.0063

where CTCT is equal to —0.3821 x bladder — 0.5696 x breast —
0.2294 x colorectal — 0.0646 x endometrial + 0.5489 x esophageal +
0.4488 x gastric + 0.0193 x head and neck - 0.1316 x hepatobiliary +
0.296 x melanoma + 0.076 x mesothelioma - 0.0005 x NSCLC -
0.1136 x ovarian — 1.3838 x pancreatic + 0.5527 x renal + 0.0277 x
sarcoma - 0.06 x SCLC.

NSCLC study. The NSCLC-specific study aimed to replicate the
pan-cancer study, with the difference that only participants with
NSCLC were used for training and evaluating the models. We used the
Chowell etal.cohortas training data, which included 324 participants
with NSCLC with complete data (Extended Data Fig. 1a).

As previously mentioned, we used the optimal hyperparameters
obtained fromthe pan-cancer study to train the NSCLC-specific LLR6
model. We followed a similar approach to the pan-cancer modeling
approach, calculating coefficients and intercepts for NSCLC-specific
LLR6 on the basis of the average values of 10,000 training iterations,
with 80% of the training datarandomly selected for eachiteration. The
formulafor LORIS calculated using NSCLC-specific LLR6 is as follows:

NSCLC-specific LORIS = H%s = 0.0353 x min(TMB, 50)

+0.0111 x PDL1 — 0.375 x PSTH + 0.2924 x Albumin
—0.0103 x min(NLR, 25) + 0 x min(Age, 85) — 1.5593

Again, we also trained a five-feature logistic regression model
(LLRS) without using the participants’ systemic therapy history. The
formulation for LORIS calculated using this model is as follows:

NSCLC-specific LORIS (LLRS) = ——§ = 0.0362

+e$
x min(TMB, 50) + 0.013 x PDL1 + 0.3311 x Albumin
—0.0101 x min(NLR, 25) + 0.0001 x min(Age,85) — 1.9915

Model performance evaluation

To evaluate the performance of the models, we used 2,000 repeats
of fivefold cross-validation on the training data. During each
cross-validation fold, 80% of the training data were used for model
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training and the remaining 20% were used for evaluation. We used
multiple metrics, such as AUC, AUPRC, accuracy, F;-score, Matthews
correlation coefficient®® and balanced accuracy®, to quantify the
predictive power of the models. To determine the optimal threshold
for the predicted response probabilities computed by the model, we
maximized Youden’sindex, defined as ‘sensitivity + specificity — 1. We
finally ranked the performance of each model using the geometric
mean of four metrics: AUC, AUPRC, accuracy and F;-score. As overfit-
ting is acommon problem in supervised models, we calculated the
difference between the performance scores on the training data and
cross-validation data for each cross-validation fold to estimate the
extent of overfitting for each model.

Statistical analyses

We conducted various statistical analyses using Python (version 3.9)
and R (version 4.1) to investigate the relationships between different
variables and ICB response. Spearman’s rank test from the scipy pack-
age (version 1.10.1) was used to calculate correlation coefficients
and raw P values among features measured on a continuous scale,
which were then adjusted for Bonferroni correction. To compare the
distributions of response probability generated by different models
(for example, LLR6, RF6 and TMB) between responders and nonre-
sponders, we used the Mann-Whitney Utest. DeLong’s test*> was used
for comparison of AUCs. The 95% Cls of AUCs were calculated using
1,000 bootstrapping replicates.

Survival analysis was performed using the R packages survminer
(version 0.4.9) and survival version (3.3.1). We calculated HRs with 95%
Cls and P values with univariable Cox proportional hazards regres-
sion using the coxph() function®. In pan-cancer analysis, to compare
differences in half-year, 1-year, 2-year, 3-year, 4-year and 5-year sur-
vival probability between high-LORIS versus low-LORIS or high-TMB
versus low-TMB groups, we used the paired Wilcoxon rank sum test.
Multivariable analysis was performed with Cox proportional hazards
regressioninindividual cancer types using the coxph() function, with
adjustment for cancer type, age, drug class of ICB and year of ICB start.
InNSCLC-specific analysis, multivariable analysis was performed with
adjustment for sex, age and drug class of ICB.

To stratify participants on the basis of risk, two methods were
used for eachvariable of interest: an absolute threshold (for all histolo-
gies) or a percentile threshold (within each histology). In the case of
pan-cancer LORIS, the absolute and percentile thresholds were set at
0.5and 50%, respectively. These thresholds were determined using the
training data to maximize Youden’sindex for predicting ICB objective
response. For NSCLC-specific LORIS, anabsolute threshold of 0.44, also
determined on the basis of the training data, was applied. Regarding
TMB, absolute and percentile thresholds of 10 mutations per Mb and
80% (thatis, the highest 20% within each histology) were used, following
ref.5.For PD-L1TPS in NSCLC, an absolute threshold of 50% was used.

