

SNASDC Agonist Antibodies

Neil H. Segal MD PhD

Associate Attending • Research Director Gastrointestinal Oncology Service Early Drug Development Service Memorial Sloan Kettering Cancer Center New York, NY

Disclosures

Research Funding

- > Roche/Genentech
- > Pfizer
- > Merck
- > BMS
- AstraZeneca
- Incyte
- > Immunocore

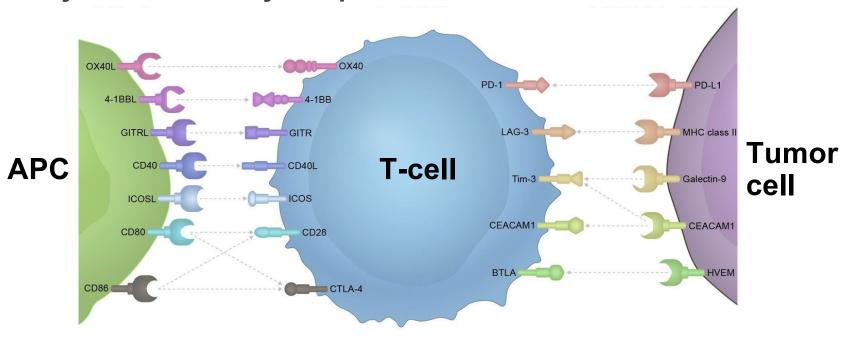
Advisory board/consulting

- > Roche/Genentech
- > ABL Bio
- > PsiOxus
- > Immunocore
- > PureTech Ventures
- Amgen
- > GSK

- > Boehringer Ingelheim > CStone Pharmaceuticals
 - Synlogic
 - > Pieris
 - > BMS
 - AstraZeneca
 - > Gritstone Oncology
 - > TRM oncology

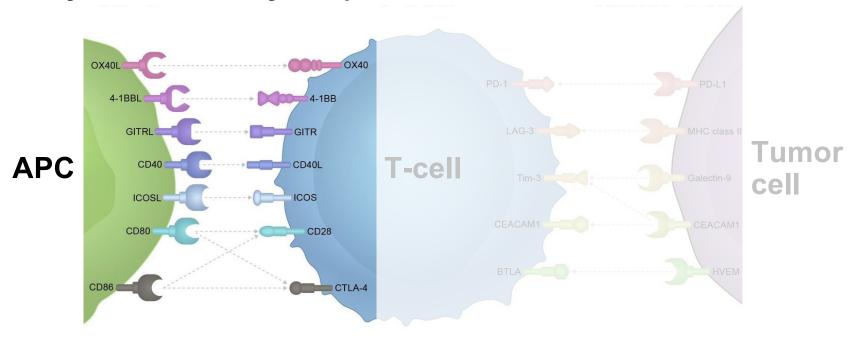
T-cell Activation

Antitumor immune responses involve multiple steps and cell types


depending on interplay of innate and adaptive immune systems

Immunotherapy targeting the adaptive immune system, specifically T-cells, has shown efficacy in several tumor types

T-cell activation requires:


- » T-cell receptor signaling
- » Costimulatory signaling
- » Cytokine support

Inhibitory and stimulatory receptors on immune cells and cancer cells

Yeonjoo Choi et al. J Immunother Cancer 2020;8:e000966

Inhibitory and stimulatory receptors on immune cells and cancer cells

Yeonjoo Choi et al. J Immunother Cancer 2020;8:e000966

OX40 (CD134)

Member of the TNF receptor superfamily Expressed on activated CD4/ CD8 T cells and Tregs:

- » Driven by T-cell activation and transient
 - Peaks at 24-96 hours and typically lasts 3-4 days
- » Intratumoral Tregs have high levels of OX40 expression

OX40L is expressed on activated APCs: Dendritic cells, B cells and macrophages

Choi. J Immunother Cancer 2020; Aspeslagh Eur J Cancer 2016; Ruby J Immunol 2009

OX40 (CD134)

OX40 binding by anti-OX40 agonistic antibodies

- » T-cell expansion and survival
- » Promotes the generation of memory T cells
- » Inhibits the function of Tregs
 - > Under certain situations (e.g.: IFN-γ and IL-4 are absent) may lead to Treg proliferation
 - Target for depletion via ADCC?

