### SASDC Single Cell Genomics

#### Dana Pe'er

Chair, Computational and Systems Biology



Iemorial Sloan Kettering <sup>t</sup>ancer Center

### A Geometric Approach to Phenotype

Cell Phenotype: A configuration of multidimensional cellular features

» Defines a region in
 "phenotypic space"

| Î         | + + +        |            | HLA-DR PB        |
|-----------|--------------|------------|------------------|
| Protein Y |              | <b>*</b> * | <br>CD34 PE Cy55 |
| P         | rotein X ——— |            | <b>→</b>         |

## Adding dimensions reveals subtypes

High dimensional single cell technologies: CyTOF, singlecell RNA-seq now generate millions of multiparameter cells.



#### PCA tSNE CD4 T cells CD8 T cells 800 90 CD3 CD3 -CD11b<sup>+</sup> monocytes CD20<sup>+</sup> B cells Not manually gated CD8 T cells ۰ CD4 T cells ۲ CD20+ B cells 🛛 😑 CD11b- Monocytes CD11b CD20- B cells CD2 CD11b+ Monocytes NK cells . CD33 CD19 Amir et. al. Nature Biotech 2013

### Cell phenotypes accumulate in complex non-linear manifolds

### Cell phenotypes accumulate in complex non-linear geometric shapes

- » Cells accumulate in densities robust states
- » High-dimensional data but low dimensional structure:
  - > Data lies on "Manifold"
- » This defines "cell types"
- » UMAP is more commonly used for immune subsets



### **Clustering: Dissecting response to checkpoint blockade**

- » Measured response to anti-PD1 and anti-CTLA4 in MC38 colorectal tumors.
- » 33 surface and 10 intracellular markers: Cell type(e.g. CD8, CD4, CD11b, CD19), T cell differentiation and activation markers (e.g. PD-1, ICOS, TIM3, KLRG1, CD127), T cell lineage transcription factors (e.g. T-BET, EOMES, GATA3, BCL6). This gives 528 biaxial plots.



Wei et. al. Cell 2017

### **Rich Heterogeneity observed in data**



#### How can we interpret this?

- » It is hard for us to interpret the story looking one marker at at time
- » Key mistake: NEVER over interpret 2D projections of the data. These can very misleading.
- » I call this "tSNE tea reading" and have often led to the wrong conclusion.

### **Clustering: unbiased characterization of subpopulations**

- » Instead of gating, a data-driven approach
- » There are many clustering approaches to decompose the entire dataset
- » Most common approach is graph-based clustering:
  - > Each node is a cell
  - Each cell is connected to a neighborhood of "similar" cells
  - > Use methods derived from social networks



Levine\*, Simonds\* et. al. Cell 2014

### Tumor infiltrating T cell subsets

15 distinct tumor infiltrating T cell clusters found



Memorial Sloan Kettering Cancer Center

### Population dynamics in response to therapy

- » CD8 expanded following both therapies, but not all CD8 clusters expanded equally
- » Expansion of CD4 phenotype only in response to CTLA-4, but does not change after PD-1
- » Note: Cluster proportion can be statistically unstable, check that your clustering is robust



### Interpreting clusters with heatmaps

- » Heatmaps is a good way to interpret clusters
- » TIM3+ PD-1high: Expansion of exhausted population (IdU staining) -> reinvigoration of exhausted phenotype
- » CD4 Th1-like phenotype (PD-1high ICOSint CD86+ TBET+) expands only in response to CTLA4, low IdU staining suggests increased differentiation or infiltration.
- » Data demonstrates different mechanism of action for anti-PD1 and anti-CTLA4



### T cell subsets that correlate with tumor growth

- Only 2 CD8+ populations correlated negatively with tumor growth.
- » Subtle multivariate phenotypic differences, distinguish T cell populations with dramatic functional differences