For variables such as LORIS, PD-L1 TPS and TMB, we calculated
the average values and 95% Cls using 1,000 bootstrapping replicates
ofthe datato determinetheir relationship with ICB objective response
probability. The response rate of participants falling within the range of
x-0.05tox +0.05was used as asurrogate to estimate the probability
of patient objective response at each specific LORIS value x. Likewise,
theintervals of (x - 5%, x + 5%] and (x - 5,x + 5] were used for PD-L1 TPS
and TMB values, respectively. As all the features were normalized by
z-score before being putinto the model, the featureimportance for the
logistic regression model was directly shown as the absolute values of
the corresponding coefficientsin the model (Extended DataFig.1c,d).

For all statistical tests used, data distribution was not assumed to
be normal. No statistical methods were used to predetermine sample
sizes but our sample sizes are substantially larger than those reported
in previous publications”” %, The cohorts were already randomized as
they were participantsin clinical trials. The investigators were blinded
to the response annotations until they became available.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The original data of the Chowell et al. cohort are available in Supple-
mentary Table 3 of ref. 22. The original data of the Shim et al. cohort are
available in Supplementary Table 1 of ref. 25. The original data of the
Vanguri et al. cohort are available at Synapse (https:/www.synapse.
org/#!Synapse:syn26642505) and cBioPortal (https://www.cbioportal.
org/study/summary?id=lung_msk_mind_2020). The original data of the
Kato et al. cohort are available in Supplementary Datalof ref. 26. The
original data of the Ravi et al. cohort*® are available on Zenodo (https://
doi.org/10.5281/zenodo.7625517)%*. The original data of the Pradat et al.
cohortareavailableinthe Supplementary Tables of ref. 29. Deidentified
new datareportedin this study for the MSK1cohort, MSK2 cohort and
MSK non-ICB cohort, as well as additional features of participants in
the Chowell et al. and Shim et al. cohorts that have not been reported
before areincluded in Supplementary Table 6 and are available online
at Zenodo (https://doi.org/10.5281/zenodo0.11186449)%. Source data
are provided with this paper.

Code availability

All codes that are necessary to reproduce all the results in the paper
areimplemented in Pythonand R and are publicly available at GitHub
(https://github.com/rootchang/LORIS)** and Zenodo (https://doi.org/
10.5281/zenodo.11186449)>.

References

1. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M.
Mechanism-driven biomarkers to guide immune checkpoint
blockade in cancer therapy. Nat. Rev. Cancer 16, 275-287 (2016).

2. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks
of response, resistance, and toxicity to immune checkpoint
blockade. Cell 184, 5309-5337 (2021).

3. Nishino, M., Ramaiya, N. H., Hatabu, H. & Hodi, F. S. Monitoring
immune-checkpoint blockade: response evaluation and
biomarker development. Nat. Rev. Clin. Oncol. 14, 655-668
(2017).

4. Goodman, A. M. et al. Tumor mutational burden as an
independent predictor of response to immunotherapy in diverse
cancers. Mol. Cancer Ther. 16, 2598-2608 (2017).

5. Samstein, R. M. et al. Tumor mutational load predicts survival
after immunotherapy across multiple cancer types. Nat. Genet.
51, 202-206 (2019).

6. McGrail, D. J. et al. High tumor mutation burden fails to predict
immune checkpoint blockade response across all cancer types.
Ann. Oncol. 32, 661-672 (2021).

7. Topalian, S. L. et al. Safety, activity, and immune correlates of
anti-PD-1antibody in cancer. New Engl. J. Med. 366, 2443-2454
(2012).

8. Zhao, P.F, Li, L., Jiang, X. Y. &Li, Q. Mismatch repair deficiency/
microsatellite instability-high as a predictor for anti-PD-1/PD-L1
immunotherapy efficacy. J. Hematol. Oncol. 12, 54 (2019).

9. Mandal, R. et al. Genetic diversity of tumors with mismatch
repair deficiency influences anti-PD-1immunotherapy response.
Science 364, 485-491(2019).

10. Le, D.T. et al. Mismatch repair deficiency predicts response of
solid tumors to PD-1 blockade. Science 357, 409-413 (2017).

1. Chowell, D. et al. Evolutionary divergence of HLA class | genotype
impacts efficacy of cancer immunotherapy. Nat. Med. 25,
1715-1720 (2019).

12. Chowell, D. et al. Patient HLA class | genotype influences cancer
response to checkpoint blockade immunotherapy. Science 359,
582-587 (2018).

Nature Cancer | Volume 5 | August 2024 | 1158-1175

173


http://www.nature.com/natcancer
https://www.synapse.org/#!Synapse:syn26642505
https://www.synapse.org/#!Synapse:syn26642505
https://www.cbioportal.org/study/summary?id=lung_msk_mind_2020
https://www.cbioportal.org/study/summary?id=lung_msk_mind_2020
https://doi.org/10.5281/zenodo.7625517
https://doi.org/10.5281/zenodo.7625517
https://doi.org/10.5281/zenodo.11186449
https://github.com/rootchang/LORIS
https://doi.org/10.5281/zenodo.11186449
https://doi.org/10.5281/zenodo.11186449

Article

https://doi.org/10.1038/s43018-024-00772-7

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy
correlates with markers of immune evasion and with reduced
response to immunotherapy. Science 355, eaaf8399 (2017).
Chang, T. G. et al. Optimizing cancer immunotherapy response
prediction by tumor aneuploidy score and fraction of copy
number alterations. npj Precis. Oncol. 7, 54 (2023).