Choi. J Immunother Cancer 2020; Aspeslagh Eur J Cancer 2016; Ruby J Immunol 2009

OX40 Agonist – Clinical Studies

MEDI0562 (phase 1 trial)55 patients withadvanced solid tumors

- » 1.5 to 3.0-fold increase in mean peaks of % peripheral Ki67+ CD4+ and Ki67+ CD8 +memory T cells
- » Two irPR (SCC larynx and bladder cancer)

MOXR0916 plus atezolizumab

- 51 patients with advanced solid tumors

- » The majority of the patients had tolerable safety profiles
- » 2/ 51 patients had responses

BMS-986178 ± nivolumab or ipilimumab (NCT02737475)

- » 20 pts monotherapy (RR=0%)
- » 145 pts combination (RR= 0-13%, as expected from nivo/ipi)

Glisson, Ann Oncol, 2016; Glisson, Ann Oncol, 2018; Infante JCO, 2016; Guttierez, CCR, 2021

OX40 Agonist – Next Steps

Strategies to increase OX40 receptor expression and activated T cells:

- » Vaccines
- » Toll-like receptor (TLR) agents
- » Oncolytic viruses
- » Radiation
- » Novel combinations

Guttierez. CCR. 2021; Fu. Acta Pharm S. 2020; Gao JCO 2018 (suppl; abstr 12055).

GITR (Glucocorticoid-Induced TNF Receptor)

Member of the TNF receptor superfamily

Highly expressed on Tregs, low levels on naïve and memory T cells

GITR ligand is expressed at low levels in APCs

- → T-lymphocyte activation
- » Particularly suboptimal TCR stimulation by upregulating IL-2 and IFN-γ
- → Enhanced T-cell survival by inhibiting TCR activation-induced apoptosis
- » Although may enhance AICD of CD4+ effector cells if very strong TCR stimulus

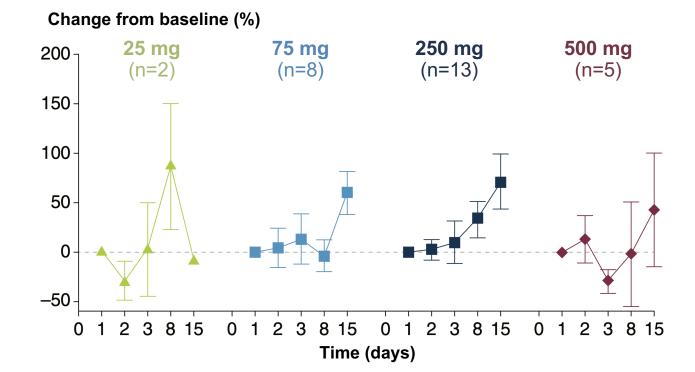
Choi. J Immunother Cancer 2020; Ephrem. Eur J Immunol 2013; Schaer. Curr Opin Immunol 2012; Nocentini. PNAS.1997

GITR – Clinical Studies

TRX-518 (phase 1 study) - 40 patients with metastatic solid tumors

» 4/28 = immunerelated SD AMG228 (phase 1 study) - 30 patients with advanced solid tumors

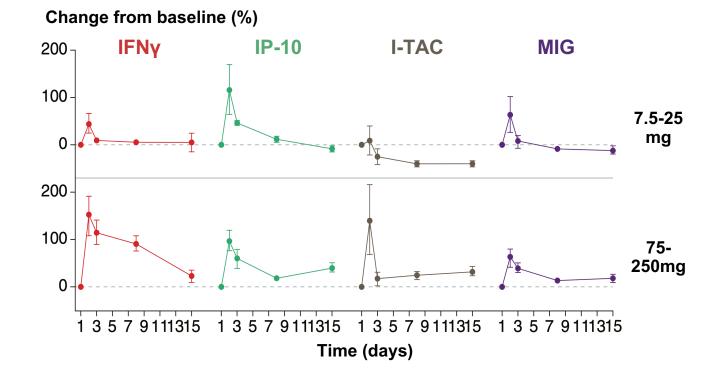
» 7/27 = immunerelated SD MEDI1873 (phase 1 study) – 40 patients with advanced tumors


» 1 unconfirmed partial response (PNET)

