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A Geometric
Approach to
Phenotype

Cell Phenotype:

A configuration of

multidimensional

cellular features

» Defines a

region in
“phenotypic
space’

Protein Y

Protein X

HLA-DR PB

CD34 PE Cy55



Adding dimensions
reveals subtypes &

High dimensional
single cell
technologies:
CyTOF, single-
cell RNA-seq
now generate
millions of multi-
parameter cells. Protein Y

Protein X



Cell phenotypes accumulate in complex non-linear manifolds

CD4 T cells CD8 T cells

CD3 ————————
CD11b" monocytes CD20" B cells

Not manually gated @ CD4Tcells @ CDBT cells
® CD20+Becells © CD20-Bcells @ CD11b- Monocytes
@ CD11b+ Monocytes @  NKcells

Suund Lased 2 daae 2 ssed A

CD11b ———»

Amir et. al. Nature Biotech 2013



Cell phenotypes accumulate
in complex non-linear
geometric shapes

» Cells accumulate in densities —
robust states

» High-dimensional data but low
dimensional structure:

» Data lies on “Manifold”
» This defines “cell types”

» UMAP is more commonly used
for immune subsets

tSNE2

o Monocytes

¢ Plasma

o CD20+_Immature+_B_Cells
® CD20-_Early_B_Cells

¢ CD4_T Cells

CD8_T_Cells

® NK_Cells
@ Progenitors
¢ pDCs




Clustering: Dissecting response to checkpoint blockade

» Measured response to anti-PD1 and
anti-CTLA4 in MC38 colorectal tumors.

» 33 surface and 10 intracellular
markers: Cell type(e.g. CD8, CD4,
CD11b, CD19), T cell differentiation
and activation markers (e.g. PD-1,
ICOS, TIM3, KLRG1, CD127), T cell
lineage transcription factors (e.g. T-
BET, EOMES, GATAS3, BCL6). This
gives 528 biaxial plots.

Mass cytometry

Wei et. al. Cell 2017



Rich Heterogeneity observed in data

cDB
TiM3

cod
G044
FD-1

KLRG1
i ' 4

How can we interpret this?
» Itis hard for us to interpret the story looking one marker at at time
» Key mistake: NEVER over interpret 2D projections of the data. These can very misleading.
» | call this "tSNE tea reading” and have often led to the wrong conclusion.



Clustering: unbiased characterization of subpopulations

» Instead of gating, a data-driven approach

» There are many clustering approaches to
decompose the entire dataset

» Most common approach is graph-based
clustering:

» Each node is a cell

» Each cell is connected to a neighborhood
of “similar” cells

y Use methods derived from social networks

Levine*, Simonds* et. al. Cell 2014



Tumor
infiltrating
T cell
subsets

15 distinct
tumor infiltrating
T cell clusters
found

Memorial Sloan Kettering
Cancer Center

Control
aCTLA-4
aPD-1

Clusters




Population dynamics in response to therapy

» CD8 expanded following

both therapies, but not all 401 . contal
CD8 clusters expanded 3547 . - aCTLA4
equally 30-}. s aPD-1

» Expansion of CD4

25+
phenotype only in response - I: -
to CTLA-4, but does not

change after PD-1 ol T ST A P
» Note: Cluster proportion 5- *% iﬂ . 7&# %L -
can be statistically P Il S S B L T Ayawaes
CD8 Other

unstable, check that your Treg  CD4eff
clustering is robust

% of T cells
N
o




CD4

Interpreting clusters with heatmaps

CcD8
KLRG1

» Heatmaps is a good way to interpret clusters =

» TIM3+ PD-1high: Expansion of exhausted
population (IdU staining) -> reinvigoration of eom
exhausted phenotype PR

» CD4 Th1-like phenotype (PD-1high ICOSint
CD86+ TBET+) expands only in response to sare
CTLA4, low IdU staining suggests increased coes
differentiation or infiltration. cozr

» Data demonstrates different mechanism of cc
action for anti-PD1 and anti-CTLA4 o

1 9 3 11 2 4 6 7 12 5 8 10 13 14 15

Treg CD4eff CD8 Other



T cell subsets that correlate with tumor growth

» Only 2 CD8+

»

populations
correlated

negatively with
tumor growth.

Subtle multivariate

phenotypic
differences,

distinguish T cell
populations with

dramatic
functional
differences

Control
ACTLA4 :.
aPD-1

Metacluster 2
_ PD-1+ Tim3low

Metacluster 10

 PD-1++ Tim3+

Metacluster 13

_ PD-1++ Tim3+

Metacluster 11

~ PD-1- CD62L+

"un

CD127+

Tumor volume (mm3)

Metacluster frequency



Archetypes: Effect of negative costimulation

on T cell differentiation
Wild type (WT)
17~ i -

Ctlad*"
Heterozygous (Het) " 1

Ctlad™
Knockout (KO) cell; cell;, cell,

Wei*, Sharma* et.
al. Immunity 2019



Loss of CTLA-4 has dramatic effect on CD4 T cells

Expression



Archetypes verses clusters

» Clusters identify centroids of
discrete populations

» Immune phenotypes are often
not well separated

» Archetypes characterize the
“‘extreme” conditions in the data.

