

Translational Opportunities in Immunotherapy Research

Taha Merghoub

Deputy Director, Meyer Cancer Center

Margaret and Herman Sokol Professor of Oncology Research Professor of Pharmacology, Professor of Immunology Research in Medicine Ludwig Collaborative and Swim Across America lab

/Iemorial Sloan Kettering Cancer Center

Disclosures

- » IMVAQ therapeutics co-founder
- » Advisory board immunos therapeutics
- » Advisory board Normunity.
- » Consulting for Pfizer, Daichii
- » Inventor on a patent applications related to work on Oncolytic Viral therapy, Alpha Virus Based Vaccine, Neo Antigen Modeling, CD40, GITR, OX40, PD-1 and CTLA-4.

Some of my research was supported by:

- » Bristol-Myers Squibb
- » Surface Oncology
- » Kyn Therapeutics
- » Infinity Pharmaceuticals, Inc.

- » Peregrine Pharmeceuticals, Inc.
- » Adaptive Biotechnologies
- » Leap Therapeutics, Inc.
- » Aprea.

Some key points for today's lecture

- » Pre-clinical models inform mechanism based therapeutic strategies.
- » Tumor immune landscape should be taken into consideration when designing immune therapy.
- » The timing of the immune intervention is key.
- » Real time monitoring of the tumor microenvironment should help rationally design immune intervention.
- » Do not ignore a phenomena when you don't understand it.

Some key points for today's lecture

» Use appropriate models for each type of approach.

- » Often time the models are not the problem. We are.
 - > We need to make sure that we are not over-interpreting (literal translation).

Translation gone wrong: 7 big translation fails from 2016. Richard Brooks. K International.

Two Main Paradigms for Advancing Cancer Therapy Melanoma: the poster child

Melanoma Therapy — 2010 FDA Approved Therapies (USA) DTIC (chemotherapy): Helps 10% of patients for short periods of time (3 months)

High-dose interleukin-2: Helps <15% of patients for a decade or more; high toxicity

There was a clear need for new and more effective therapies.

Date

1970s

1998

The Poster Child: Metastatic Melanoma today

FDA-approved Therapies (USA)	Date
DTIC (dacarbazine)	1970s
Interferon alfa (adjuvant)	1996
High-dose interleukin-2	1998
Ipilimumab	2011
Nivolumab	2014
Pembrolizumab	2014
Ipilimumab/Nivolumab	2015
Talimogene Laherparepvec (T-VEC)	2015
Vemurafenib	2011
Dabrafenib	2013
Trametinib	2013
Cobimetinib	2015
Encorafenib/Binimetinib	2018
Tebentafusp	2022

Biological Events and Molecular Changes in Melanoma Progression

- Many molecular changes occur during melanoma progression
- Oncogenes and Tumor Suppressor genes are mutated

(Adapted from Miller A.R., and Merghoub T)

Genomic alteration/Mutation

Genes and Pathways Involved in Melanoma Development

Chudnovsky Y, JCI, 2005.

Mutations Define Distinct Melanoma Molecular Subsets

			Vemurafenib	
-	Arising from Skin Without Chronic Sun Damage		50% B A F 20% NRAS	0% KIT
	Arising from Skin With Chronic Sun Damage	\longrightarrow	10% BRAF 10% NRAS	2% KIT
	Arising from Mucosal Surfaces	\longrightarrow	5% BRAF 15% NRAS	20% KIT
	Arising from Acral Surfaces	\longrightarrow	15% BRAF 15% NRAS	15% KIT
	Uveal Melanoma	\longrightarrow	25% GNAQ	55% GNA11

Curtin et al. NEJM 2005; Curtin et al. JCO 2006; Van Raamsdonk et al., NEJM 2010

Can the immune system recognize cancer?

The immune system is designed to recognize foreign antigens

What if the immune system recognizes and attacks self?

Cancer = Self

Autoimmune Reaction to Self / Transformed Self

Recognizing self as non-self: Autoimmunity/<u>Vitiligo</u>

Goal: Recognition of Transformed-self/Cancer

Natural Response to Melanoma

- » Clinical observation that melanoma patients who develop vitiligo "do better" and that vitiligo is associated with response to chemotherapy as well as immunotherapy
- » Isolation from a patient of an antibody recognizing "pigmented associated antigen"

Role of the Immune System in Cancer: Immunoediting

Immunoediting

Immune Suppressive Microenvironment

William J. Murphy. Front Oncol. 2013; 3: 197.