» 17/40 (42.5%) = SD

Koon. JCO. 2016; Tran. J Immunother Cancer 2018; Balmanoukian. CCR. 2020

MEDI1873: Change in Peripheral CD4+ Ki67+ T cells



Balmanoukian. CCR. 2020

MEDI1873: Percent Changes in Soluble Factors

Interferon gamma (IFNy), IFNy-induced protein 10 (IP-10), interferoninducible T cell alpha chemoattractant (I-TAC), monokine induced by IFNy (MIG)

Balmanoukian. CCR. 2020

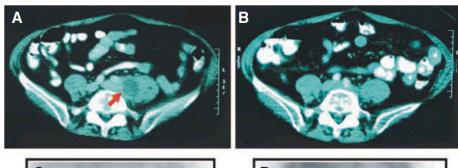
CD40

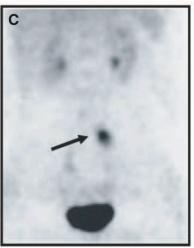
Member of TNF receptor superfamily

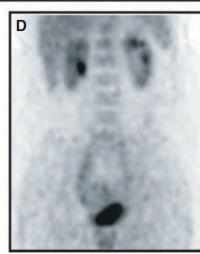
Expressed on:

- » Dendritic cells → cytokine release, expression of MHC + costimulatory molecules, Ag cross-presentation
- » **B lymphocytes** → antigen-presentation, Ig class switching
- » Macrophages → tumoricidal, deplete tumor stroma
- » Vascular and epithelial cells → proinflammatory cytokines
- » T cells, activated NK cells, granulocytes, smooth muscle cells, and activated platelets

CD40L (CD154)
expressed on activated
T cells, B cells and NK
cells; granulocytes,
endothelial cells, smooth
muscle cells, and
activated platelets.

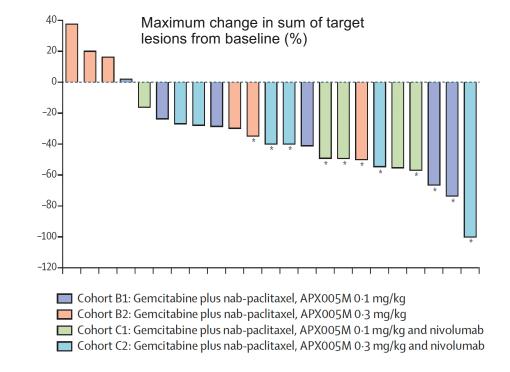

Vonderheide. Clin Cancer Res. 2007; Beatty. Expert Rev Anticancer Ther. 2018


CD40 - Clinical Studies


CP-870,893 (single dose) - 29 patients with advanced tumors

- » The most common AE was CRS:
 - > Within minutes to hours after infusion
 - > Transient chills, rigors, and fevers
 - Associated with elevations of serum TNF-α and IL-6
- » Four patients with melanoma had objective responses at restaging:
 - > 14% of all patients
 - > 27% of melanoma patients

Vonderheide, JCO, 2007



CD40 - Clinical Studies

Sotigalimab + gemcitabine/nabpaclitaxel +/- nivolumab (Phase 1b)

- » Patients (n=30) with previously untreated metastatic pancreas cancer
- » Treatment considered tolerable
- » ORR = 58% in DLT evaluable patients (n=24)
- » Further studies are ongoing

O'Hara. Lancet Oncology. 2020

ICOS (Inducible Costimulatory receptor)

Member of the CD28 superfamily of costimulatory molecules

ICOS induced upon
T-cell receptor
(TCR) engagement

» Unlike CD28, not expressed on naïve T_{Eff} cells

Relative expression varies between T-cell subtypes:

- » Intratumoral Treg > CD4+ > CD8+ Teff cells
 - (may represent a target for Treg depletion strategy)

Ligand is mostly expressed on APCs (can be induced by IFN-γ and TNF-α)

- Modestly promotes T-cell proliferation and differentiation
- ↑ cytokine production (pro or anti-inflammatory: IL-4, IL-5, IL-10, IFN-y, TNF-α)

Prognostic marker

- » ↑ICOS+ CD4 TEff is associated with ↑prognosis (pts treated with anti–CTLA-4)
- » ↑ICOS+ Tregs in the TME is associated ↓prognosis