» They often relate to a biological
process (e.g. exhaustion) Single-celldata

Archetype analysis is very stable and robust

Archetypes

"
‘.{' “‘:8’!..0 13

Clusters

.
.0'..:‘...':

I PR
. ,-'o {-":.15
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A Geometric
Approach to
Phenotype

During
development
inhibitory
signal from
CTLA4 defines
limits on T-cell
phenotypes

CD4 archetypes

T cell Frequency (%)

Treg
ICOS+
PD-1 low
LAG3+

Effector
Effector ICOS+

BCL6+
GATA3+ TBET+
RORYT+

ICOS+

WT Het KO



Negative
costimulation
constrains T cell
differentiation

Negative costimulatory

pathways intact Q
\ Phenotypic
/ l \‘ boundaries enforced

Negative costimulatory

pathways absent O
\ Phenotypic
/ l \\ boundaries breached

Q«O O 0.0




Microfluidics: Single-cell RNA-seq across thousands of cells

Klein et al Cell 2015

Single-cell Transcriptomics Macosko et al Cell 2015
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Single-cell data analysis involves major computational challenges

Klein et al Cell 2015

Single-cell Transcriptomics Macosko et al Cell 2015
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Single-cell data analysis involves major computational challenges

Klein et al Cell 2015

Single-cell Transcriptomics Macosko et al Cell 2015

Single-cell Cell barcoding RT reaction

09”3‘ ) compartmentalization in droplets Break droplets Amplification Library preparation
S see s oMpme @y (T R ﬂé =
» 0 ¥ —)> V) - e yj \D <& wp & B == Joaz
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Count Matrix Each cell can have a different amplification rate,
G2k ., ; capture efficiency, RNA degradation, etc

— different library size

- Genes -

Measured expression

= | Sparsity . . . .
Dropouts X 7 in cell J is noisy



Single-cell RNA-seq samples 5% of transcripts in each cell

» Surface markers used for M !

: ) Cd44 M l [T TR I
gating typically have very Cd34 LI EIT LR A
low RNA-levels and are Cg;gg | | i | | ||| |I | !| ] | ‘!\’
poorly captured in most Cdid | | I O
immune cells. Cd11b | || | || I ‘\ |
Cd33 |
» For example: Monocyte Cd2 | )
clusters have Céélg | | | | |
» 1.6% cells expressing 03173 |
CD14 Cd?25 |
Cd262 | |
> 5.8% cells expressing ~ Cd2ssalll 1l | || | | (118 | |
CD1 1 b a (W} c c4 () c6 C7 C8 o C10CI§12 C14 (& 1 c16 CI7c18
» The power comes from 3000 cells mouse Bone marrow as e

. Paul, et.al. Cell 2016
measuring many cells



Characterization of tumor immune cells in breast cancer

Data-Driven approach: Sample Collection
> 3000'10,000 CD45+ Patient 1 Single-cell RNA-seq
I

collected per tumor umor T E—

» What is the immune ® e g amal m#m:%; o
States and the ‘ Blood Patient 2 ‘-*5——0” —_Bd SinglepssgliﬁzalySis
structure of the tumor e e
immune ecosystem? SUE )

» HOW do Ce” Subsets 8 Patients *@O//é%* ormal | =700
differ between tissue 47k
microenvironments? Cells

Azizi*, Plitas*, Carr*, Cornish* et. al. Cell 2018



Significant batch effects confound multi-tumor analysis

All batch
correction
algorithms
make strong
assumptions
and have
trade-offs:
there is no
free lunch

tumors

e BC5
o BC7
BC6

Global Normalization

Entropy
Low

High

Entropy%

0.5 1 1.5
Entropy of Distribution of Patients




Normalization
is a key
unresolved
problem in
data analysis:
Most common
approach
global
normalization

®

Memorial Sloan Kettering
Cancer Center

Library Size

Gene A

macrophage
Library Size
S _ M cenen

Library Size

I GeneA

°
° °
a °
° o
o
o o

neutrophil

Cells with different
sizes have very
different total number
of transcripts

Example
Housekeeping Gene

High chance
of Dropouts in
smaller cells



Problem with
Global
Normalization

Library Size

GeneA
macrophage

Library Size
lymphocyte _.%

Library Size

I GeneA

neutrophil

After Normalization

Mean Library Size

GeneA

Mean Library Size

Gene A

Mean Library Size

i Gene A

Note: Most bulk
methods fail
miserably on single
cell RNA-seq

Dropout not
resolved

Spurious
Differential
Expression



Different normalization for each cell type

After Normalization
Library Size Library Size

& 11

| recommend SCRAN for immmune datasets



There are strong batch effects with and between samples

Library Size

» Differences between
cells / samples
convolute both biological

Library Size
and technical reasons macrophage 'ymphocyte Gene B
(e.g. active T-cell also
have more transcripts) BCA | il o
BC1 | i il oo o o
» Normalization methods ~ BC2 |+ Bl emmncco
assume similarity and & BC7 | — oo o
often remove biological <& gcs| + B =mwwo o
differences as well e R E———