### Archetypes: Effect of negative costimulation on T cell differentiation





Wei\*, Sharma\* et. al. Immunity 2019

### Loss of CTLA-4 has dramatic effect on CD4 T cells



### **Archetypes verses clusters**

- » Clusters identify centroids of discrete populations
- » Immune phenotypes are often not well separated
- » Archetypes characterize the "extreme" conditions in the data.
- » They often relate to a biological process (e.g. exhaustion)

#### Archetype analysis is very stable and robust



Archetypes

### A Geometric Approach to Phenotype

During development inhibitory signal from CTLA4 defines limits on T-cell phenotypes



WT Het KO

### Negative costimulation constrains T cell differentiation



### Microfluidics: Single-cell RNA-seq across thousands of cells



#### Single-cell data analysis involves major computational challenges



### Single-cell data analysis involves major computational challenges



### Single-cell RNA-seq samples 5% of transcripts in each cell

- » Surface markers used for gating typically have very low RNA-levels and are poorly captured in most immune cells.
- » For example: Monocyte clusters have
  - 1.6% cells expressing CD14
  - 5.8% cells expressing CD11b
- » The power comes from measuring many cells



### Characterization of tumor immune cells in breast cancer

#### Data-Driven approach: > 3000-10,000 CD45+ collected per tumor

- » What is the immune states and the structure of the tumor immune ecosystem?
- » How do cell subsets differ between tissue microenvironments?



Azizi\*, Plitas\*, Carr\*, Cornish\* et. al. Cell 2018

### Significant batch effects confound multi-tumor analysis

All batch correction algorithms make strong assumptions and have trade-offs: there is no free lunch



Normalization is a key unresolved problem in data analysis: Most common approach global normalization

![](_page_23_Figure_1.jpeg)

Cells with different sizes have very different total number of transcripts

Example Housekeeping Gene

High chance of Dropouts in smaller cells

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

Library Size

![](_page_23_Picture_8.jpeg)

### Problem with Global Normalization

![](_page_24_Figure_1.jpeg)

### Different normalization for each cell type

![](_page_25_Figure_1.jpeg)

I recommend SCRAN for immune datasets

### There are strong batch effects with and between samples

- » Differences between cells / samples convolute both biological and technical reasons (e.g. active T-cell also have more transcripts)
- » Normalization methods assume similarity and often remove biological differences as well
- » There is no free lunch, but one should search for the best trade-off

![](_page_26_Figure_4.jpeg)

## Biscuit improves clustering

- » Samples mix well after Biscuit: high entropy
- » Biscuit is robust
- » Biscuit's parametric model can provide DEGs
- » However: Biscuit is computationally heavy

Prabhakaran\*, Azizi\* et. al. ICML 2016

![](_page_27_Figure_6.jpeg)

![](_page_28_Figure_0.jpeg)

Azizi\*, Plitas\*, Carr\*, Cornish\* et. al. Cell 2018

![](_page_29_Picture_0.jpeg)

![](_page_30_Figure_0.jpeg)

### **Clusters vary in subtype and differentiation state**

![](_page_31_Figure_1.jpeg)

#### Metabolic and Immune Programs also vary across

The quality of your gene signatures sets the quality of your annotation, curate these from good sources suitable for your biology

![](_page_32_Figure_2.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

Tissue resident immune cells are dramatically different than those in immune organs

![](_page_36_Figure_1.jpeg)

- » 19 T-cell clusters shared between tumor and breast-tissue
- » 17 T-cell clusters unique to tumor are more activated and more cytotoxic

![](_page_36_Figure_4.jpeg)

### Intratumoral T cells reside on a continuous activation trajectory!

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

### Some cell types are more well separated than others

![](_page_38_Figure_2.jpeg)

Shekhar et al. Cell 2016 Data from Azizi et al. Cell 2018 Data from Laughney et al. Nat Med 2020

Neuronal cells are far better separated than T-cells

### Diffusion components capture continuous trends in data

Diffusion maps are a "non-linear" version of PCA that follows the data density

![](_page_39_Figure_2.jpeg)