Ren, F. P, Zhao, T,, Liu, B. & Pan, L. Neutrophil-lymphocyte

ratio (NLR) predicted prognosis for advanced non-small-cell
lung cancer (NSCLC) patients who received immune
checkpoint blockade (ICB). Onco. Targets Ther. 12, 4235-4244
(2019).

Valero, C. et al. Pretreatment neutrophil-to-lymphocyte ratio and
mutational burden as biomarkers of tumor response to immune
checkpoint inhibitors. Nat. Commun. 12, 729 (2021).

Yoo, S. K., Chowell, D., Valero, C., Morris, L. G. T. & Chan, T. A.
Pre-treatment serum albumin and mutational burden as
biomarkers of response to immune checkpoint blockade.

npj Precis. Oncol. 6, 23 (2022).

Wang, Z. M. et al. Paradoxical effects of obesity on T cell function
during tumor progression and PD-1 checkpoint blockade.

Nat. Med. 25, 141-151 (2019).

Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex:
a systematic review and meta-analysis. Lancet Oncol. 19, 737-746
(2018).

Kugel, C. H. et al. Age correlates with response to anti-PD1,
reflecting age-related differences in intratumoral effector and
regulatory T-cell populations. Clin. Cancer Res. 24, 5347-5356
(2018).

Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic
mechanisms of sensitization to checkpoint inhibition. Cell 184,
596-614 (2021).

Chowell, D. et al. Improved prediction of immune checkpoint
blockade efficacy across multiple cancer types. Nat. Biotechnol.
40, 499-506 (2022).

Gromeier, M. et al. Very low mutation burden is a feature

of inflamed recurrent glioblastomas responsive to cancer
immunotherapy. Nat. Commun. 12, 352 (2021).

Diggs, L. P. & Hsueh, E. C. Utility of PD-LTimmunohistochemistry
assays for predicting PD-1/PD-L1 inhibitor response. Biomark. Res.
5,12 (2017).

Shim, J. H. et al. HLA-corrected tumor mutation burden and
homologous recombination deficiency for the prediction of
response to PD-(L)1 blockade in advanced non-small-cell lung
cancer patients. Ann. Oncol. 31, 902-911 (2020).

Kato, S. et al. Real-world data from a molecular tumor board
demonstrates improved outcomes with a precision N-of-One
strategy. Nat. Commun. 11, 4965 (2020).

Vanguri, R. S. et al. Multimodal integration of radiology, pathology
and genomics for prediction of response to PD-(L)1 blockade

in patients with non-small cell lung cancer. Nature Cancer 3,
1151-1164 (2022).

Ravi, A. et al. Genomic and transcriptomic analysis of checkpoint
blockade response in advanced non-small cell lung cancer.

Nat. Genet. 55, 807-819 (2023).

Pradat, Y. et al. Integrative pan-cancer genomic and transcriptomic
analyses of refractory metastatic cancer. Cancer Discov. 13,
1116-1143 (2023).

Eisenhauer, E. A. et al. New response evaluation criteria in solid
tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45,
228-247 (2009).

Cho, M. S. et al. Platelets increase the expression of PD-L1in
ovarian cancer. Cancers 14, 2498 (2022).

Sechidis, K. et al. Distinguishing prognostic and predictive
biomarkers: an information theoretic approach. Bioinformatics 34,
3365-3376 (2018).

33.

34.

35.

36.

37.

38.

39.

40.

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

Rudin, C. Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead.
Nat. Mach. Intell. 1, 206-215 (2019).

Petch, J., Di, S. & Nelson, W. Opening the black box: the promise
and limitations of explainable machine learning in cardiology.
Can. J. Cardiol. 38, 204-213 (2022).

Watson, D. S. et al. Clinical applications of machine learning
algorithms: beyond the black box. BMJ 364, 1886 (2019).

Moons, K. G. M. et al. Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD):
explanation and elaboration. Ann. Intern. Med. 162, W1-W73 (2015).
Sambi, M., Bagheri, L. & Szewczuk, M. R. Current challenges in
cancer immunotherapy: multimodal approaches to improve
efficacy and patient response rates. J. Oncol. 2019, 4508794 (2019).
He, Y. Y. et al. Genomic and transcriptional alterations in first-line
chemotherapy exert a potentially unfavorable influence on
subsequent immunotherapy in NSCLC. Theranostics 11,
7092-7109 (2021).

