

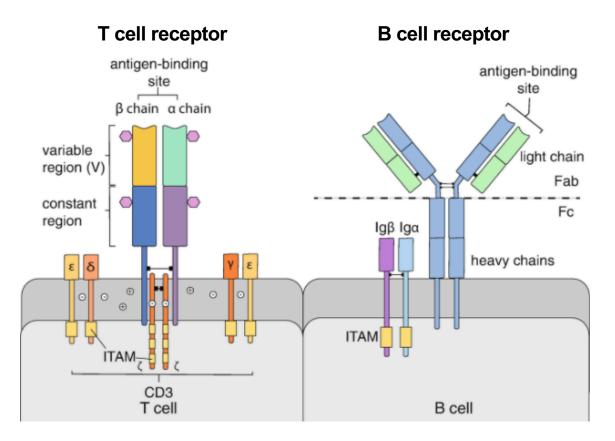
Bispecific Antibodies As Cancer Therapeutics

Sandra P. D'Angelo, MD

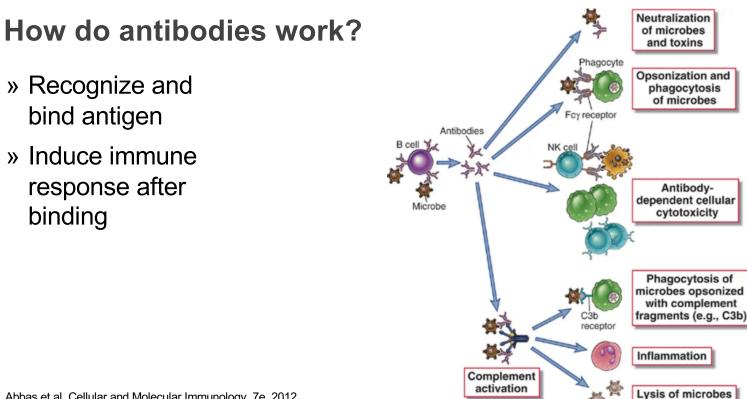
Associate Attending, Research Director • Sarcoma Medical Oncology

Memorial Sloan Kettering Cancer Center

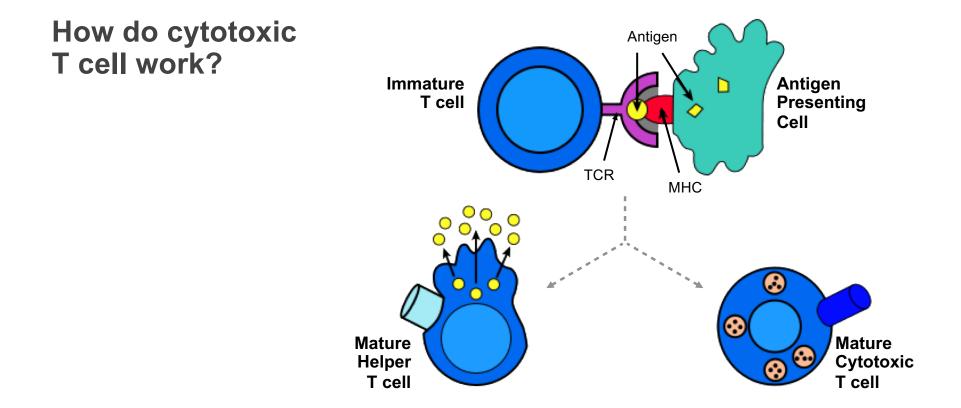
Outline

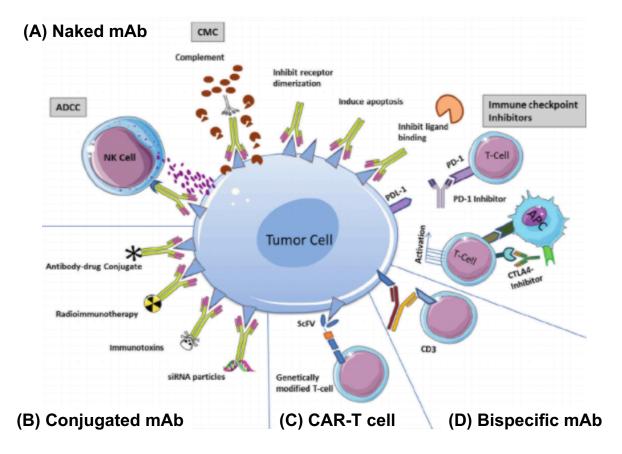

Background

Bispecific antibodies

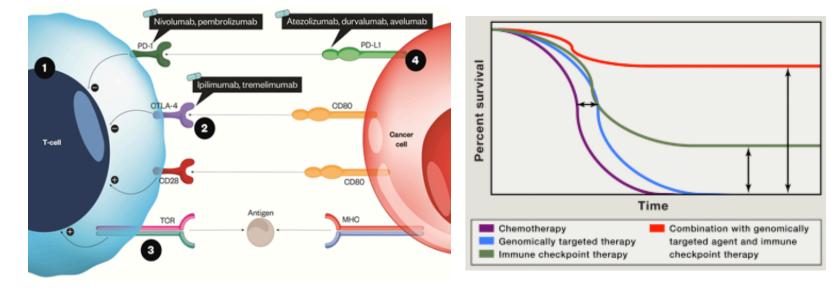

» Developmental history» What are they» How do they work

- »Types
- » Targets
- » Future directions


B cell receptors and T cell receptors provide specificity to the immune response


Kavathas et al. Adaptive Immunity, Immunoepidemiology 2019

Abbas et al. Cellular and Molecular Immunology, 7e. 2012



Antibody therapies for cancer targeting

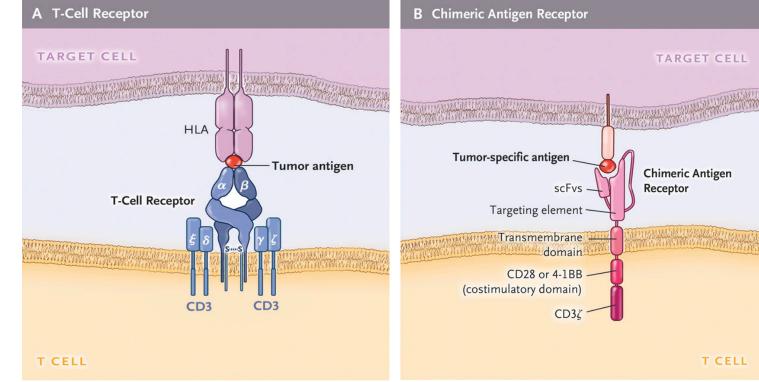
Charmsaz et al. Experimental Hematology 2017

Immune checkpoint inhibitors

Evans et al. Pharmaceutical Journal 2018, Sharma et al. Cell 2015

Checkpoint inhibitors FDA approved for numerous malignancies but with 10-30% ORR

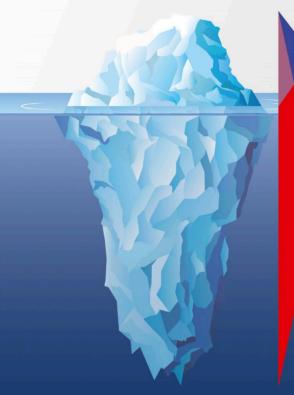
	ORR Cancer type Male E	Estimated	deaths (%		Cancer type Female Est	imated dea	ths (%)	OF
	Lung & bronchus	84,590	27%		Lung & bronchus	71,280	25%	
	Colon & rectum (MSI-H only)	27,150	9%		Breast	40,610	14%	
	Prostate	26,730	8%	7 4	Colon & rectum (MSI-H only)	23,110	8%	(
s	Pancreas	22,300	7%		Pancreas	20,790	7%	
Estimated deaths	Liver & intrahepatic bile duct	19,610	6%		Ovary	14,080	5%	(
ŏ	O Leukemia	14,300	4%		Uterine corpus	10,920	4%	(
ate	Esophagus	12,720	4%		Leukemia	10,200	4%	
tim	Urinary bladder	12,240	4%		Liver & intrahepatic bile duct	9,310	3%	(
ES	Non-Hodgkin lymphoma	11,450	4%	$\left(\right) \left(\right)$	Non-Hodgkin lymphoma	8,690	3%	(
	O Brain & other nervous system	9,620	3%		Brain & other nervous system	7,080	3%	
	Kidney	9,470	3%	11	Kidney	4,930	2%	(
	Melanoma	6,380	2%		Melanoma	3,350	1%	(
Overall response rates to anti-PD1/PD-L1 antibodies:								
	>50%							
	30-50%							
	20-30%							
	0 10-20%							
	<10%							