Hutloff. Nature. 1999; Swallow. Immunity. 1999; Sharpe. Nat Rev Immunol 2002; Sainson. Cancer Immunol Res. 2020; Ng. Cancer Immunol Res. 2013; Tu. Sci Rep. 2016

ICOS – Clinical Studies

GSK3359609 +/pembrolizumab (phase 1 trial)

- » HNSCC expansion cohort
 - Monotherapy (prior PD/L-1): RR = 8% (1/8)
 - Combination (PD/L-1 naïve): RR = 24%
 (8/34), 4 PR and 4 CR

Randomized, double-blind, II/III studies in recurrent/ metastatic HNSCC:

- » Pembrolizumab +/- GSK3359609 (n=600) (INDUCE-3/ NCT04128696)
- » Pembrolizumab plus 5-FU/platinum +/- GSK3359609 (n=640) (INDUCE-4/ NCT04428333)

Rischin. Ann Onc (abstract 1119PD). 2019; Angevin. JCO (abstract 6517). 2020

4-1BB/CD137

Activated T-cell: ↑ function and survival

» Peak ~12 hrs after TCR engagement, decline within 72 hrs

Activated NK cells: ↑Fc receptor and ↑ADCC

Treg effect is controversial:

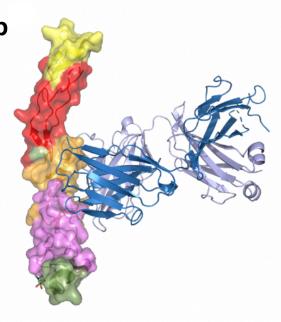
- » Downregulates Foxp3 and inhibit inducible Tregs
- » Soluble 4-1BBL may promotes Treg expansion

Ligand is inducible on activated APCs, myeloid progenitor and hematopoietic stem cells

Wang, Immunol Rev. 2009; Bartkowiak, Front Oncol. 2015; Houot, Oncoimmunology 2012

4-1BB Agonist Antibodies

Urelumab


- » Binds CRD-1
- » Away from ligand-binding site

Chin. Nature Comm. 2018

Utomilumab

- » Ligandblocking
- » BindsbetweenCRDs 3and 4

Urelumab

2005:

Evaluated as a monotherapy in two studies, CA186-001 and CA186-006

December 2008:

enrolment was stopped for all urelumab studies following the occurrence of two hepatotoxicity-related deaths (1 and 5 mg/kg)

Dose was the most important factor contributing to the development of severe transaminitis

February 2012:

Study CA186-011 aimed to evaluate monotherapy doses <1 mg/kg

» Selected dose was 0.1 mg/kg, 8 mg flat dose

Segal. Clin Cancer Res. 2017

Efficacy

Study 001: 83 pts (54 melanoma, 15 RCC, 13 ovarian and 1 prostate)

- » 3 PRs (18+ mo, 3+ mo, 1.5+ mo, all melanoma)
- » 4 SD (10 mo, 6 mo, 6 mo, 4+ mo)

Preliminary biomarker analysis showed:

- » ↑ expression of IFN-inducible genes in peripheral blood
- » ↑% circulating activated CD8 and CD4 T-cells
- » ↑ expression CD8α and IFNγ in post- treatment biopsies in a subset of pts

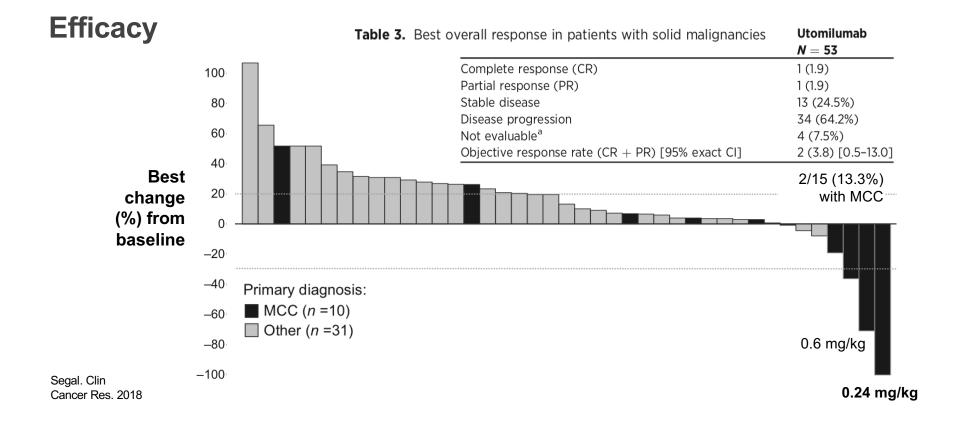
Sznol, ASCO, 2016

Utomilumab (PF-05082566)