Haas, L. et al. Acquired resistance to anti-MAPK targeted therapy
confers an immune-evasive tumor microenvironment and
cross-resistance to immunotherapy in melanoma. Nat. Cancer 2,
693-708 (2021).

Auslander, N. et al. Robust prediction of response to immune
checkpoint blockade therapy in metastatic melanoma. Nat. Med.
24,1545-1549 (2018).

Jiang, P. et al. Signatures of T cell dysfunction and exclusion
predict cancer immunotherapy response. Nat. Med. 24,
1550-1558 (2018).

Bareche, Y. et al. Leveraging big data of immune checkpoint
blockade response identifies novel potential targets. Ann. Oncol.
33, 1304-1317 (2022).

Liu, D. et al. Integrative molecular and clinical modeling of clinical
outcomes to PD1 blockade in patients with metastatic melanoma.
Nat. Med. 25, 1916-1927 (2019).

Konecny, J. et al. Federated learning: strategies for improving
communication efficiency. Preprint at https://doi.org/10.48550/
arXiv.1610.05492 (2016).

Valero, C. et al. The association between tumor mutational
burden and prognosis is dependent on treatment context.

Nat. Genet. 53, 11-15 (2021).

Merino, D. M. et al. Establishing guidelines to harmonize tumor
mutational burden (TMB): in silico assessment of variation in TMB
quantification across diagnostic platforms: phase | of the Friends
of Cancer Research TMB Harmonization Project. J. Immunother.
Cancer 8, e000147 (2020).

Kim, C. G. et al. On-treatment derived neutrophil-to-lymphocyte
ratio and survival with palbociclib and endocrine treatment:
analysis of a multicenter retrospective cohort and the PALOMA-2/3
study with immune correlates. Breast Cancer Res. 25, 4 (2023).
Proctor, M. J. et al. A derived neutrophil to lymphocyte ratio
predicts survival in patients with cancer. Br. J. Cancer 107,
695-699 (2012).

Wen, P. Y. et al. Updated response assessment criteria for
high-grade gliomas: response assessment in neuro-oncology
working group. J. Clin. Oncol. 28,1963-1972 (2010).

Chicco, D. & Jurman, G. The advantages of the Matthews
correlation coefficient (MCC) over F, score and accuracy in binary
classification evaluation. BMC Genomics 21, 6 (2020).

Velez, D. R. et al. A balanced accuracy function for epistasis
modeling in imbalanced datasets using multifactor
dimensionality reduction. Genet. Epidemiol. 31, 306-315 (2007).
Delong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing
the areas under two or more correlated receiver operating
characteristic curves: a nonparametric approach. Biometrics 44,
837-845 (1988).

Nature Cancer | Volume 5 | August 2024 | 1158-1175

174


http://www.nature.com/natcancer
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.48550/arXiv.1610.05492

Article

https://doi.org/10.1038/s43018-024-00772-7

53. Therneau, T. A package for survival analysis in S. CRAN https://
CRAN.R-project.org/package=survival (2015).

54. Holton, M., Arniella, M., Ravi, A. & Getz, G. Genomic and
transcriptomic analysis of checkpoint blockade response in
advanced non-small cell lung cancer. Zenodo https://doi.org/
10.5281/zenod0.7625517 (2023).

55. Chang, T. LORIS: a logistic regression-based immunotherapy-
response score. Zenodo https://doi.org/10.5281/zenodo.11186449
(2024).

56. Chang, T. etal. LORIS: a logistic regression-based immunotherapy-

response score. GitHub https://github.com/rootchang/LORIS (2024).

Acknowledgements

This research is supported in part by the Intramural Research Program
of the National Institutes of Health, National Cancer Institute, Center
for Cancer Research. This work used the computational resources of
the NIH HPC Biowulf cluster (https://hpc.nih.gov).

Author contributions

T.-G.C., E.R. and L.GT.M conceptualized and designed the study.
T.-G.C., YC. and S.R.D. developed the machine learning models.
T.-GC. H.JS., YC,S.RD,S.-H.L.,CV, S.-KY., D.C., LGTM. and E.R.
acquired, analyzed or interpreted the data. All authors critically
revised the manuscript for important intellectual content. E.R. and
L.GT.M. supervised the study.

Competinginterests
E.R. is a cofounder of MedAware, Metabomed and Pangea Biomed
(divested) and an unpaid member of Pangea Biomed's scientific

advisory board. L.GT.M. is listed as an inventor on intellectual property
owned by MSK related to the use of TMB in cancer immunotherapy,
unrelated to this work. The other authors declare no competing
interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s43018-024-00772-7.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s43018-024-00772-7.

Correspondence and requests for materials should be addressed to
Luc G. T. Morris or Eytan Ruppin.