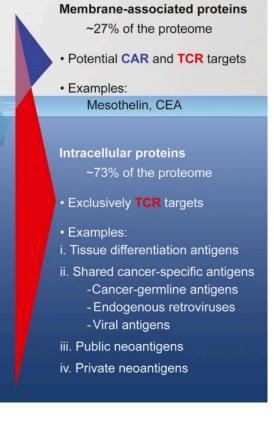

Lillian L. Siu et al. Clin Cancer Res 2017

CCR Focus

© 2017 American Association for Cancer Research

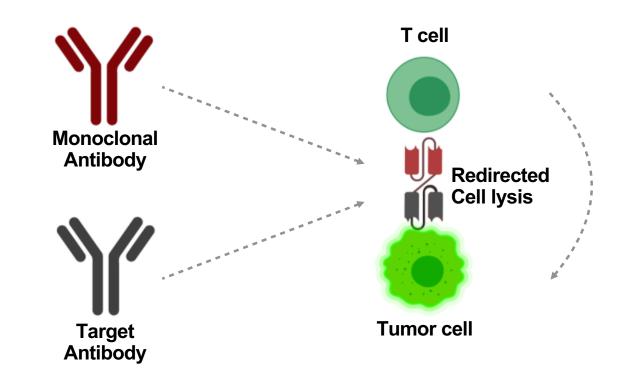
AAGR




June C et al. NEJM 2018

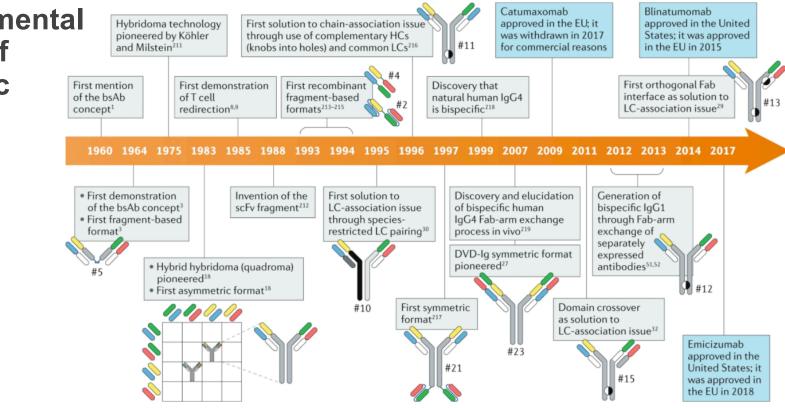
TCRs vs CARs

Klebanoff et al. Immunological Reviews 2019

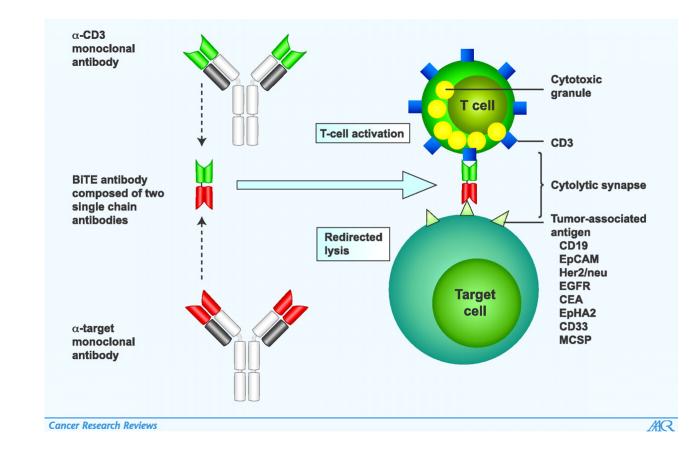

Barriers/Challe nges in developing Adoptive T cell therapies in solid tumors

Toxicity	Exhaustion/Re sistance	Persistence
Trafficking	Antigen Specificity	Microenvironment

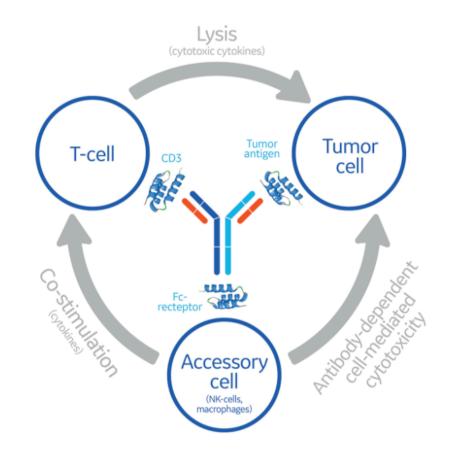
Adapted from Weber et al. Cell 2020

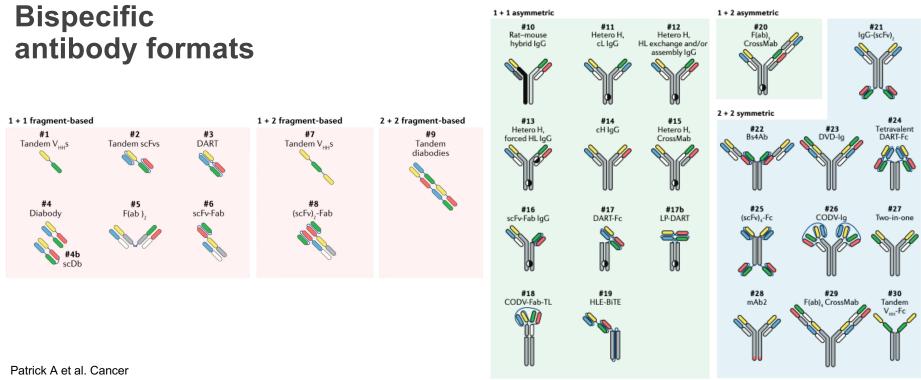

What is Bispecific Antibody?

Engineered protein composed of antigen binding fragments from 2 different monoclonal antibodies


Patrick A et al. Cancer research 2009

Labrijn A et al. Nature Review 2019

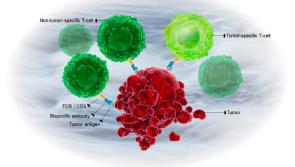



Patrick A et al. Cancer research 2009

Advantages of bispecific antibodies

Attach to 2 different proteins at the same time

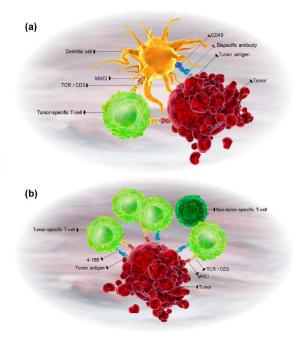
Brings the cancer cells and immune cells together which is thought to cause the immune system to attack cancer cells



research 2009

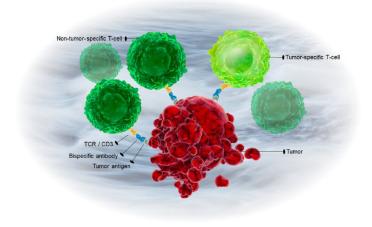
Classes of Bispecifics

Cytotoxic effector cell redirectors (T and NK cells)



Dahlen E et al. Therapeutic Advances in Vaccines and immunotherapy. 2018

Dual immunomodulator


Exhausted/suppressed T-cel Checkpoint Checkp

Tumor targeted immunomodulators

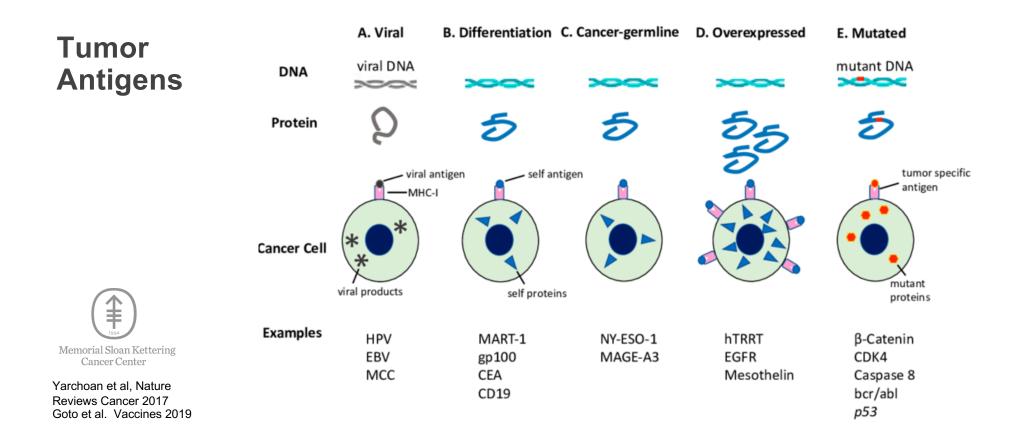
T cell Redirectors

Redirect T cells to malignant cells by targeting a tumor antigen and CD3



Dahlen E et al. Therapeutic Advances in Vaccines and immunotherapy. 2018

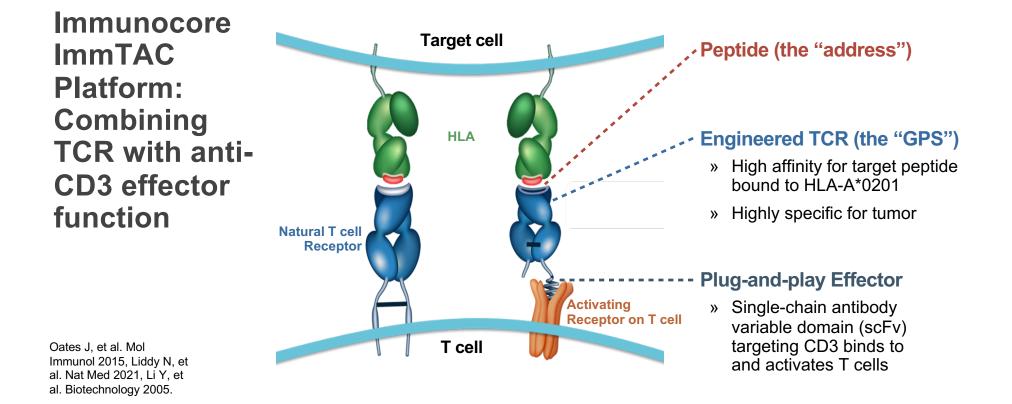
Target	Example	Stage
CD19 x CD3	Blinatumomab	Market
EpCAM x CD3	Catumaxomab	Market (withdrawn)
CD20 x CD3	XmAb13676, BTCT4465A, R07082859	I
CD123 x CD3	MGD006, JNJ- 63709178, Xmab14045	1
BCMA x CD3	JNJ-64007957, BI836909	I
B7H3 x CD3	MGD009	1
CEA x CD3	R06958688, MT111	I
PSMA x CD3	Pasotuximab, ES41 4/MOR209	I


Blinatumomab

Bispecific T-Cell engager for precursor B-cell acute lymphoblastic leukemia

Franquiz M et al. Biologics 2020.