- » Phase I dose escalation study
- » 12 dose levels: 0.006 -10 mg/kg Q4W

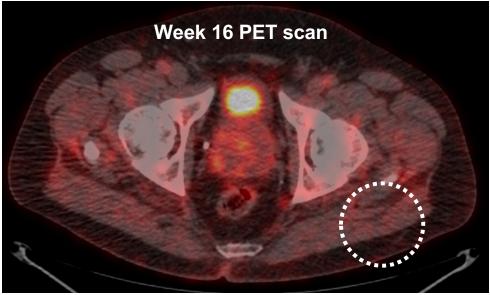
Segal. Clin Cancer Res. 2018

Table 1. Patient demographics and baseline characteristics	Utomilumab N = 55
Male : Female, n	37: 18
Mean age, years (range)	59.7 (27-85)
≥65 years	21 (38.2)
Race, n (%)	
White	34 (61.8)
Black	3 (5.5)
Asian	14 (25.5)
Other	3 (5.5)
Unspecified	1 (1.8)
ECOG PS, n (%)	
0	24 (43.6)
1	31 (56.4)
Primary cancer, n (%)	
Merkel cell carcinoma of the skin	15 (27.3)
Colorectal cancer	12 (21.8)
Gastric cancer	4 (7.3)
Pancreatic cancer	4 (7.3)
Lung cancer	3 (5.5)
Hepatobiliary cancer	3 (5.5)
Breast cancer	2 (3.6)
Lymphoma	2 (3.6)
Soft tissue sarcoma	2 (3.6)
Other ^a	8 (14.5)


Safety

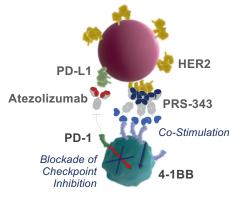
- » No DLTs (0.006– 10 mg/kg)
- » Grade ≥3 event: Fatigue (G3) in one (1.8%) patient.
- » No treatment-related grade 3–4 hepatoxicity


Table 2. Treatment-related AEs reported in >1 patient


	Grade 1-2	Grade 3-4	Total
AE	n (%)	n (%)	n (%)
Any AE	18 (32.7)	1 (1.8)	19 (34.5)
Fatigue	4 (7.3)	1 (1.8)	5 (9.1)
Pyrexia	5 (9.1)	0	5 (9.1)
Decreased appetite	3 (5.5)	0	3 (5.5)
Dizziness	3 (5.5)	0	3 (5.5)
Rash	3 (5.5)	0	3 (5.5)
Abdominal pain	2 (3.6)	0	2 (3.6)
Diarrhea	2 (3.6)	0	2 (3.6)
Vomiting	2 (3.6)	0	2 (3.6)
Dyspnea	2 (3.6)	0	2 (3.6)
Paresthesia	2 (3.6)	0	2 (3.6)

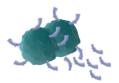
Segal. Clin Cancer Res. 2018

Tumor Response in Merkel Cell Carcinoma Patient Treated At 0.6 mg/kg


Segal. ASCO. 2014

PRS-343, a HER2 4-1BB Bispecific, Drives 4-1BB Agonism in the Tumor Microenvironment in HER2 Positive Solid Tumors

HER2-targeting moiety of the drug localizes to the tumor microenvironment and facilitates 4-1BB cross-linking


PRS-343

4-1BB cross-linking ameliorates
T-cell exhaustion and is critical
for T-cell expansion