Tumor Microenvironment

Ipilimumab Long Term Pooled Survival Analysis: 4846 Patients

Schadendorf, Hodi Wolchok, ESMO, 2013

Many Approved Immune Based Therapies

Table 1. FDA-approved immune checkpoint inhibitors

Drug	Target	Approval
Ipilimumab	CTLA-4	2011
Nivolumab	PD-1	2014
Pembrolizumab	PD-1	2014
Atezolizumab	PD-L1	2016
Durvalumab	PD-L1	2017
Avelumab	PD-L1	2017
Cemiplimab	PD-1	2019

J Clin Invest DOI: 10.1172/JCI145186

Can we predict response to immune therapy reliably?

Can we improve response to immune therapy?

Major mechanisms of resistance to anti-tumor immunity

1 – Better define the tumor intrinsic mechanisms of response to immune therapies

Can we predict response to immune therapy reliably?

Further understand the mechanisms underlying resistance to check point blockade & define potential immunogenic antigens.

- » Paul Ehrlich, Lewis Thomas...
- » Macfarlane Burnet, 1957: "It is by no means inconceivable that small accumulations of tumour cells may develop and, because of their possession of new antigenic potentialities, provoke an effective immunological reaction with regression of the tumour and no clinical hint of its existence."

Figure 1 | The prevalence of somatic mutations across human cancer types. cancer types are ordered on the horizontal axis based on their median numbers

Mutations, Immunogenicity and Prediction of clinical response

Snyder Charen et al., New Engl J Med, 2014

Mutational Load Correlates with Benefit from Checkpoint BlockadeWith Important Exceptions

Snyder, Makarov, Merghoub, Yuan et al NEJM 2014 Van Allen, Miao et al Science 2015, Hugo et al Cell 2016

NSCLC/anti-PD-1

Le et al NEJM 2016, Rizvi , Hellmann, Snyder et al Science 2015, Rosenberg et al Lancet Oncol 2016

Mutations are not all equal?

Having an immunogenic mutation is like drawing the lucky number

A computation model of neoantigen quality based immunogenicity

Luksza M, Balachandran VP, Greenbaum BG et al. *Nature* 2017.

Do hotspot mutations offer a selective advantage?

Highly conserved hotspot avoid neoantigen presentation

With Hoyos D, Zappasodi R, Levine A, Łuksza M, Greenbaum B Hoyos D et al, Nature. 2022 May 11

Differential reactivity to mutant p53 neoepitopes in cancer patients and healthy donors.

 » Trade-off between oncogenic potential and neoantigen immunogenicity

Health Donors

Cancer Patients

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine

Mathieu Gigoux^{1,2+}, Morten O. Holmström^{3,4}†, Roberta Zappasodi^{1,2,5,6}†, Joseph J. Park^{1,7}, Cansu Cimen Bozkus⁸, Levi M. B. Mangarin^{1,2}, David Redmond^{1,9}, Svena Verma^{1,2,7}, Sara Schad^{1,2,7}, Mariam George^{1,2}, Divya Venkatesh^{1,2}, Arnab Ghosh^{1,2,10}, David Hoyos¹¹, Zaki Molvi^{12,13}, Baransel Kamaz¹⁴, Anna E. Marneth¹⁴, William Duke¹⁴, Matthew J. Leventhal¹⁵, Max Jan¹⁶, Vincent Ho¹⁷, Gabriela S. Hobbs¹⁸, Trine Alma Knudsen¹⁹, Vibe Skov¹⁹, Lasse Kjær¹⁹, Thomas Stauffer Larsen²⁰, Dennis Lund Hansen²⁰, R. Coleman Lindsley¹⁷, Hans Hasselbalch¹⁹, Jacob H. Grauslund^{3,4}, Thomas L. Lisle^{3,4}, Özcan Met^{3,4}, Patrick Wilkinson²¹, Benjamin Greenbaum^{11,22}, Manuel A. Sepulveda²¹, Timothy Chan^{7,23}, Raajit Rampal²⁴, Mads H. Andersen^{3,4}, Omar Abdel-Wahab²⁴, Nina Bhardwaj²⁵, Jedd D. Wolchok^{1,2,5,7}‡, Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works

Sci Transl Med. 2022 Jun 15

Distinct Tumor Immune TME in one Patient, Controlled for Environmental & Inherited Factors

Jiménez-Sánchez A, Cell. 2017

Can we improve existing immune therapies?