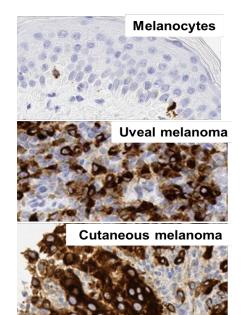
Population	Ν	Regimen	Prior	$\geq 2nd$	Response	MRD	Median Overall	Grade 3+ CNS	Grade 3+ CRS
			HSCT	Salvage		Response	Survival	(%)	(%)
R/R Ph-	36	BLN	42%	21%	CR/CRh: 69%	88%	9.8	16%	6%
R/R Ph-	189	BLN	34%	39%	CR/CRh: 43%	82%	6.1	11%	2%
R/R Ph-	405	BLN vs CT	34%	45%	CR: 34% CR/CRh/CRi: 44%	76%	7.7	9%	5%
R/R Ph-	84	h-CVD, INO, ± BLN	23%	42%	CR/CRi/CRp: 80%	80%	11.0	-	-
R/R Ph+	45	BLN	44%	82%	CR: 31% CR/CRh: 36%	88%	7.1	7%	0%
MRD+	21	BLN	0%		_	80%	_	19%	0%
MRD+	116	BLN	0%	36%	_	78%	36.5	13%	2%
Frontline, Ph-, younger	27	H-CVAD + BLN	-		CR: 100%	96%	89% (1y OS)	17%	5%
Frontline, Ph-, older	64	h-CVD, INO, ± BLN	-		CR/CRi/CRp: 98%	94%	54% (3y OS)	-	-
Frontline, Ph+	63	BLN + TKI	-		CMR/PNQD: 80%	100%	94% (1y OS)	-	-



Categories of tumor antigens

Antigen type	Description	Examples of antigen type	Examples of approved immunotherapies for target antigen
Tumour-specific antigens ⁸⁹	 Completely absent from normal host cells Arise in cancer cells from oncogenic viral proteins or nonsynonymous somatic mutations 	 HPV oncoproteins E6 and E7 (HPV-associated cancers of the cervix, anus and oropharynx)^{11,12} Individual KRAS mutations (pancreatic, colon, lung and various other cancers)^{18,19} 	None approved, multiple in clinical development
Tumour-associated antigens ⁹	 Low levels of expression on normal host cells Disproportionately expressed on tumour cells Often result from genetic amplification or post-translational modifications Can be selectively expressed by the cell lineage from which the cancer evolved 	 ERBB2 (some breast cancers and various other cancers)¹⁵⁸ Mesothelin (pancreatic cancer and mesothelioma)^{159–161} CD19 on B cell malignancies^{27,28} 	 Sipuleucel-T (anti-PAP vaccine, prostate cancer)¹³⁵ Blinatumomab (CD19–CD3 bispecific antibody, ALL)¹³⁰
Cancer/testis antigens ^{13,14}	 Absent on normal adult cells, except in reproductive tissues (e.g. testes, fetal ovaries and trophoblasts) Selectively expressed by various tumour types 	 MAGE (various cancers)¹⁶² NY-ESO-1 antigen (various cancers)¹⁶³ 	None approved, multiple in clinical development

Yarchoan et al, Nature Reviews Cancer 2017

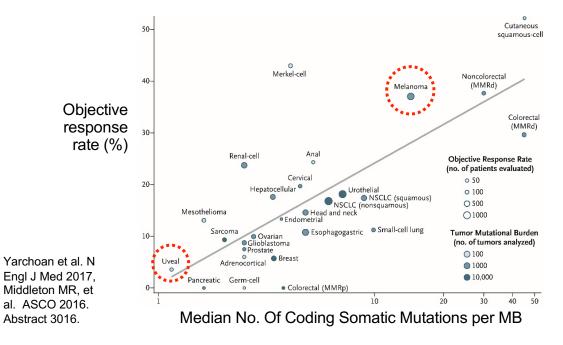

ALL, acute lymphoblastic leukemia; HPV, human papilloma virus; MAGE, melanoma-associated antigen; PAP, prostatic acid phosphatase

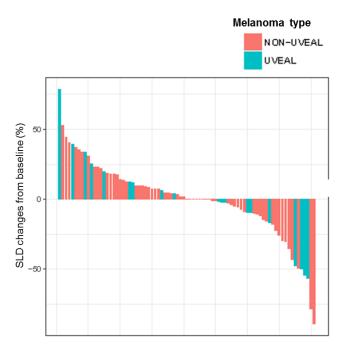
Gp100: TCR therapeutics can target gp100, an intra-cellular protein

Middleton MR, et al. ASCO 2019

Melanocyte-specific protein

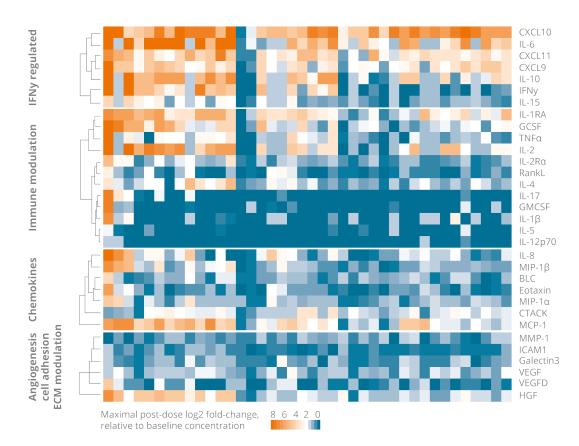
Melanoma - two stories

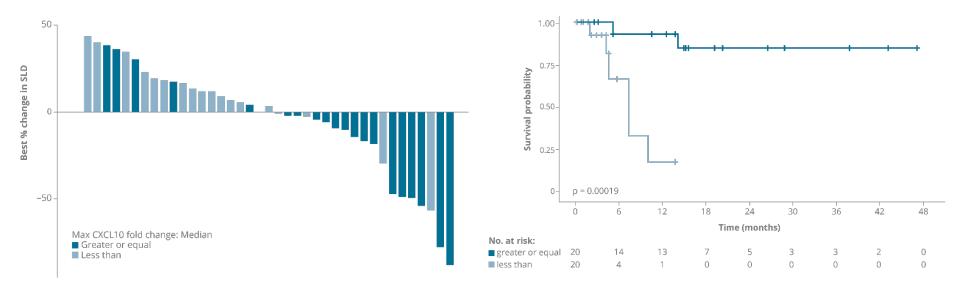

Cutaneous


- » UV damage high tumor mutation burden
- Among most sensitive to anti-PDx
- » Long term survival from checkpoints

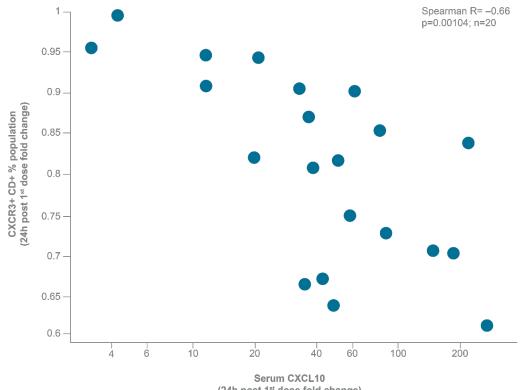
Uveal

- » Unrelated to UV-low mutation burden
- » Insensitive to anti-PDx
- » No SoC- clinical trials only
- » Metastases to liver highly immunosuppressive organ
- » No change in survival for 50 years


Tebentafusp showed activity in both uveal and cutaneous melanoma

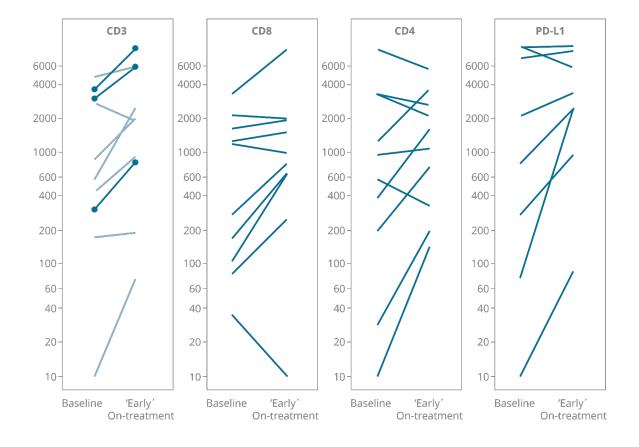

Tebentafusp induced increase IFNγ and other inflammatory pathways, most prominently CXCL10 (IP-10)

