

What Does it Take to Get FDA Approval?

Matt Hellmann, MD

NCI UE5 supported "Immuno-Oncology for the Translational Researcher"

Financial Relationships

Commercial Interest	Relationship		
Merck, AstraZeneca, Roche/Genentech, BMS, Mirati, Syndax, Nektar, Shattuck Labs, Immunai, Natera, Janssen	Consultant, advisory		
BMS	Research funding		
BMS, AstraZeneca, Lilly	Travel		
Shattuck Labs, Immunai, Arcus	Equity options		
A patent has been filed by MSK related to the use of tumor mutation burden to predict response to immunotherapy (PCT/US2015/062208), which has received licensing fees from PGDx.	Patent and licensing		

Outline

- » Terminology
- » Process
- » Example: FDA approvals of pembrolizumab for metastatic NSCLC
 - > 2nd line, PD-L1 selected (KN001, KN010)
 - > 1st line, PD-L1 selected (KN024)
 - > 1st line, combination with chemotherapy (KN021, KN189)

Terminology

- » Fast Track
- » Breakthrough Therapy
- » Accelerated Approval
- » Priority Review
- » Full approval

Fast Track

- » Goal: get important new drugs to patients faster
- » Setting: "drugs to treat serious conditions and fill an unmet medical need"
- » Threshold: superior effectiveness, avoid serious side effect
- » Benefit:
 - > Earlier, more frequent meetings with FDA, more detailed guidance about proposed trial design and data needed to accomplish approval
 - > Eligibility for accelerated approval and priority review

Breakthrough Therapy

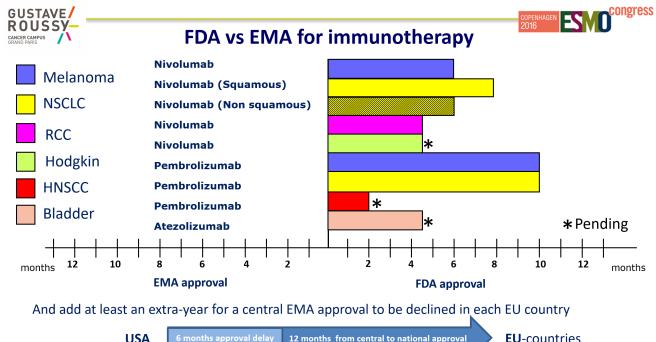
- » Goal: get important new drugs to patients faster ... by coordinated effort to efficiently develop evidence needed to support approval
- » Setting: "treat serious conditions and preliminary clinical evidence indicates the drug may demonstrate substantial improvement over available therapy"
- » Threshold: improvement on a clinically significant endpoint (e.g. clinical surrogate endpoint, pharmacodynamic marker, safety"
 - All Fast Track benefits plus
 - » Guidance on efficient development plans
 - » Organizational commitment involving senior managers

Accelerated Approval

- » Goal: allow drugs to be used for patients faster, based on a surrogate endpoint
- » Setting: Drug demonstrates benefit based on surrogate endpoint (e.g. response rate, rather than wait for overall survival outcomes)
- » Threshold: "clinically meaningful" benefit, surrogate "reasonably likely" to predict real outcome (e.g. response rate → overall survival)
- » Benefit:
 - > Earlier approval to be able to get drugs to patients and commercialize
 - Still required to conduct confirmatory study (e.g. show that OS improved),
 with potential for withdrawal if not met

Priority Review (vs Standard Review)

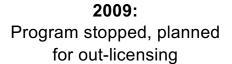
- » Goal: Improve drug review time
- » Setting: Drug with relatively clear trial outcome and benefit
- » Threshold: If approved, would yield significant improvement in effectiveness or safety
- » Benefit:
 - > Direct attention and resources to review application more quickly
 - > Review time = 6 months (priority) rather than 10 months (standard).

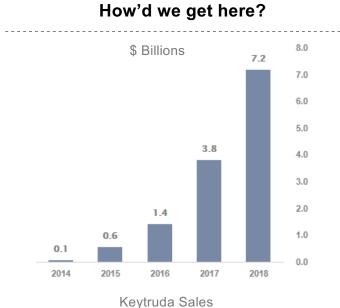

Regular (full) approval

- » Often based on Phase 3, randomized study
- » Often on basis of improvement of overall survival

Process

- 1. Preclinical testing
- 2. Submit investigational new drug application (IND), proposal for human testing
- 3. Phase $1 \rightarrow \text{Phase } 2 \rightarrow \text{Phase } 3 \text{ (often, but always)}$
- 4. Pre-new drug application (NDA) period (meeting with FDA)
- 5. Submit NDA asking FDA for consideration
- 6. FDA has 60 days to decide if will accept for review
- If accepted, FDA assigned team to review submission / information for label / inspect manufacturing facilities
- 8. FDA Approval (or not)