Need to go back to murine tumor models

We look like identical twins!

Inbred mouse strains are a great tool

Major mechanisms of resistance to anti-tumor immunity

LETTER

Immune-active microenvironment in human cancers is associated with clinical benefit from immunotherapies

2 – Modify the Immune Suppressive Microenvironment

Tumor Microenvironment

PD-L1

William J. Murphy. Front Oncol. 2013; 3: 197.

Normal Cell

Tumor Cell

CD4⁺ T Cell

CD8⁺ T Cell

NK Cell

- » Reverse immune suppression
- » Induce anti-tumor immune response

Variants for immunogenicity study

Segal et al. Cancer Res 2008 Matsushita et al. Nature 2012

Rationale for Combination with other therapies:

- » Use other means to enhance tumor recognition
- » Strategy to address low response rates of checkpoint blockade

Approach combining blockade of <u>immune suppression</u> with immunotherapy

----> The target cell need to be present

Immune Suppressive Tumor Microenvironment Microenvironment Normal Cell Dendritic Cell Immature Dendritic Cell Tumor Cell IDC NK Cell Macrophage (M2) TRAIL Granzym PD-L1 FasL Perforin TRAIL-R Myeloid Derived Suppressor Cell NKG2D CD4⁺ T Cell CD8⁺ T Cell Regulatory T Cell MHC Class Tumor antigen

Elimination

Escape

William J. Murphy. Front Oncol. 2013; 3: 197.

Modify the Immune Suppressive Microenvironment

ARTICLE https://doi.org/10.1038/s41467-020-17750-z

nature

COMMUNICATIONS

Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine

Check for updates

Luis Felipe Campesato^{1,2}, Sadna Budhu^{1,2}, Jeremy Tchaicha³, Chien-Huan Weng^{1,2}, Mathieu Gigoux^{1,2}, Ivan Jose Cohen⁴, David Redmond^{1,2}, Levi Mangarin^{1,2}, Stephane Pourpe^{1,2}, Cailian Liu^{1,2}, Roberta Zappasodi @ 1.2, Dmitriy Zamarin^{1,2}, Jill Cavanaugh³, Alfredo C. Castro³, Mark G. Manfredi³, Karen McGovern³, Taha Merghoub ^(1,2,5) & Jedd D. Wolchok ^(1,2,5)

Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy

圭 Memorial Sloan Kettering Cancer Center

Rikke B. Holmgaard, Alexandra Brachfeld, Billel Gasmi, Thompson Doman, Mary Murphy, David Schaer, Jedd D. Wolchok & Taha Merghoub

To cite this article: Rikke B. Holmgaard, Alexandra Brachfeld, Billel Gasmi, Thompson Doman, Mary Murphy, David Schaer, Jedd D. Wolchok & Taha Merghoub (2016): Timing of CSF-1/ CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy, Oncolmmunology, DOI: 10.1080/2162402X.2016.1151595

Cell Reports

Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner

Rikke B. Holmgaard, Dmitriy Zamarin, Yanvun Li, James P. Allison. Taha Merghoub, Jedd D. Wolcho

Correspondence wolchokj@mskcc.org

IDO mediates immune inhibition in tumors, though the mechanisms of this are poorly understood. Holmgaard et al. demonstrate that tumor IDO is a central regulator of both local and systemic immunosuppression and resistance to immunotherapy, which is orchestrated through expansion, recruitment, and activation of MDSCs in a Treg-dependen

Overcoming resistance to checkpoint blockade therapy by targeting PI3K γ in myeloid cells