CXCL10, a chemoattractant, binds to CXCR3 receptor on T cells

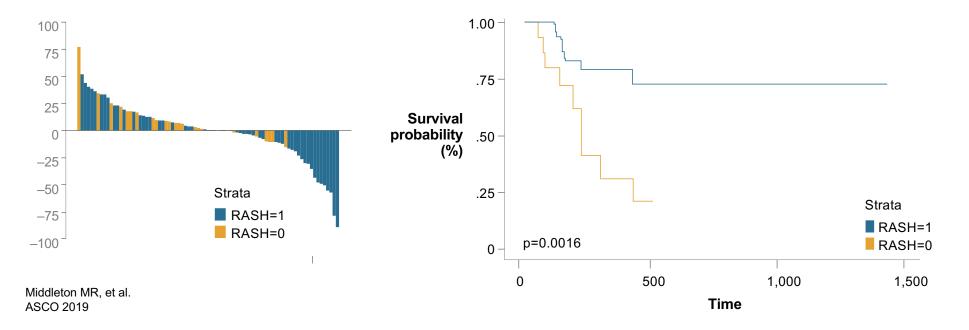

Middleton MR, et al. ASCO 2019

Greater increase in serum CXCL10 appear was associated with longer OS and tumor shrinkage

Middleton MR, et al. ASCO 2019


Increase in serum CXCL10 correlated with reduction in **CXCR3+ cells**

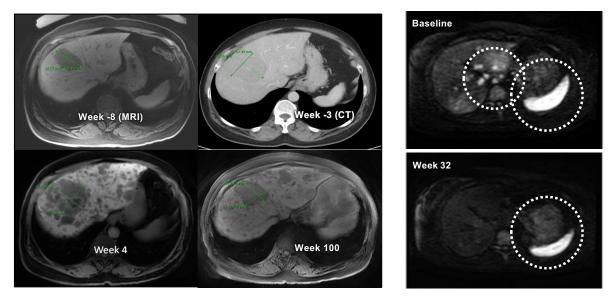
Middleton MR, et al. ASCO 2019


(24h post 1st dose fold change)

Increase in CD3+, CD4+, CD8+ and PD-L1+ cells in tumor on tebentafusp treatment

Middleton MR, et al. ASCO 2019

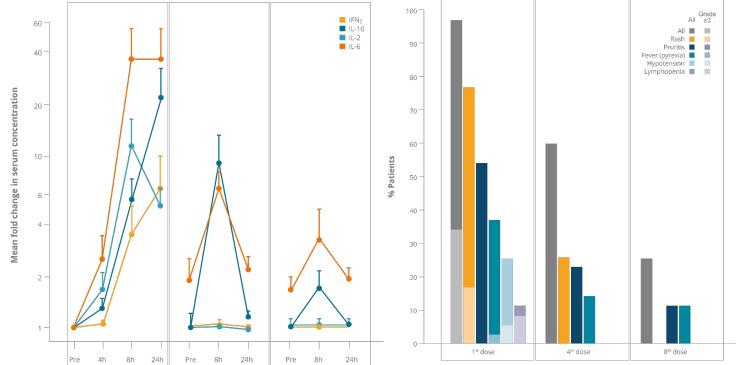
Development of rash (on target/off tumor) was associated with better efficacy



In early phase studies, IMCgp100 active in liver metastases - highly immunosuppressive environment

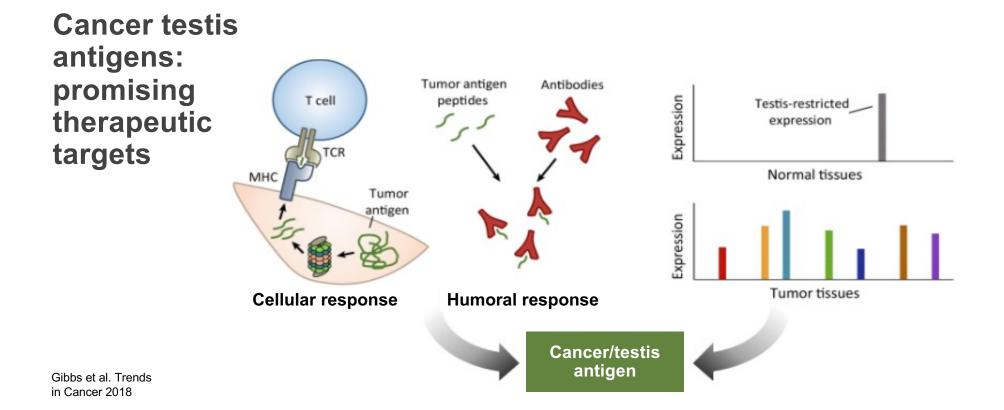
Patient 1

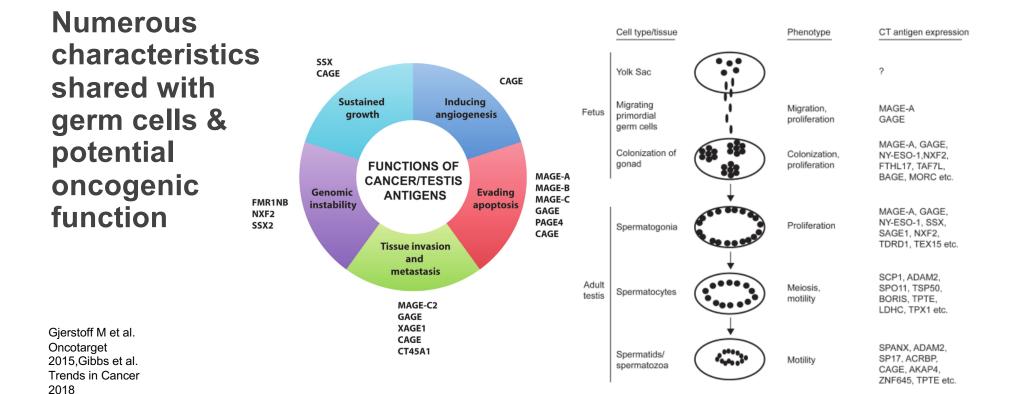
Pseudo-progression followed by response; patient remains on treatment after 25 months

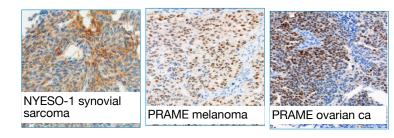


Middleton MR, et al. ASCO 2019

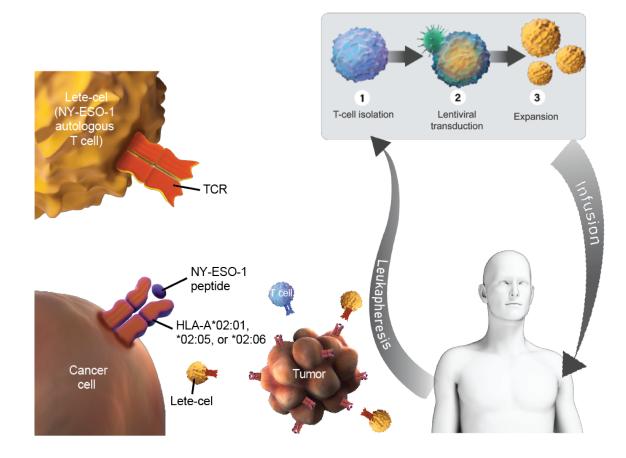
Cytokine kinetics paralleled mechanismbased AEs

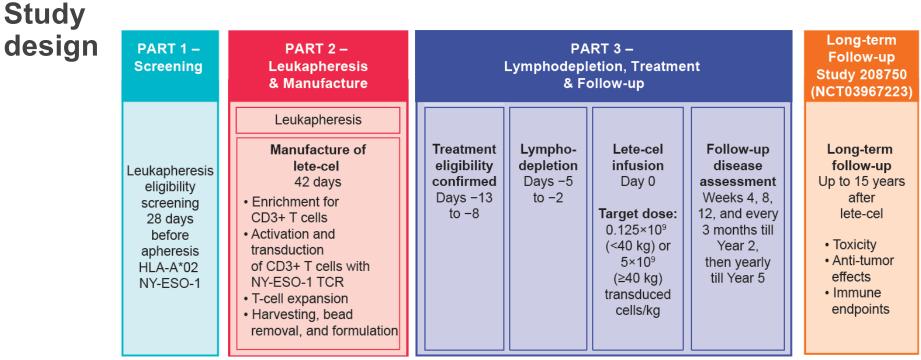



Middleton MR, et al. ASCO 2019


Any Grade	≥Grade 3
70 (05 00()	
79 (95.2%)	50 (60%)
65 (78.3%)	3 (4%)
49 (59.0%)	0
46 (55.4%)	1 (1%)
45 (54.2%)	2 (2%)
41 (49.4%)	4 (4%)
41 (49.4%)	9 (11%)
33 (39.8%)	0
32 (38.6%)	0
29 (49.4%)	0
26 (31.3%)	3 (4%)
23 (27.7%)	1 (1%)
20 (24.1%)	0
20 (24.1%)	2 (2%)
19 (22.9%)	2 (2%)
17 (20.5%)	5 (6%)
17 (20.5%)	1 (1%)
15 (18.1%)	0
14 (16.9%)	1 (1%)
14 (16.9%)	0
	65 (78.3%) 49 (59.0%) 46 (55.4%) 45 (54.2%) 41 (49.4%) 33 (39.8%) 32 (38.6%) 29 (49.4%) 26 (31.3%) 23 (27.7%) 20 (24.1%) 19 (22.9%) 17 (20.5%) 15 (18.1%) 14 (16.9%)