Clinically-Relevant Biomarkers

4-1BB
Pathway
Activation
Soluble 4-1BB

T-cell Proliferation CD8+ and CD8+/Ki67

Piha-Paul, ESMO, 2020

HER2

targeting

Antibody

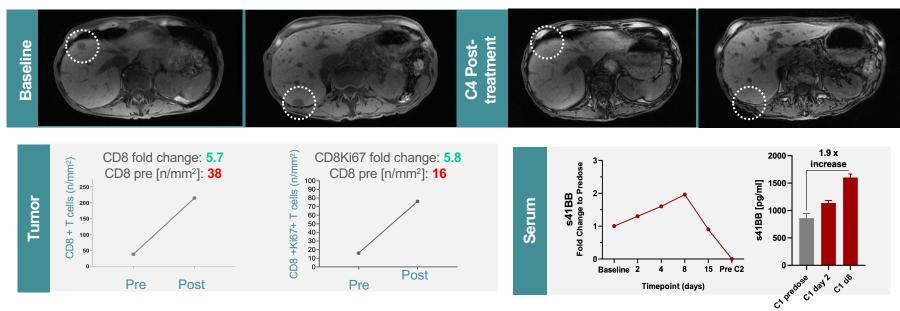
4-1BB

targeting

Anticalin®

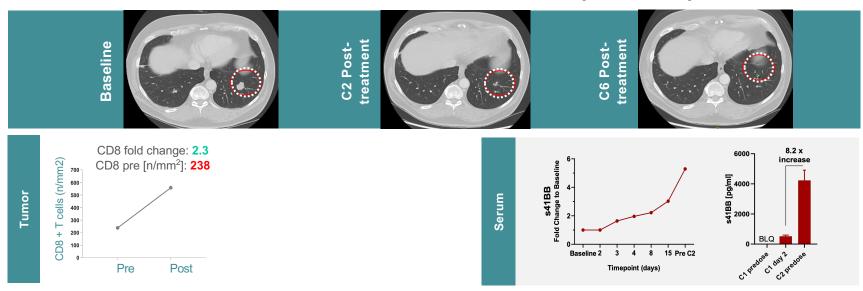
Proteins

Summary of Responses at Active Dose Range of PRS-343 in Monotherapy


Based on clinical data, serum concentration of > 20 µg/ml defines active dose range (beginning at Cohort 9)

Cohort	13b	12b	11c	Obi	11b	11	10	9	
Best Response	18 mg/kg, Q2W	12 mg/kg, Q2W	8 mg/kg, QW	8 mg/Kg, Q2W	8 mg/kg, Q2W	8 mg/kg, Q3W	5 mg/kg, Q3W	2.5 mg/kg, Q3W	Total
Evaluable Patients	3	2	4	2	7	4	6	5	33
CR	1	-	-		-	-	-	-	1
PR	-	-	-		3	-	-	-	3
SD	-	-	1	1	3	3	3	2	13
ORR	33%	0%	0%	0%	43%	0%	0%	0%	12%
DCR	33%	0%	25%	50%	86%	75%	50%	40%	52%

Data cut-off: 27-Jul-20


Piha-Paul, ESMO, 2020

CD8+ T Cell Numbers in the Tumor and Circulating s4-1BB Increase Post-Treatment in responding Gastric Cancer Patient (107-012)

Piha-Paul, ESMO, 2020

CD8+ T Cell Numbers in the Tumor and Circulating s4-1BB Increase Post-Treatment in CR Rectal Cancer Patient (103-021)

Piha-Paul. ESMO. 2020

Take-Home Points

Immune checkpoint blockade has led to unpresented benefit, durable in some patients

- » Varies by tumor type.
 Response rates ~20%
- » New and rational strategies are very much needed

With the identification of immune agonists, we have compelling new targets to enhance anti-tumor immunity

- » Supported by preclinical rationale and models
- » Goal is to enhance and maintain T-cell proliferation and survival, without Treg expansion
- » However, response rates to single agent agonists are 0-10%

Take-Home Points

Challenge:

Costimulatory
molecules may be
expressed for only a
brief period following
stimulation, repeat
stimulation can lead
to exhaustion, and
there may be
inhibitory effects

Important questions include:

- » Optimal combination more than one agonist, CTLA-4 or PD/L-1, blockade, chemotherapy, RT, ...
- » Timing, duration and sequencing (agonist ↔ antagonist, or concurrent)
- » Identify responsive tumor types and subtypes
- » Correlative studies, eg: T-cell infiltration and cell type (Treg v. Teff)

There is work to do

SNASDC Agonist Antibodies

Questions