Olivier De Henau¹, Matthew Rausch², David Winkler², Luis Felipe Campesato¹, Callian Llu³, Daniel Hirschhorn-Cymerman¹, Sadna Budhu³, Arnab Ghosh³, Melissa Pink³, Jeremy Tchaicha¹, Mark Douglas², Thomas Tibbitts², Sujata Sharma², Jennifer Proctor², Nicole Kosmider¹, Kerry White¹, Howard Stern², John Soglia¹, Julian Adams⁴, Vito J. Palombella², Karen McGovern², Jeffery L. Kutok², Jedd D. Wolchok^{1,3} & Taha Merghoub³

Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer

Souhil Lebdai^{thic}, Mathieu Gigoux^{ade}, Ricardo Alvim^a, Alexander Somma^a, Karan Nagar^a, Abdel Rahmene Azzouzi^c, Olivier Cussenot^b, Taha Merghoub^{ade}, Jedd D. Wolchok^{ade,la}, Avigdor Scherz^h, Kwanghee Kim^a, and Jonathan Coleman*

Therapeutic targeting of suppressive MDSCs: Suppressive MDSCs show high expression of CSF-1R

Castells et al. 2012, Int J Mol Sci.

Resistance to checkpoint blockade is associated with suppressive myeloid cells infiltration in tumor microenvironment

O De Henau et al. Nature (2016)

Role of Myeloid Cells in IPI-549 Antitumor Activity

- » PI3 kinase gamma is preferentially expressed in MDSCs
- » IPI-549 is a PI3 kinase gamma inhibitor.
- » IPI-549 is only active in myeloid MDSC dependent tumors.

O De Henau et al. Nature (2016)

IPI-549 is Active in the Myeloid-Cell-Rich Melanoma (B16-GM-CSF) Model

Administration of IPI-549 15 mg/kg orally, daily to C57BI6 mice bearing GM-CSF transduced B16 tumors resulted in a significant inhibition of tumor growth (*p < 0.0001), while IPI-549 had no impact on B16 tumors without GM-CSF (p = 0.1852) (n = 5-6 mice/group).

Resistance to checkpoint blockade therapy is overcome when combined with selective PI3Kγ inhibition

а Vehicle vs IPI-549 15 mg kg⁻¹, PO, QD Tumour implant Anti-PD1 ± anti-CTLA4 Day Day Day Day Day Day Day 7 10 13 16 19 21 0 e b 4T1 B16-GMCSF anti-PD-1 Control anti-CTLA4 Control anti-PD-1 anti-CTLA4 2,500 Vehicle IPI-549 2,000 + Vehicle 2,000 1 2,500 2,000 Vehicle
IPI-549 Vehicle 2,500 ◆ Vehicle◆ IPI-549 2 2,000 - IPI-549 2,000 E 1,500 · 1,500 · 1,500-2,000 1,500 1,500 1,500 001 1.000 Zi 1,000 1.000 1,000 1,000 1.000 500 500 · 500 500 500 500 Ē 2 0 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 0 0 Days post tumour graft d С anti-CTLA4 + anti-PD1 f anti-CTLA4 + anti-PD1 g • anti-CTLA4 + anti-PD-1 * Vehicle 3,000 -- Vehicle (CR = 0/10) 1001 5 2,000 - Vehicle (CR = 2/10) + anti-CTLA4 + anti-PD-1 - IPI-549 (CR = 3/10) 100 - IPI-549 + anti-CTLA4 + anti-PD-1 IPI-549 (CR = 8/10) 2,000 1,500 + anti-PD-1 50size 1,000 1,000 50 nou Per 500 Per 10 20 30 40 100 150 0 0 50 Days post tumour graft Days post tumour graft 50 100 150 200 60 0 20 40 Days post tumour graft Days post tumour graft **Mammary Carcinoma Model Melanoma Model**

O De Henau et al. Nature 1–4 (2016) doi:10.1038/nature20554

Blocking Suppressive Mechanisms

MDSCs Inhibition (CSF1R blockade, PI3 Kinase....)