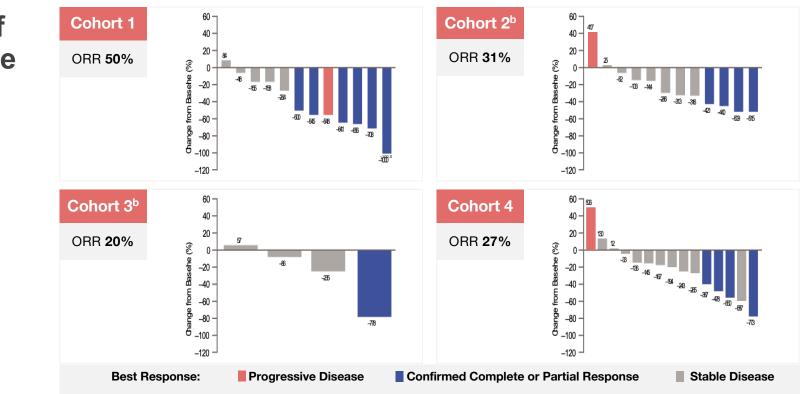
Middleton MR, et al.
ASCO 2019


Widely expressed amongst numerous malignancies

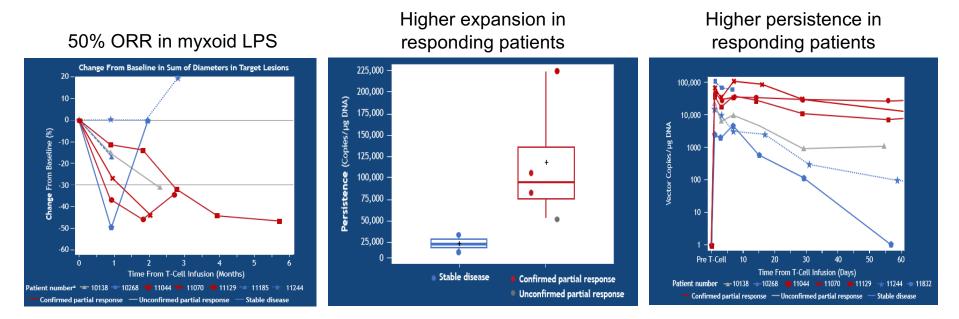

Salmanienejad
A et al. Immunol
Invest Oct 2016

Investigated		Expression	
CTA	Tumor type	level	References
NY-ESO-1	Melanoma	17–42%	(Chen et al., 1997; Van Der
			Bruggen et al., 2002; Vaughan et al., 2004)
	Bladder cancer	32-80%	(Kurashige et al., 2001; Scanlan et al., 2004)
	NSCLC	27%	(Gure et al., 2005); (Groeper et al., 2007)
	Colon cancer	2-10%	(Li et al., 2005; Mashino et al., 2001)
	Renal cell carcinoma	Not detected	(Chen et al., 1997)
	Lymphoma	Not detected	(Chen et al., 1997)
	Esophageal squamous cell carcinoma (ESCC)	41.4%	(Forghanifard et al., 2011)
MAGE-A3	Melanoma	57-76%	(Brasseur et al., 1995; Roeder et al., 2005)
	NSCLC	35-60%	(Melloni et al., 2004; Scanlan et al., 2000)
	Bladder cancer	57%	(Van Der Bruggen et al., 2002)
	Squamous esophageal cancer	75%	(Weinert et al., 2009)
	Hepatocarsinoma	42%	(Chen et al., 1997)
BAGE	Hepatocarsinoma	21%	(Kobayashi et al., 2000)
	Melanoma	14-28%	(Boël et al., 1995; Ruault et al., 2002)
	NSCLC	17-20%	(Melloni et al., 2004; Tajima et al., 2003)
	Bladder cancer	15%	(Scanlan et al., 2002b)
MAGE-A4	ESCC	92%	(Forghanifard et al., 2011)
	NSCLC	42%	(Groeper et al., 2007)
SSX2	liposarcoma	%16	(Hemminger et al., 2014)
LAGE1	ESCC	39%	(Forghanifard et al., 2011)

Lete-cel: autologous CD4+ and CD8+ T cells genetically modified to express a TCR recognizing NY-ESO-1 bound to human leukocyte antigen A*02 (HLA-A*02)

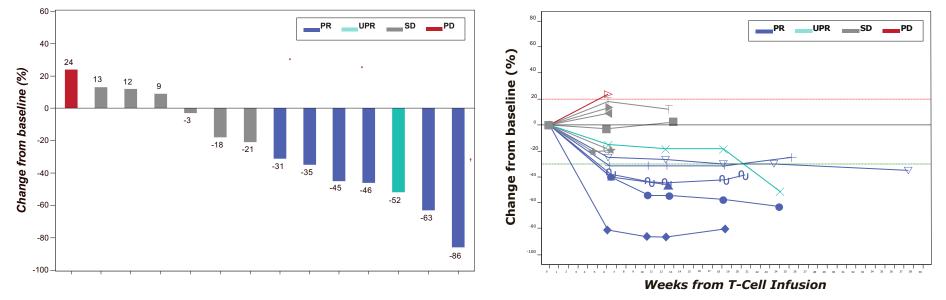


D'Angelo SP, et al. SITC 2020


D'Angelo SP, et al. SITC 2020

Results		Cohort 1 (n=12)	Cohort 2 (n=13)	Cohort 3 (n=5)	Cohort 4 (n=15)
ive20113	Median (range) transduced cell dose (x10 ⁹)	3.60 (0.45–14.36)	2.42 (1.60–5.01)	3.02 (1.53–5.00)	2.40 (1.00–4.95)
	Efficacy				
	Overall response rate ^a (95% Cl)	6 (50) (0.21–0.79)	4 (31) (0.09–0.61)	1 (20) (0.01–0.72)	4 (27) (0.08–0.55)
	Complete response	1 (8)	0	0	0
	Partial response	5 (42)	4 (31)	1 (20)	4 (27)
	Stable disease	5 (42)	7 (54)	3 (60)	10 (67)
	Progressive disease	1 (8)	1 (8)	0	1 (7)
	Not evaluable	0	1 (8)	1 (20)	0
	Median DoR (range), weeks	31.0 (13–72)	8.6 (8–13)	32.1 (32–32)	16.4 (14–94)
	Median PFS (95% CI), weeks	15.4 (7.7–38.0)	13.1 (7.9–13.9)	8.6 (0.7–36.1)	22.4 (11.3–26.6)
	Median OS (95% CI), months ^a	24.3 (8.5–48.8)	9.9 (3.9–19.6)	19.9 (8.8–NA)	Not mature; to be reported later
	Pea	ak persistence, medi	an (range), DNA cop	oies/µg	
	Responders ^b	106,174 (76,185–192,445)	65,875 (13,365–197,546)	123,314 (123,314–123,314)	40,137 (5677–131,176)
D'Angelo SP, et al. SITC 2020	Non-responders ^c	30,601 (11,265–119,883)	72,564 (22,627–145,791)	15,688 (9453–43,015)	19,650 (164–111,260)

Depth of response

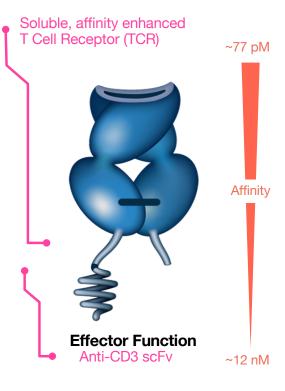

D'Angelo SP, et al. SITC 2020

NYESO1 TCR demon-strates efficacy in myxoid LPS

D'Angelo SP, et al. ASCO 2018

MAGE4 TCR Induce Clinical Responses in Synovial sarcoma

Van Tine B, CTOS 2020



Bispecific Antibodies Targeting Cancer Testis Antigens

Targeting cancer testis antigens with bispecific antibodies

NY-ESO-1/LAGE-1A TCR MCnyeso MSK PI: S D'Angelo NCT:

MAGE-A4 TCR IMC-C103C MSK PI: Neil Segal NCT:

PRAME TCR IMC-F106C MSK PI: Matthew Hellman NCT:

Antigen expression across malignancies

Indication	NY-ESO- 1/LAGE-1A	MAGE-A4	PRAME
Melanoma - cutaneous	35%	Not eligible	80%*
Melanoma - uveal	<10%	Not eligible	To be determined
NCSLC - adenocarcinoma	<10%	<10%	47%
NSCLC - squamous cell carcinoma	15%	53%	68%
Ovarian - high-grade serous	Not eligible	75%*	97%*
Ovarian - other histologies	Not eligible	To be determined	To be determined
Synovial sarcoma	65%	76%*	Not eligible
Urothelial carcinoma	25%	30%	10%