Peer review information Nature Cancer thanks Justin Gainor,
Hajime Uno and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

This is a U.S. Government work and not under copyright protection in
the US; foreign copyright protection may apply 2024

'Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
2Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. *Department of
Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea. “The
Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. *Department of Oncological
Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ®Department of Artificial Intelligence and Human Health,
Icahn School of Medicine at Mount Sinai, New York, NY, USA. "These authors contributed equally: Tian-Gen Chang, Yingying Cao, Hannah J. Sfreddo.

e-mail: morrisl@mskcc.org; eytan.ruppin@nih.gov

Nature Cancer | Volume 5 | August 2024 | 1158-1175

175


http://www.nature.com/natcancer
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.5281/zenodo.7625517
https://doi.org/10.5281/zenodo.7625517
https://doi.org/10.5281/zenodo.11186449
https://github.com/rootchang/LORIS
https://hpc.nih.gov
https://doi.org/10.1038/s43018-024-00772-7
https://doi.org/10.1038/s43018-024-00772-7
http://www.nature.com/reprints
mailto:morrisl@mskcc.org
mailto:eytan.ruppin@nih.gov

Article https://doi.org/10.1038/s43018-024-00772-7
a
ICB_cohorts ( Non-ICB cohort
MSK cohorts Non-MSK cohorts 4
(n=2036) (n=845) MSK non-ICB
/ / \ (n=841)
Chowell et al. Pan-cancer NSCLC only
_ _ ~ Non-ICB-treated
(n=1479) (n=92) (n=753) \ patients (n=841) j

fam—4 = 3 ; —

Chowell || Chowell MSK1 MSK2 Kato Pradat et Shim Vanguri Ravi
train test (n=453) (n=104) etal. al. (n=57) etal. etal. et al.
(n=964) (n=515) (n=35) (n=198) (n=246) (n=309)

\Pan-cancer ICB-treated patients (n=2128) )
- -\
Chowell et al. MSKA1 Shim Vanguri Ravi
NSCLC NSCLC etal. et al. et al.
(n=324) (n=74) (n=144) (n=201) (n=193)
\NSCLC ICB-treated patients with non-missing PD-L1 TPS data (n=936) Y,
b
Cancer types c T™B d T™MB
Colorectal ; .
Melanoma Systemic therapy history ) )
Iélgggtigblllary Albumin Systemic therapy history
- E:Rg:eaﬁc % NLR é Albumin
= i & Age @ NLR
= ﬁgléfc Cancer type A
M Endometrial Sex ge
B Head & Neck
= g:/eaarlsatn Drug dlass Cancer type
Esophageal

= Meﬁothelioma
nknown primary
H CNS

Extended Data Fig.1| Anillustration of cohorts used in this study (a-b) and
featureimportance by the logistic LASSO regression model (c-d). a. The
relationship between cohorts used in this study, the number of participants
ineach cohort, and the number of participants with complete data for the
pan-cancer model and the NSCLC-specific model. The cohorts shaded in light
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mesothelioma, cancer of unknown primary, and central nervous system cancer
arenot present in this cohort. c-d. Feature importance of from the 8-feature
logistic regression classifier using features commonly measured across most
participants (c) and feature importance of the final 6-feature logistic regression
classifier LLR6 (d). Feature importance is calculated as the absolute values of the
corresponding coefficients in the logistic regression models. Importance for
cancer typeis calculated as the average importance of individual cancer types.
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Extended Data Fig. 2| Comparison between the pan-cancer LLR6 model

and the RF16 (Chowell et al.) model. a. Comparison of the predictive power
between the two models on 2,000-repeated 5-fold cross-validation sets using
multiple metrics (n=10,000 repetitions). Error bars, mean +s.d. P values,
two-tailed Mann-Whitney U test. Note that p values are only shown when values
for LLR6 (blue bars) are significantly higher than RF16 (Chowell et al.) (green
bars). b. Same as panel a, but the metrics represent the difference between those
on the training sets and those on the corresponding cross-validation sets (n=
10,000 repetitions). Error bars, mean +s.d. P values, two-tailed Mann-Whitney

Utest. c. Receiver operating characteristic curves and corresponding AUCs

of LLR6 (blue curves) and RF16 (Chowell et al.) (orange curves) on the training
(n=964 participants) and unseen test (n = 515 participants) sets. Note that

while the performance of RF16 (Chowell et al.) is better on the training set, the
performance of the much simpler LLR6 model is better on the unseen test set.

d. Correlation between the scores from LLR6 and RF16 (Chowell et al.) on both
training and unseen test sets, respectively. Spearman correlation coefficients are
shown.
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Extended Data Fig. 3| LORIS predicts PFS following immunotherapy for
both pan-cancer and individual cancer types. a. Kaplan-Meier analysis of
PFS.TMBis binned at 10 mutations per Mb and LORIS is binned at 0.5. HRs with
95% confidence intervals are shown. P values, univariable Cox proportional
hazards regression. H, high; L, low. In the risk table, the numbers represent the
number of participants. b. Same as panel a, but TMB is binned at the highest 20th
percentile and LORIS is binned at the 50th percentile for each cancer type. HRs
with 95% confidence intervals are shown. P values, univariable Cox proportional
hazards regression. H, high; L, low. ¢, d. Forest plot of HRs of PFS within each
cancer type using LORIS (binned at the 50th percentile; ¢) or TMB (binned at the
highest 20th percentile; d). P values, multivariable Cox proportional hazards