IDO inhibition, Kyn, AHR

Campesato, et al, Nat Commun, 2020 Hoolmgard et al, Cell Report,2015

Approach combining blockade of <u>immune suppression</u> with checkpoint blockade

----> The target cell need to be present Timing is key

Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy

Taylor & Francis

6

Rikke B. Holmgaard, Alexandra Brachfeld, Billel Gasmi, Thompson Doman, Mary Murphy, David Schaer, Jedd D. Wolchok & Taha Merghoub

Approach combining blockade of <u>immune suppression</u> with checkpoint blockade

----> Location is important

Cancer Cell

Tim-4⁺ cavity-resident macrophages impair anti-tumor CD8⁺ T cell immunity

Authors

Andrew Chow, Sara Schad Michael D. Green, ..., Jedd D. Wolchok Charles M. Rudin, Taha Merghoub

Correspondence

rudinc@mskcc.org (C.M.R.), merghoubt@mskcc.org (T.M.)

In brief

Chow et al. demonstrate that metastatic involvement of the pleural and the peritoneal cavities is associated with poor ICB efficacy in patients with cancer. Tim-4+ cavity-resident macrophages directly impair CD8 T cell function, and Tim-4 blockade enhances the efficacy of ICB and adoptive T cells therapy in mice.

Approach of combining check point blockade with the induction of antigen response

----> Antitumor immune response is needed in situ vaccine

Approach

Induce Tumor Antigen Response

- » Killing the tumors with targeted therapies
- » Oncolytic viral therapy
- » Chemotherapy
- » Radiation therapy
- » VTP
- » Other means...

Increase the Number of Immune Infiltrating Immune Cells

Segal et al. Cancer Res 2008 Matsushita et al. Nature 2012

Targeting tumor cells should induce a tumorspecific immune response

Alteration of the host immune system

MEK signaling is important to the tumor cells and immune cells both

Cell Reports

Pulsatile MEK Inhibition Improves Anti-tumor Immunity and T Cell Function in Murine Kras Mutant Lung Cancer

Graphical Abstract

Authors

Hyejin Choi, Jiehui Deng, Shuai Li, ..., Taha Merghoub, Kwok-Kin Wong, Jedd D. Wolchok

Article

Correspondence

merghout@mskcc.org (T.M.), kwok-kin.wong@nyumc.org (K.-K.W.), wolchokj@mskcc.org (J.D.W.)

In Brief

KRAS mutant non-small-cell lung cancer (NSCLC) remains refractory to targeted therapeutics. Choi et al. show that pulsatile, rather than continuous, treatment with MEK inhibitors can maintain T cell activity better and prolong survival in mice with Kras mutant cancer. This effect is further enhanced when combined with CTLA-4 blockade.

Induction of antitumor immunity with oncolytic viruses : ∆E3L vaccinia virus or Newcastle disease virus (NDV)

- » Antagonist of intracellular innate immune signaling
- » A mutant vaccinia virus lacking the E3L gene (Δ E3L):
 - > has a restricted host-range
 - > is highly sensitive to IFN
 - has greatly reduced virulence in animal models
- » Both the N-terminal Z-DNA BD and C-terminal dsRNA BD are required for full pathogenesis of the virus in vivo.

- » Member of Paramyxoviridae family
- » Birds are a natural host
- » Strong inducer of type I IFN
- » Readily infects the majority of cancer cells due to
- » ubiquity of the receptor (sialic acid)
- » Specificity for cancer cells is mediated by selective viral replication in cells with deficient innate immune responses and cells resistant to apoptosis
- Clinical trials with systemically-administered NDV in humans demonstrated safety and durable clinical benefit

Approach:

Combining Other immune modulatory antibodies

Alter Host Immune System: Rationale Combination with Immune modulation

Receptor and ligands	Mechanism of action	Current status	Examples of agents
Co-inhibitory receptors			
CTLA4 CD80/86	Limits initial T cell activation and proliferation	FDA- approved	Ipilimumab, tremelimumab
PD1 PD-L1	Inhibits the activity of effector T cells	FDA- approved	Nivolumab, pembrolizumab, durvalumab, atezolizumab
LAG3 - MHC II	Inhibits the activity of effector T cells via the KIEELE motif, which is functionally linked with $\rm T_{reg}$ cell-mediated immunosuppression	Phase III trial ongoing	Relatlimab
TIM-3 Galectin-9 CEACAM1	Triggers CD8 ⁺ T cell apoptosis and/or exhaustion	Phase II trials ongoing	Cobolimab, sabatolimab
TIGIT CD155. CD112	Downregulation of T cell and NK cell function	Phase II trials ongoing	Tiragolumab
BTLA	Suppression of downstream activation of TCR signalling via SH2	Phase I trials ongoing	Icatolimab
Co-stimulatory receptors			
GITR	Promotes activation and proliferation of effector T cells and a reduction in $\mathrm{T}_{\mathrm{reg}}$ cells	Phase II trials ongoing	TRX518, BMS-986156
OX40 OX40L	Promotes survival, but not priming, of both effector and memory T cells	Phase II trials ongoing	GSK3174998, MEDI6469, PF- 04518600
4-18B	Promotes T cell proliferation and mitochondrial function and biogenesis	Phase I trials ongoing	Utomilumab, urelumab
	Promotes TCR co-stimulation and $\mathrm{T}_{\mathrm{reg}}$ cell stimulation	Phase I trials ongoing	Vopratelimab, KY1044, GSK3359609

Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Nat Rev Clin Oncol. 2022

Approach:

Combining Other immune modulatory antibodies beyond checkpoint blockade

Immunomodulatory Abs for cancer therapy: beyond immune checkpoint blockade

Immunomodulatory Abs for cancer therapy: beyond immune checkpoint blockade

nature medicine LETTERS Mgs://doi.org/10.1038//41591-009-0420-8

Rational design of anti-GITR-based combination immunotherapy

Roberta Zappasodi¹², Cynthia Sirard¹, Yanyun Li¹², Sadna Budhu¹, Mohsen Abu-Akeel¹, Cailian Llu¹, Xia Yang¹, Hong Zhong¹, Walter Newman², Ingjing Qi⁴², Phillip Wong⁴², David Schaer¹, Henry Koon⁴, Yamsidhar Velchet¹⁴, Matthew D. Helmann^{22,6}, Michael A. Postow²³, Margaret K. Callahan^{22,8}, Jedd D. Wolched^{10,12,04} and Taha Merghoul^{60,120,14}

Gene expression analyses in purified CD8⁺ TILs

Finally:

Don't ignore the biology you don't know

T cell development and commitment to single positive fates

T cells originate from hematopoietic stem cells in the bone marrow and migrate to the thymus for development

- » TCRs undergo rearrangement to produce millions of unique variations
- » Successfully rearranged TCRs are tested for reactivity with peptide:MHC complexes
 - Strong interactions (self-reactive TCRs) induce cell death
 - > Weak interactions survive
 - > No interaction induces cell death
- » Select TCRs enter the periphery as mature single positive T cells

Heterogenous CD4+CD8+ T cells accumulate in murine and human melanoma tumors

Merge

0

 \bigcirc

CD4+CD8+ T cells are heterogenous and polyfunctional

- » TCR signaling induces co-receptor re-expression
- » CD4⁺CD8⁺ T cells are polyfunctional and clonally expanded:
 - Cytotoxic CD4 derived CD4⁺cd8⁺ T cells (mouse and human)
 - Suppressive (mouse only) and cytotoxic CD8 derived CD8⁺cd4⁺ T cells (mouse and human)
- » "Activated" CD4⁺CD8⁺ T cells may have enriched antigen specificity
- » Naïve, non-clonally expanded CD4⁺CD8⁺ T cells exist

Some key points for today's lecture

- » Pre-clinical models inform mechanism based therapeutic strategies.
- » Tumor immune landscape should be taken into consideration when designing immune therapy.
- » The timing of the immune intervention is key.
- » Real time monitoring of the tumor microenvironment should help rationally design immune intervention.
- » Do not ignore a phenomena when you don't understand it.

Some key points for today's lecture

» Use appropriate models for each type of approach.

- » Often time the models are not the problem. We are.
 - > We need to make sure that we are not over-interpreting (literal translation).

Translation gone wrong: 7 big translation fails from 2016. Richard Brooks. K International.

Acknowledgement

Ludwig Collaborative Lab at WCM

Other support: NIH, Dept of Defense, Swim Across America, SU2C, Melanoma Research Alliance, Breast Cancer Research Fdn, CRI, Damon Runyon Fdn, ASCO Conquer Cancer Fdn

Adaptive resistance mechanism to SARS-CoV-2 = Zoom

Adaptive resistance mechanism to SARS-CoV-2 = Zoom

Translational Opportunities in Immunotherapy Research

Questions