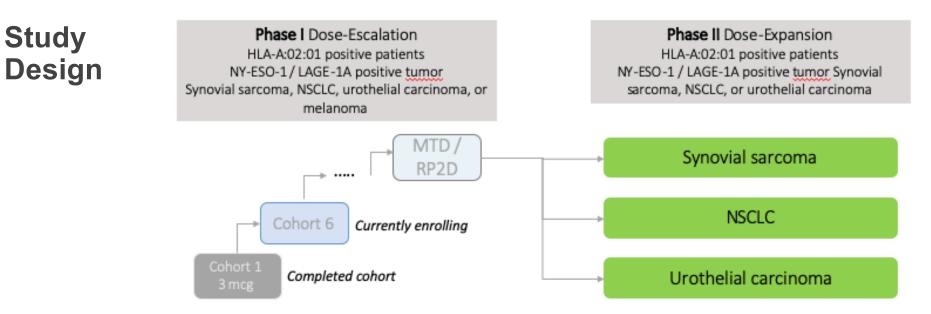
Overview of study periods

Pre-screening tests may be performed at any time, including while patient is on prior cancer treatment

Pre-screening

- » Sign Pre-screen ICF
- » HLA and antigen testing

Screening

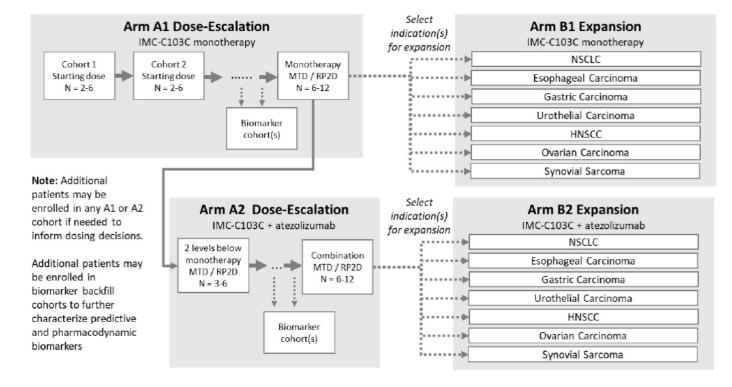

- » Sign main study ICF
- » Perform screening procedures and evaluate eligibility
- » 21-day window (28 days for radiological evaluation)

Treatment

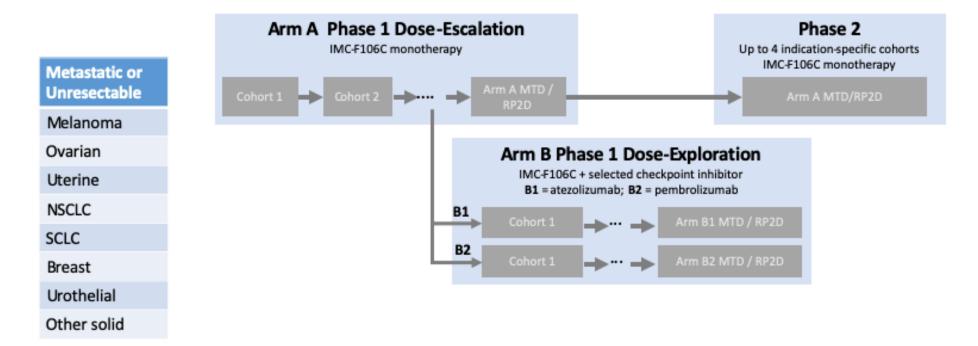
- » 3 week cycles on Days 1, 8, 15
- » Continue until progression or other reason to discontinue

Follow-up

- » Safety visit 30 days post last dose
- » Follow disease response until PD / start of new therapy
- » Survival follow-up through end of study



Escalation guided by Bayesian Logistic Regression Model with Overdose Control

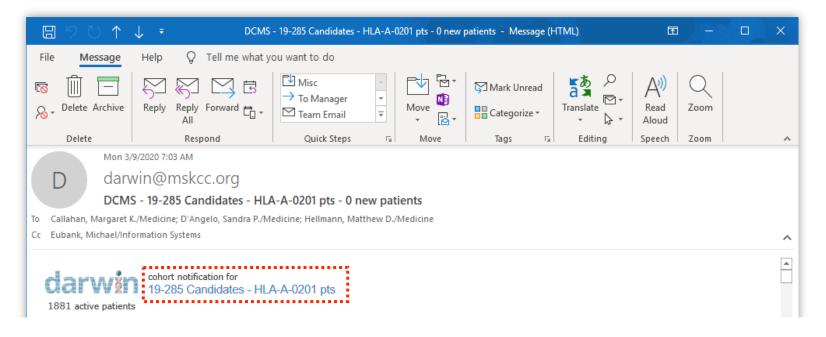

MTD = maximum tolerated dose; RP2D = Recommended Phase II dose

MAGE4 (IMC-C103C-101) Study Design PI: Neal Segal

Note: Two expansion cohorts are planned' additional cohorts may be opened at the discretion of the Sponsor. Expansion cohorts will initially enroll up to 9 patients; may enroll 15 additional patients (N=24) if \geq 1 response.

PRAME (IMC-F106C-101): Study Design, PI: Matt Hellman

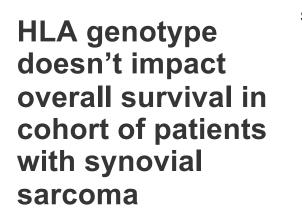
Limitations: HLA-A*02:01 frequency

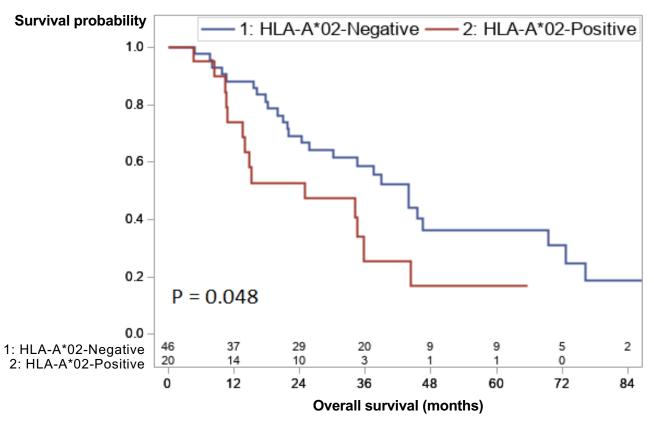

Data from the National Marrow Donor

uencies.net/

Program, http://www.allelefreq

Population(United States of America)	Sample Size	Allele Frequency	Approximate % Positive
African	28,557	0.1146	22%
African American	416,581	0.1235	23%
Caribbean Black	33,328	0.1107	21%
Caribbean Hispanic	115,374	0.1688	31%
Chinese	99,672	0.0946	18%
European Caucasian	1,242,890	0.2755	48%
Filipino	50,614	0.0671	13%
Hispanic South or Central American	146,714	0.2095	38%
Korean	77,584	0.1857	34%
Mexican or Chicano	261,235	0.223	40%
Middle Eastern or North Coast of Africa	70,890	0.1973	36%
North American Amerindian	35,791	0.2776	48%
South Asian Indian	185,391	0.0492	10%
Southeast Asian	27,978	0.0578	11%
Vietnamese	43,540	0.0349	7%

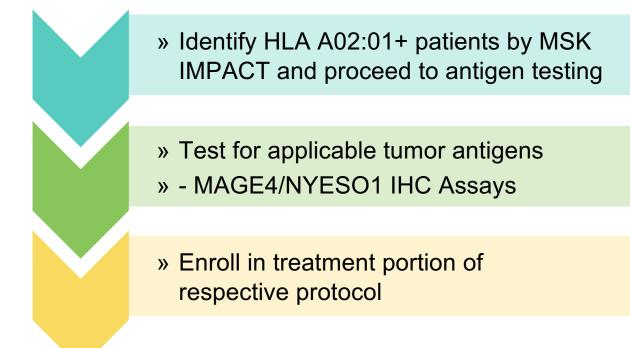

Utilizing MSK IMPACT, Next generation sequencing assay to identify HLA + patients



HLA Genotype as Measured by MSK-IMPACT and Outside CLIA-certified Laboratory is consistent