Contextualizing pace of FDA approval process



USA 6 months approval delay 12 months from central to national approval + 18 months

Soria, ESMO plenary discussion 2016

Example: Pembrolizumab in NSCLC

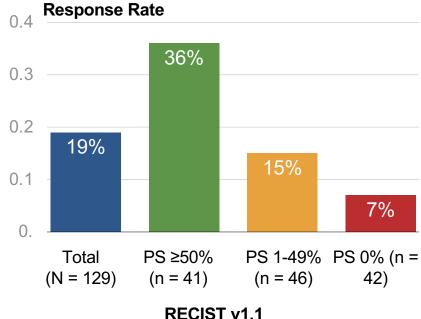
2021:

\$11 billion/year in sales

Memorial Sloan Kettering Cancer Center

https://www.forbes.com/sites/greatspeculation s/2019/08/29/how-important-is-keytruda-formerck/?sh=6be9a52f1b4d

First Pembrolizumab Approval: Second Line, PD-L1 Selected

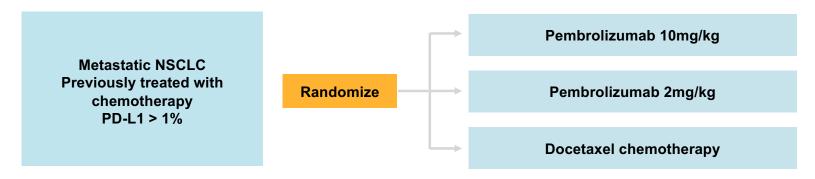

- » Patients with previously-treated, metastatic NSCLC
- » Non-randomized, single arm,Phase 1 study
- » Explored various thresholds of PD-L1 expression as predictive biomarker

Initial report:
response rate
~20%, increased in
PD-L1 expressing
tumors → apply for
"breakthrough
therapy" designation

	irRC, Investigator Review			RECIST v1.1, Independent Review				
Subgroup	N	ORR, n (%) [95% CI]	Median PFS, wk (95% CI)	N	ORR,* (%), [95% CI]	Median PFS, wk (95% CI)	Median OS, wk (95% CI)	
All	38	9 (24%) [11%, 40%]	9.1 (8.3, 17.4)	33	7 (21%) [9%, 39%]	9.7 (7.6, 17)	51 (14, NR)	
Non-squamous	31	7 (23%) [10%, 41%]	9.1 (8.3, 17.0)	26	4 (16%) [4%, 35%]	10.3 (7.6, 17)	35 (14, NR)	
Squamous	6	2 (33%) [4%, 78%]	23.5 (2.7, NR)	6	2 (33%) [4%, 78%]	15.2 (1.4, NR)	NR (2.7, NR)	
Patients with measurable disease on baseline imaging and an evaluable tumor specimen for PD-L1								
Score ≥ potential cut point	9	6 (67%) [30%, 93%]	-	7	4 (57%) [18%, 90%]	-	-	
Score < potential cut point	24	1 (4%) [0%, 21%]	-	22	2 (9%) [1%, 29%]	-	-	

Garon, WCLC 2013 #2416

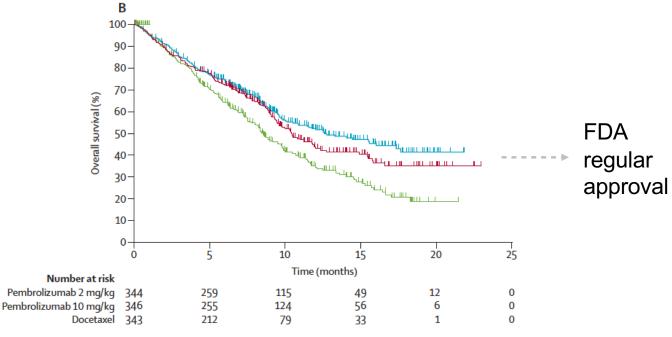
- » Emphasis on PD-L1 as a selective biomarker
 - > Tumor biopsies obtained within 60 days prior to treatment were stained for PD-L1 using the 22C3 antibody with a prototype assay used to determine study eligibility.
 - » ≥1% Tumor PD-L1 expression was considered positive


» Ultimately, huge Phase 1 study (n=550) with biomarker focus → accelerated approval granted on basis of response rate surrogate

	PDL1 <1%	PDL1 1-24%	PDL1 25-49%	PDL1 50-74%	PDL1 75-100%
ORR	8%	13%	19%	30%	45%

Garon, NEJM 2015

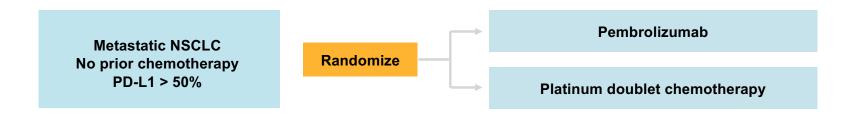
KEYNOTE-010: Phase 3 Study of Pembrolizumab in Second Line