regression with adjustment for cancer type, age, ICB drug class, and year of ICB
start. Squares positioned at midpoints symbolize point estimates of HRs, and
the accompanying bars indicate 95% confidence intervals. e,f. Comparison of
half-year, 1-year, 2-year, 3-year, 4-year, and 5-year PFS stratified by cancer type
for high versus low LORIS (binned at the 50th percentile; e) and high versus

low TMB (binned at the highest 20th percentile; f). Median survival probability
differences (A) are displayed. P values, two-tailed paired Wilcoxon rank sum test.
Box boundaries represent the first and third quartiles; the central line marks the
median. Whiskers extend to the furthest non-outlier points within 1.5 times the
interquartile range. Data are from combined Chowell test and MSK1 sets (n = 968
participants).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | LORIS has better prediction power ofimmunotherapy
than TMB (a-d) and has enhanced predictive power over prognosis (e).
a-b.Kaplan-Meier analysis of PFS (a) and OS (b). Both TMB and LORIS are binned
at the 50th percentile for each cancer type. HRs with 95% confidence intervals are
shown. P values, univariable Cox proportional hazards regression. H, high; L, low.
Data are from combined Chowell test and MSK1 sets (n = 968 participants).
c-d.Kaplan-Meier analysis of LORIS (c) or TMB (d) binned at the different
percentiles in each cancer type. P values next to the legend indicate pairwise
single-tail comparisons testing against the hypothesis that ‘higher scored
participants do not have better survival than lower scored participants’ with
univariable Cox proportional hazards regression. HRs with 95% confidence

intervals are shown for the lowest-percentile (0-10%) and the highest-percentile
groups (90-100%) with univariable Cox proportional hazards regression. Data
are from combined Chowell test and MSK1 sets (n = 968 participants). e. Receiver
operating characteristic curves and corresponding AUCs with 95% confidence
intervals of LORIS on 0.5-year OS, 1-year OS, 2-year OS, and 3-year OS of
participants treated with ICB (blue curves) or non-ICB (orange curves) therapies.
Pvalues, two-tailed DeLong’s test. ICB data are from combined Chowell test and
MSK1 sets (n = 968 participants). Non-ICB data are from the MSK non-ICB cohort
(n=841participants). The dashed lines represent random performance, serving
asabaseline withan AUC of 0.5. This indicates the performance expected from a
classifier making random guesses.
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Extended Data Fig. 5| Kaplan-Meier analysis of survivalin individual cancer
types. Patients are grouped into LORIS-high (orange curves) and LORIS-low
(blue curves) risk groups. LORIS is binned at the 50th percentile for each cancer
type. HRs with 95% confidence intervals are shown. P values, univariable Cox

proportional hazards regression. In the risk tables, the numbers represent the
number of participants. Data are from combined Chowell et al., MSK1, and MSK2
sets (n =2032 participants). Abbreviations: SCLC, small-cell lung cancer; CNS,
central nervous system tumor; Unknown primary, cancer of unknown primary.
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Extended Data Fig. 6 | Comparison of predictive performance between the
NSCLC-specific LLR6, pan-cancer LLR6, and NSCLC-specific LLR2 models.
a.Receiver operating characteristic curves and corresponding AUCs with

95% confidence intervals of the NSCLC-specific (blue curves) and pan-cancer
(orange curves) LLR6 models. P values are from DeLong’s test. In the figure,

‘n’ represents the number of participants. b-c. Forest plots of HRs of PFS (b)

and OS (c) within each data set using pan-cancer LORIS (binned at 0.5, which
maximizes the Youden’sindex on the training data) in a multivariable Cox model
withadjustment for sex, age and ICB drug class. P values, multivariable Cox
proportional hazards regression with adjustment for sex, age, and ICB drug
class. Squares positioned at midpoints symbolize point estimates of HRs, and the
accompanying bars indicate 95% confidence intervals. In the figure, the samples
represent the number of participants. d. Receiver operating characteristic curves

and corresponding AUCs with 95% confidence intervals of the LLR6 (blue curves)
and LLR2 (orange curves) models. P values, two-tailed DeLong’s test. The LLR2
model takes two variables, that is, patient TMB and PD-L1 TPS, as theinput. In

the figure, ‘n’ represents the number of participants. The dashed linesin aand
drepresent random performance, serving as abaseline with an AUC of 0.5. This
indicates the performance expected from a classifier making random guesses.
e-f. Forest plots of HRs of PFS (e) and OS (f) within each data set using LLR2 LORIS
(binned at 0.46, which maximizes the Youden’s index on the training data).