Patient ID			CLIA-certifie	d Laboratory					MSK-IM	РАСТ		
	HLA_A1	HLA_A2	HLA_B1	HLA_B2	HLA_C1	HLA_C2	HLA_A1	HLA_A2	HLA_B1	HLA_B2	HLA_C1	HLA_C2
P-0007522	01:01	31:01	13:02	35:02	06:DDAR	04:JKTU	01:01	31:01	35:02	13:02	04:01	06:02
P-0010759	01:01	30:04	35:02	57:03	04:JKTU	07:AAGAJ	30:04	01:01	57:03	35:02	04:01	07:01
P-0039186	02:01	02:02	39:05	44:03	03:05	14:02	02:02	02:01	39:01	44:03	14:02	03:04
P-0003440	01	02	07	08	07	15	01:01	02:01	07:05	08:01	15:05	07:01
P-0005828	01	03	07	08	07	07	03:01	01:01	07:02	08:01	07:02	07:01
P-0005310	33	68	15	50	02	06	68:01	33:01	50:01	15:03	02:10	06:02
P-0008520	02:02:01	33:01:01	15	44	05	14	02:02	33:01	44:02	15:16	14:02	05:01
P-0003060	23	31	35	44	02	04	23:01	31:01	44:03	35:01	02:02	04:01
P-0010353	32	33	42	44	04	17	32:01	33:01	42:01	44:03	04:01	17:01
P-0027364	02:01	11:01	07:TDVB	35:TDS	07:ABSED	04:JKTU	11:01	02:01	07:02	35:01	07:02	04:01
P-0020517	02:01	24:02	18:RRG	44:HTH	07:AJKDW	05:01	24:02	02:01	18:01	44:02	05:01	07:01
P-0018549	02:01	24:02	39:01	44:27	07:ABSED	07:ET	24:02	02:01	39:01	39:01	07:04	07:02
P-0003036	03	25	07	39	07	12	03:01	26:01	07:02	39:01	12:03	07:02
P-0001101	01:01	68:01	NA	NA	NA	NA	01:01	68:01	14:02	35:02	08:02	04:01
P-0013119	02:01	24:10	NA	NA	NA	NA	24:10	02:01	15:25	15:01	04:01	04:03
P-0017556	03:01	26:01	NA	NA	NA	NA	03:01	26:01	07:02	15:17	07:02	07:01
P-0019860	03:01	29:02	NA	NA	NA	NA	03:01	29:02	07:02	44:03	16:01	07:02
P-0021211	68:02	02:01	NA	NA	NA	NA	68:02	02:01	53:01	49:01	04:01	07:01
P-0021465	11:01	33:03	NA	NA	NA	NA	11:01	33:03	15:02	18:01	08:01	12:03
P-0027765	01:01	02:01	NA	NA	NA	NA	01:01	02:01	08:01	15:03	02:10	07:01
P-0003328	03	23	07	08	07	07	03:01	11:01	57:01	13:02	06:02	06:02
P-0025830	NA	NA	NA	NA	NA	NA	24:03	24:02	40:06	18:01	15:02	12:03

Rosenbaum et al. CCR 2020



Rosenbaum et al. CCR 2020

Memorial Sloan Kettering

Cancer Center

Ideally.... a universal screening master protocol can further expedite patient enrollment

NK cell redirectors

Redirect NK cells to malignant cells by targeting tumor antigens and CD16A

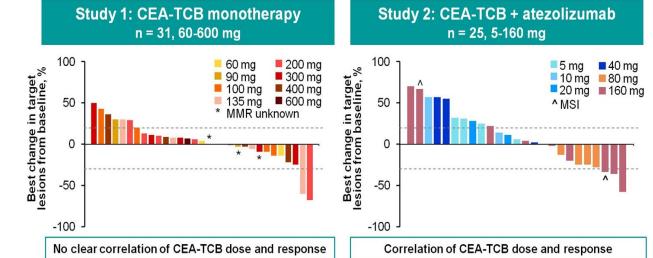
Target	Example	Stage
CD30 x CD16A	AFM13	
EGFR x CD16A	AFM24	Pre-clinical
BCMA x CD16A	AFM26	Pre-clinical

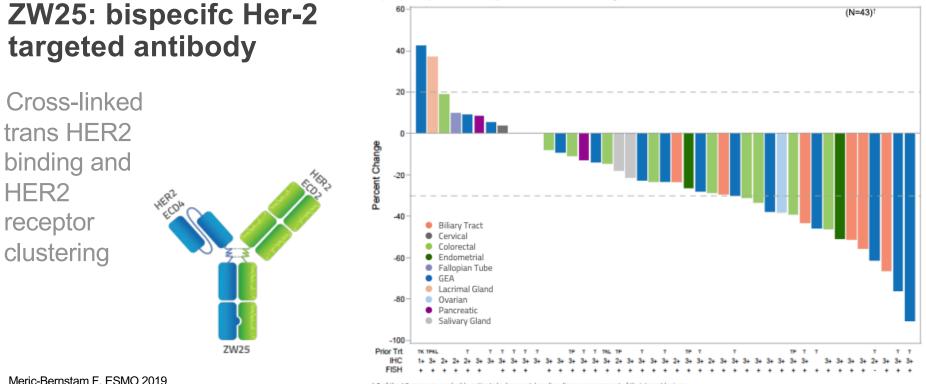
AFM13: For CD30 + 160 **Malignancies** 140 120 Bispecific, 100 tetravalent chimeric 80 antibody construct Tumor size (% change from baseline) 60 40 20 L3 0 L2 L1 -20 -40 -60 L1 L3 -80

Tumor Targeted

Directs co-stimulation to the tumor infiltrating immune cells by targeting a tumor antigen and con-stimulator molecule


Target	Example	Stage
TA x CD40	ABBV-428	I
HER2 x 4-1BB	PRS343	I
FAP x 4-1BB	4-1BB agonist	PC
5T4 x 4-1BB	MGD006, JNJ-63709178, Xmab14045	I


Dahlen E et al. Therapeutic Advances in Vaccines and immunotherapy. 2018


CEA-TCB

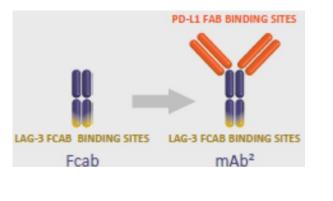
2-to-1 format

Binds w 1 arm to CD3 on T cells and with 2 arms to CEA on tumor cells

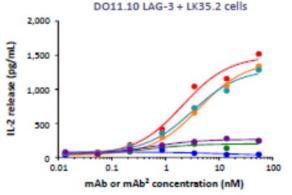
Majority of response-evaluable patients had a decrease in target lesions

Meric-Bernstam F, ESMO 2019

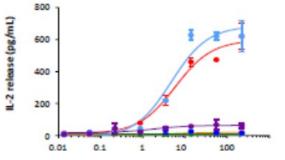
† 3 of the 46 response-evaluable patients had no post-baseline disease assessment of their target lesions

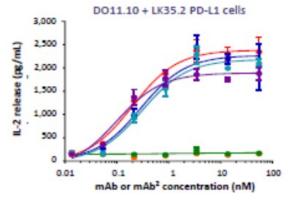

Dual Immunomodulators

Simultaneous targeting of two immunomodulating targets resulting in blockade of inhibitory targets, depletion of suppressive cells or activation of effector cells


Target	Example	Stage
PD1 x LAG-3	MGD013, FS118	I
PD-1 x TIM-3	MCLA-134	Pre-clinical
PD1 x CTLA-4	XmAb20717	Pre-clinical
CTLA-4 x OX40	ATOR-1015	Pre-clinical

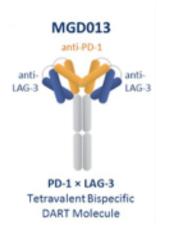
Dahlen E et al. Therapeutic Advances in Vaccines and immunotherapy. 2018


LAG/PD-L1 bispecific antibody blocks immune suppression invitro



Kraman M, SITC 2016

DO11.10 LAG-3 + LK35.2 PD-L1 cells



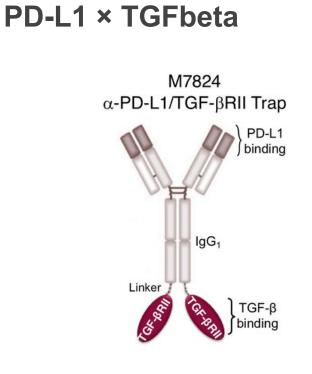
LAG-3/PD-L1 mAb ¹	•	LAG-3 mAb
LAG-3/mock mAb ³ + PD-L1 mAb	•	PD-L1 mAb
LAG-3/mock mAb ^a	•	LAG-3 mAb + PD-L1 mAb

Figure 11. DO11.10 cells were incubated with the indicated mAb or mAb² while LK35.2 cells were incubated with OVA peptide and then combined. Cells were incubated at 37°C for 24 hours prior to measuring IL-2 levels in the supernatant by ELISA.

MGDO13

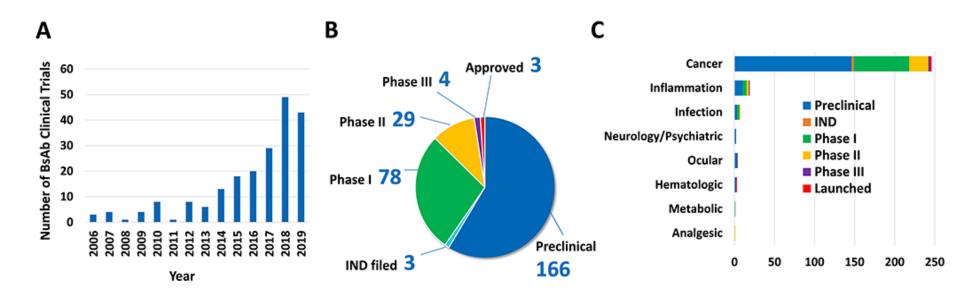
Best % Reduction of Target Lesions RECIST Evaluable Population (n=42)* 80 60 40 20 -20 Previous Checkpoint Inhibitor -40 -60 Cohort -80 1&3 mg 30 mg 120 mg 400 mg 800 mg HCC 400 mg HCC 600 mg HCC 120 mg 1200 mg -100 * Based on patients with baseline and post-treatment tumor measurements. Data cutoff: April, 25, 2020

Confirmed Partial Responses (n=1, each):


- TNBC (10 mg) ٠
- Mesothelioma (800 mg) ٠ Gastric Cancer (1200 mg) Refractory to anti-PD-1 treatment
- .
- 18 patients with SD as best overall response (DCR = 48.8%) ٠