![](_page_39_Picture_3.jpeg)

Linear direction of variation

Diffusion maps

Trajectory through the manifold

### T-cell phenotypic space is continuous

- » T-cells define a continuum of states
- » Most of the variation can be captured by a few axes of variation
- » First diffusion component that explains most of variation is T cell activation

![](_page_40_Figure_4.jpeg)

### **Activation and Differentiation Axes in Tumor Immune Atlas**

- » A large diversity of monocytic cells organize onto distinct axes of differentiation as they change environment / tissue context
- » All cells have both M1 and M2 genes

![](_page_41_Figure_3.jpeg)

### Does TCR repertoire diversity contribute to the continuous spectrum of T cell activation?

Paired single-cell TCR- and RNA-seq on 27K sorted T cells

![](_page_42_Figure_2.jpeg)

### Does TCR repertoire diversity contribute to the continuous spectrum of T cell activation?

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

by clonotypes (ANOVA test on 3 tumors)

### We constructed a cell atlas of the tumor immune system:

- » Captured a rich diversity of tumor immune cell types
- » Captured tissue specific differences in tumor-immune environment
- » Strongest axis of variation: continuum of activation states

![](_page_44_Figure_4.jpeg)

### Data analysis of scRNA-seq is not straightforward

- » Every step in data-processing matters.
- » Within sample normalization: down-sampling, total count, log, z-score, scran, sc-transform
- » Feature selection: all genes, highly variable genes
- » Clustering
- » Batch-Correction

![](_page_45_Figure_6.jpeg)

### Sorting allows us to discover increasing heterogeneity

![](_page_46_Figure_1.jpeg)

Data from: CZI/Quake Tabula Muris spleen

Data from Brown\*, Gudjohnson\*, et.al. Cell 2019

### Sorting allows us to discover increasing heterogeneity

- » Clusters are not a one to one match with cell types
- » Annotating clusters is still one of the most laborious tasks in the analysis:
  - > Cite-seq will help
  - Computational methods to automate are being developed
- » cDC2A and cDC2B Have Distinct Phenotypic and Functional Properties

Brown\*, Gudjohnson\*, et.al. Cell 2019

![](_page_47_Figure_7.jpeg)

### **Continuous trends show differentiation trajectories**

![](_page_48_Figure_1.jpeg)

### Cohort design to find resistance program

- » Search for the signature at the single cell level
- » Bulk to get larger cohort sizes

Jerby et al., Cell 2018

![](_page_49_Figure_4.jpeg)

### Single cell RNA-seq data of melanoma cohort

- » Melamona cells are different and unique to each patient
- Immune subsets overlap between the patient
- » But very much differ in abundances of different immune subtypes

![](_page_50_Figure_4.jpeg)

![](_page_50_Figure_5.jpeg)

### A program in malignant cells from T cell "cold" tumors

![](_page_51_Figure_1.jpeg)

495 tumors bulk RNA-Seq

| yc targets | MHC-I, |
|------------|--------|
| CDK4       | IFNg   |
| OK targets | SASP,  |

### Exclusion program associated with resistance; but some cells express the program pre-treatment

![](_page_52_Figure_1.jpeg)

### Validation cohort: Program predicts immunotherapy outcome

![](_page_53_Figure_1.jpeg)

### **Computational search predicts CDK4/6 as program regulators**

**Query:** which drugs are more toxic to cell lines overexpressing the program in a screen of 131 drugs across 639 human cell lines (Garnett et al., 2012)?

CDK4 and CDK4/6 target genes are induced in the exclusion program

![](_page_54_Figure_3.jpeg)

![](_page_55_Figure_0.jpeg)

Benefit depends on both Rb in malignant (B16) cells and on presence of CD8 cells

### Model: The contribution of malignant cell programs to immune cell exclusion

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

# SINGLAWARDER Skills Development Consortium SIGLAWARDER Skills Development Consortium CI Awardee Skills Development Cons