P values, multivariable Cox proportional hazards regression with adjustment for
cancer type and age. Squares positioned at midpoints symbolize point estimates
of HRs, and the accompanying bars indicate 95% confidence intervals. In the
figure, the samples represent the number of participants.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Comparison of predictive performance of the pan-
cancer LLR6 model, the RF6 model and TMB biomarker on non-NSCLC
participants. a. Receiver operating characteristic curves and corresponding
AUCs with 95% confidence intervals of LLR6 (blue curves), RF6 (green curves),
and the TMB biomarker (yellow curves) on the training set and across multiple
unseen test sets. In the figure, ‘n’ represents the number of participants. The
dashed lines represent random performance, serving as a baseline with an AUC
of 0.5. This indicates the performance expected from a classifier making random
guesses. b. Distribution of LORIS, RF6 score, and TMB alone in responders

and non-responders on the training set and across multiple unseen test sets.

P values, two-tailed Mann-Whitney U test. Box boundaries represent the first

and third quartiles; the central line marks the median. Whiskers extend to the
furthest non-outlier points within 1.5 times the interquartile range. Outliers are
shown as points beyond the whiskers. c¢-d. Kaplan-Meier analysis of OS. TMB

is binned at 10 mutations per Mb and LORIS is binned at 0.5 for panel c; TMB s
binned at the highest 20th percentile and LORIS is binned at the 50th percentile
for each cancer type for panel d. HRs with 95% confidence intervals are shown.
Pvalues, univariable Cox proportional hazards regression. H, high; L, low. In the
risk tables, the numbers represent the number of participants. Data are from
combined Chowell test and MSK1 sets, with all NSCLC patients excluded from the
analysis (n = 633 participants).
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Extended Data Fig. 8 Monotonic relationship between pan-cancer

LORIS and patient objective response probability & survival following
immunotherapy among non-NSCLC participants. a, b. Relationship between
LORIS (a) or TMB (b) and ICB objective response probability. The average
participant response probabilities with 95% confidence intervals are shown
using 1,000-replicate bootstrapping. The grey region represents participants
withanunlikely response toimmunotherapy (with aresponse probability below
10%), while the green regions represent participants with alikely response (with
aresponse probability exceeding 50%). The arrows indicate the LORIS and TMB
threshold values. ¢, d. Kaplan-Meier analysis of OS. LORIS (c) and TMB (d) are
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binned at the different percentiles in each cancer type. P values next to the
legend indicate pairwise single-tail comparisons testing against the hypothesis
that ‘higher scored participants do not have better survival than lower scored
participants’ with univariable Cox proportional hazards regression. HRs with
95% confidence intervals are shown for the lowest-percentile (0-10%) and the
highest-percentile groups (90-100%) with univariable Cox proportional hazards
regression. In the risk tables, the numbers represent the number of participants.
Data are from combined Chowell test and MSK1 sets, with all NSCLC participants
excluded from the analysis (n = 633 participants).
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Extended Data Fig. 9 | LORIS performance is maintained after removing
NSCLC participants (a) or removing cancer type information (b).
a.Comparison of predictive performance among non-NSCLC participants
between the original pan-cancer LLR6 model and a new LLR6 model trained
without including NSCLC participants. Receiver operating characteristic curves
and corresponding AUCs with 95% confidence intervals of the original pan-
cancer LLR6 model (w/; blue curves) and anew LLR6 model trained without
including NSCLC participants (w/o; orange curves). Number of participants
indifferent cohortsis displayed in the figure. In the figure, ‘n’ represents the
number of participants. P values, two-tailed DeLong’s test. Note that allNSCLC

participants are excluded from the analysis. b. Comparison of predictive
performance between the pan-cancer LLR6 model with and without the
utilization of the cancer type calibration term. Receiver operating characteristic
curves and corresponding AUCs with 95% confidence intervals of the original
pan-cancer LLR6 model (LLR6; blue curves) and; orange curves). Number

of participants in different cohorts is displayed in the figure. In the figure,

‘n’ represents the number of participants. P values, two-tailed DeLong’s test.
The dashed lines represent random performance, serving as a baseline with an
AUC of 0.5. Thisindicates the performance expected from a classifier making
random guesses.
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Extended Data Fig.10 | Comparison of predictive performance between Pvalues, two-tailed DeLong’s test. b. Receiver operating characteristic curves
the LLR6 models and the LLR5 models that exclude a patient’s systemic and corresponding AUCs with 95% confidence intervals of the NSCLC-specific
therapy history. a. Receiver operating characteristic curves and corresponding LLR6 (blue curves) and LLRS (orange curves) models. Number of participants
AUCs with 95% confidence intervals of the pan-cancer LLR6 (blue curves) and indifferent cohortsis displayed in the figure. In the figure, ‘n’ represents the
LLRS5 (orange curves) models. Number of participants in different cohorts is number of participants. P values, two-tailed DeLong’s test.

displayed in the figure. In the figure, ‘n’ represents the number of participants.
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Data collection  No software was used for data collection.