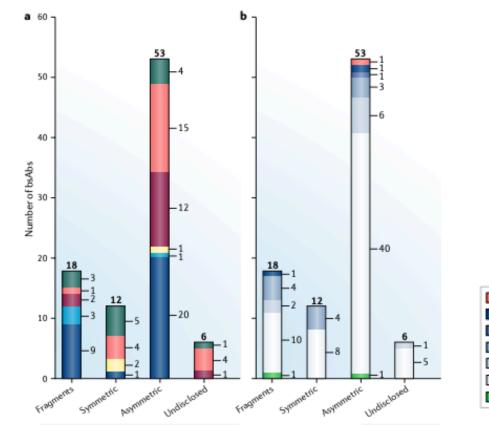
Immune-Related Adverse Events of Special Interest (AESIs)

	No. (%) of Patients			
	All Grades (N=53)	≥ Grade 3 (N=53)		
Rash	7 (13.2)	1 (1.9)		
Hypothyroidism	6 (11.3)	0		
Immune-mediated hepatitis	2 (3.8)	2 (3.8)		
Pancreatitis	1 (1.9)	1 (1.9)		
Colitis	1 (1.9)	1 (1.9)		
Adrenal insufficiency	1 (1.9)	1 (1.9)		
Hyperthyroidism	1 (1.9)	0		


- · Well-tolerated with manageable irAEs
- · Safety consistent with anti-PD-(L)1 toxicity profile
- MTD not exceeded or defined at up to 1200 mg Q2W
- Dose limiting toxicities:
- Immune-mediated hepatitis (1200 mg primary dose escalation); resolved without sequelae
- · Lipase increase with radiographic evidence of pancreatitis (600 mg - HCC escalation); dose level subsequently cleared

Ulahannan S et al. ASCO 2020

Rising Bispecific Antibody Programs


Nie S et al. Antibody Ther, 2020

Potential target pairs of bispecific programs in preclinical/cli nical space

Nie S et al. Antibody Ther, 2020

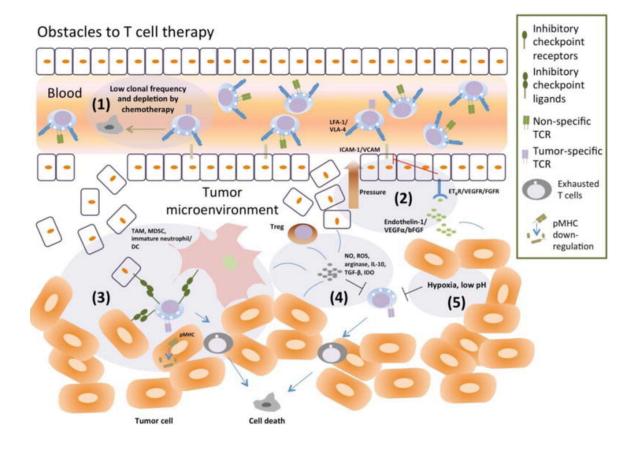
Clinical Development Pipeline

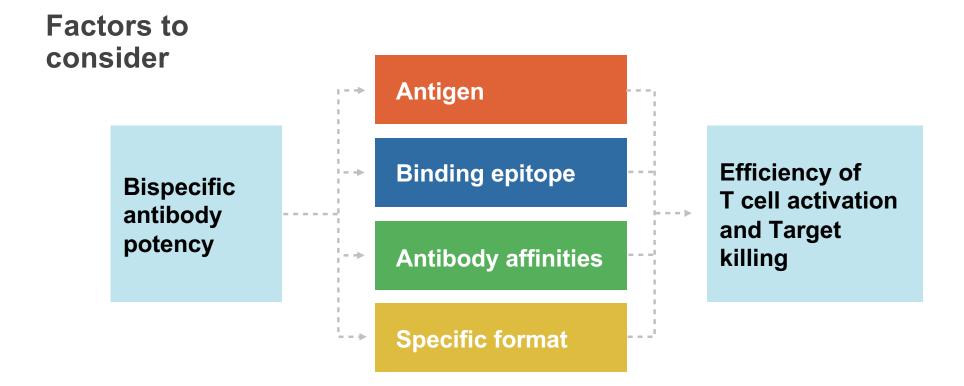
Non-cancer

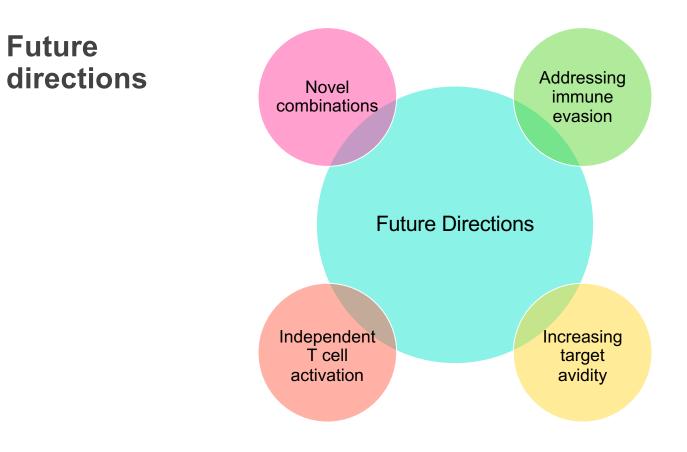
Solid tumours

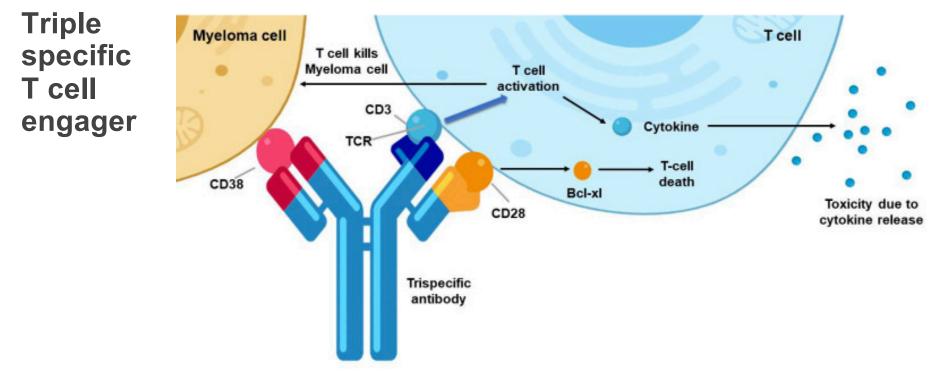
Solid tumours (CD3-based)

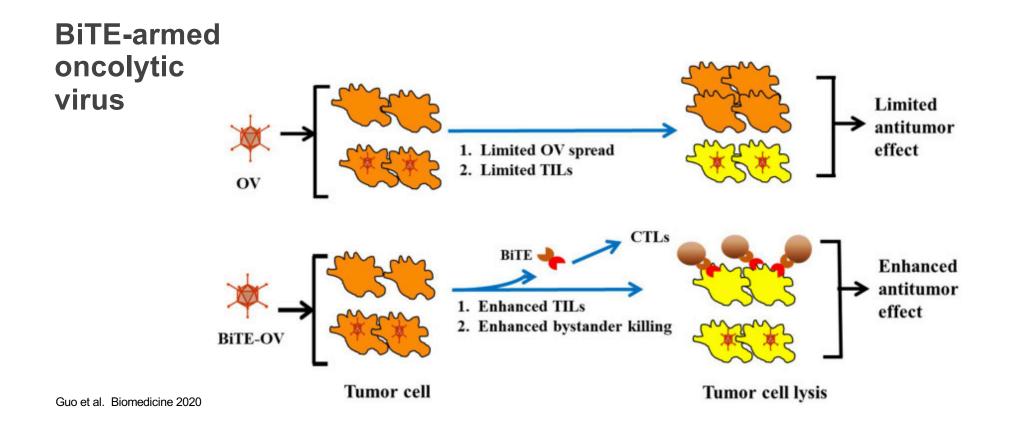
Haematological tumours


Haematological and solid tumours


Haematological tumours (CD3-based)




Challenges to overcome



Guo et al. Biomedicine 2020

Conclusions

- » Bispecific antibodies will continue to evolve as promising cancer therapeutics
- » Capitalizing on targetable cellular markers or genomic susceptibilities will further contribute to the progress
- » Addressing safety, the complex solid tumor immune microenvironment and mechanisms of immune resistance/escape will be essential
- » Future directions will incorporate novel approaches such as triple specific engagers or BITE-armed oncolytic viruses

MSK Team

Sarcoma Medical Oncology

Lauren Banks Jason Chan Ping Chi Mark Dickson Mrinal Gounder Mary Louise Keohan Ciara Kelly Benjamin Nacev Evan Rosenbaum William D. Tap Katherine Thornton Viswatej Avutu

Surgical Oncology Samuel Singer Sam Yoon Aimee Crago Edmund Bartlett

Murray Brennan

Cellular Therapeutics Christopher Klebanoff Renier Brentjens Roisin O'Cearbhaill Chris Hackett

Sarcoma Pathology Cristina Antonescu Meera Hameed Narsi Agaram

Pediatric Oncology Julia Glade-Blender Emily Slotkin

Leonard Wexler Paul Meyers

Early Drug Development

Alex Drilon Margaret Callahan

Support

GEOFFREY BEENE FOUNDATION

NIH Supplement Alliance 3U10-CA180821-03

dangelos@mskcc.org

Bispecific Antibodies As Cancer Therapeutics

Questions