» Full approval predicated on success of Phase 3 study, to demonstrate improvement in overall survival

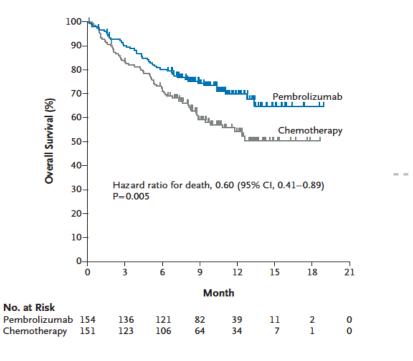
Herbst, Lancet 2015

KEYNOTE-010: Phase 3 Study of Pembrolizumab in Second Line

Full approval predicated on success of Phase 3 study, to demonstrate improvement in overall survival


Herbst, Lancet 2015

Move into First Line Setting, Higher PD-L1 Threshold


KEYNOTE-024: Phase 3 Study of Pembrolizumab in First Line

» In first line setting, higher threshold for success needed to beat the standard chemotherapy. So higher PD-L1 biomarker threshold pursued

Reck. NEJM 2016

KEYNOTE-024: Phase 3 Study of Pembrolizumab in First Line

FDA

regular

approval

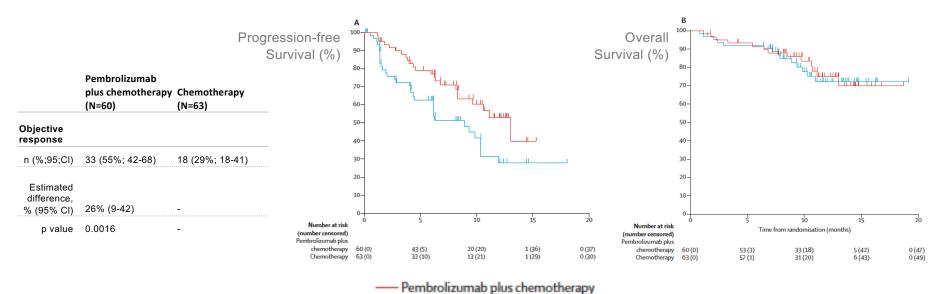
Memorial Sloan Kettering Cancer Center

Reck, NEJM 2016

Combination With Chemotherapy

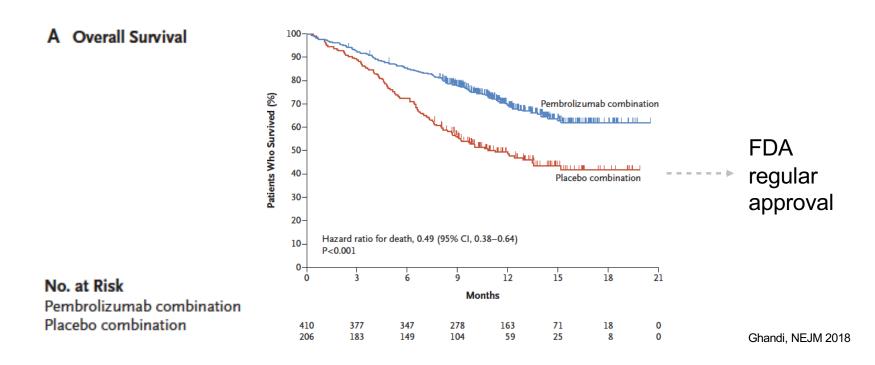
KEYNOTE-021: Phase 2 Study of Pembrolizumab Plus Chemotherapy

If combine pembrolizumab plus chemotherapy, is it better than chemotherapy alone?


Phase 1 study of chemotherapy plus pembrolizumab showed higher than expected response rate, which prompted a randomized Phase 2 study

Langer, Lancet Oncology 2016

KEYNOTE-021: Phase 2 Study of Pembrolizumab Plus Chemotherapy


FDA accelerated approval

Chemotherapy alone

Langer, Lancet Oncology 2016

KEYNOTE-189: Phase 3 Study of Pembrolizumab in First Line

Conclusions

- » There are several paths to FDA approval, from single arm Phase 1 studies to randomized Phase 3 studies
 - \rightarrow There is not always an orderly progression from Phase 1 \rightarrow Phase 2 \rightarrow Phase 3
- » Threshold for approval is context-dependent
 - › Biomarkers can facilitate approval
- » Fast-track/breakthrough designations can yield collaborative opportunities with FDA to expedite progress
- » Accelerated approval can get new therapies to patients faster based on surrogate outcomes
- » Regular approval generally, but not always, dependent success in improving survival in randomized studies.