Data analysis -All statistics were performed in R v4.1 and Python 3.9.
-Kaplan-Meier survival analysis was performed using the R packages survminer v0.4.9 and survival v3.3.1.
-Spearman's rank test was used to calculate correlation coefficients and raw p values between features measured on a continuous scale using
the Python package scipy v.1.10.1, which were then adjusted for Bonferroni correction using the Python package statsmodels v0.13.5.
-All machine learning models were built using the Python packages sklearn v1.2.1 and pytorch-tabnet v4.1.0.
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The original data of Chowell et al. cohort are available in Supplementary Table 3 of the original publication (https://www.nature.com/articles/
$41587-021-01070-8#MOESM1). The original data of Shim et al. cohort are available in Supplementary Table 1 of the original publication (https://
www.annalsofoncology.org/article/S0923-7534(20)39295-4/fulltext#supplementaryMaterial). The original data of Vanguri et al. cohort are available at synapse:
https://www.synapse.org/#!Synapse:syn26642505 and cbioportal: https://www.cbioportal.org/study/summary?id=lung_msk_mind_2020. The original data of Kato
et al. cohort are available in Supplementary Data 1 of the original publication (https://www.nature.com/articles/s41467-020-18613-3#Sec16). The original data of
Ravi et al. cohort are available at the Zenodo repository: https://doi.org/10.5281/zenodo.7625517. The original data of Pradat et al. cohort are available in
Supplementary Tables of the original publication (https://aacrjournals.org/cancerdiscovery/article/13/5/1116/726168/Integrative-Pan-Cancer-Genomic-and-
Transcriptomic).

De-identified new data reported in this study for the MSK1 & MSK2 cohorts, the MSK non-ICB cohort, and additional features of patients in the Chowell et al. and
Shim et al. cohorts that have not been reported before are included in Supplementary Table 6 and are available online at Zenodo (https://doi.org/10.5281/
zenodo.10679834).

All codes that are necessary to reproduce all the results in the paper are implemented in Python and R and are publicly available at GitHub (https://github.com/
rootchang/LORIS) and Zenodo (https://doi.org/10.5281/zenodo.10679834).
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Reporting on sex and gender These findings are applicable to individuals of all sexes and genders, which were self-reported. The biological sex of
participants is detailed in Table 1, with no significant gender association observed in the study.

Reporting on race, ethnicity, or  This was not considered.
other socially relevant

groupings

Population characteristics Analyses were performed on 2881 ICB-treated patients from multiple cohorts and 841 non-ICB-treated patients from
Memorial Sloan Kettering Cancer Center. Primary and metastatic patients across a broad range of histologies and age ranges
were selected based on whether they received the indicated treatments. Covariate characteristics are summarized in Table 1
including sex, age, systemic therapy history, cancer type and treatment type.

Recruitment This study was done retrospectively and no patients were directly recruited.

Ethics oversight The use of the patient data from the MSK1 and MSK2 cohorts was approved by the Memorial Sloan Kettering Cancer Center

institutional review board. All patients provided informed consent to a Memorial Sloan Kettering IRB-approved protocol. All
other cohorts were published previously.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size For cohorts other than MSK1 and MSK2, no sample size calculation were performed because they were available public data with predefined
sample counts in each publication.
The use of the patient data from MSK1 and MSK2 cohorts was approved by the MSKCC institutional review board. Patients selected for this
study were those with solid tumors diagnosed from 2014 through 2019 who received at least 1 dose of ICB at MSKCC. The sample size was
based on all available patients.

Data exclusions  For the Vanguri et al. cohort, 1 sample with unknown primary tumor site was excluded.
For the Kato et al. and Pradat et al. cohorts, samples were selected based on three criteria: (1) patients received immunotherapy, (2) their
cancer types are included in the Chowell et al. cohort, and (3) TMB was measured.
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For the Ravi et al. cohort, samples without TMB measured were excluded.

For the MSK1 and MSK2 cohorts, we excluded patients with a history of more than 1 cancer, those without a complete blood count within 30
days prior to the first dose of ICB, those enrolled in blinded trials, and cancer types with fewer than 25 cases. We excluded patients who
received ICB in a neoadjuvant or adjuvant setting, and patients with unevaluable response.

Replication This study is retrospective, consisting of computational analyses using existing clinical datasets. Therefore, replication is not applicable since
the counts were predetermined and cannot be altered by the authors. Instead, we collected multiple clinical datasets and used a part of data
from one dataset as training set and used the other unseen data as test sets. The test sets were used to evaluate the model performance.
Biological replicates are defined for each dataset in the figure legends.

Randomization  Thisis a retrospective study. The cohorts of patients were already randomized as they were participants in clinical trials.

Blinding The investigators were blinded to the response annotations until they became available.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology g |:| MRI-based neuroimaging
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Antibodies

Antibodies used IHC was performed on 4-um FFPE tumor tissue sections using a standard PD-L1 antibody (E1L3N; dilution 1:100, Cell Signaling
Technologies, Danvers, MA).

Validation The PD-L1 antibody was validated at the study institution according to manufacturer instructions.
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