, BC6 | + Ml oo o o
» There is no free lunch, scs| -~ mmm———==- [ h-

but one should search T B S S B
for the best trade-off

— o NN

SH3BGRL3
LYz
HLA-DRA
HLA-DPB1
CD74
CTSD
GZMH
CD53
HLA-DPA1
CD99
FLNA [
SELPLG
CCND3
HCST
RGS
IL3;
_I. |
2 .



tumors

Biscuit improves o Bco
clustering

Global Normalization Biscuit Normalization

» Samples mix well after
Biscuit: high entropy

» Biscuit is robust

» Biscuit’'s parametric

model can provide DEGs .., Global Normalization: Median Entropy=0.55696 , , Biscuit Normalization: Median Eniropy=0.90839
» However: Biscuit is §oor
computationally heavy

Prabhakaran*, Azizi* et. al. ICML 2016 Entropy of Distribution of Patients Entropy of Distribution of Patients



Single-cell
Immune
atlas of
~50,000
cells
showing
83 distinct
states

Azizi*, Plitas*, Carr*,
Cornish* et. al. Cell 2018

neutrophils

71
NK cells

What are all these states and
is the clustering reliable?



Validating clusters in
an independent cohort

0000
CD45+ cells SPREERFS

in BC1-8
(inDrop)




CD8+ T cells CD4+ T cells Tregs

Bhattacharyya Distance (Normalized)
|| ]

Validating clusters in
an independent cohort

0000
CD45+ cells SPREERFS

in BC1-8
(inDrop)

i
PR ERERER RN RRpERrRRER ERNRNRRNERRE
; A
- Near one-to-one
] : mapping to 34 T
Three new patients = cell clusters
000 CD3+ cells :

-------* from BC9_11 -------*
(10x)

= T cells



Clusters vary in subtype and differentiation state

Annotation is s [
not easy due Sg
to drop-out: é%
incorporate o =
larger
transcriptional 0
signatures £
-
w
Z-scored
expression [
pyr e R P e )

-2 0 2
Cluster ID



Metabolic and Immune Programs also vary across

b e

Anti-inflammatory
CD8+ T cell tolerance (Schietinger12)
G2/M
G1/8
TCA cycle
Pentose Phosphate Pathway
Glycogen Metabolism
Senescence
Adenosine pathway
. Glucose Deprivation
CD8+ deletional tolerance (Parish09)
CD4 Anergy (Safford05)
Dysfunction module 100
Hypoxia/HIF regulated
Type | Interferon response

|
n I
. Type Il Interferon Response
N
N

CD8 T Cell Activation
T cell co-inhibitory receptors
Exhaustion/Terminal Differntiation

Pro inflammatory
Effector cell cytotoxicity
Cytolytics effector pathway

The quality of
your gene
signatures
sets the
quality of your
annotation, ‘
curate these
from good
sources
suitable for
your biOIOgy etmfwea*me




Atlas enables comparing immune states across microenvironments

Tregs

macrophages /

83 clusters Lymph Node

cells

monocytes';%-
"aigd ”-
&
e
neutrophils 2
NK cells



Atlas enables comparing immune states across microenvironments

Tregs

Blood

macrophages /

neutrophils

1
NK cells



Atlas enables comparing immune states across microenvironments

Tregs
macrophages 3}1* 83 clusters

\ R, %
é g’.%“_

Myeloid
cells

monocytes %
;

&

neutrophils

NK cells

Normal Tissue

Tissue resident immune cells are dramatically
different than those in immune organs



Atlas enables comparing immune states across microenvironments

» 19 T-cell clusters shared between
tumor and breast-tissue

» 17 T-cell clusters unique to tumor are na

A )

more activated and more cytotoxic Significant Increase in Immune
Phenotype Diversity in Tumor



Intratumoral T cells reside on a continuous activation trajectory!

0.025
0.02 -
0.015 -
0.01
0.005 +
ok

-0.005 |

-0.01

Blood Normal Lymphnode Tumor



Some cell types are more well separated than others

Biopolar Cells T Cells in Breast Cancer T Cells in Lung Cancer

CD8

Shekhar et al. Cell 2016

Data from Azizi et al. Cell 2018
Data from Laughney et al. Nat Med 2020 Neuronal cells are far better separated than T-cells



Diffusion components capture continuous trends in data

Diffusion PCA Diffusion maps
Maps are a P

“non-linear”
version of
PCA that
follows the
data density

®

Memorial Sloan Kettering
Cancer Center

Linear direction of variation Trajectory through the manifold



T-cell phenotypic Tissues

space is continuous o BLOOD V4
e LYMPHNODE A
» T-cells define a continuum NORMAL &

TUMOR

of states

» Most of the variation can
be captured by a few axes
of variation

Hypoxia

» First diffusion component
that explains most of
variation is T cell activation

Activation



Activation and Differentiation Axes in Tumor Immune Atlas

» A large diversity

»

of monocytic
cells organize
onto distinct
axes of
differentiation
as they change
environment /
tissue context

All cells have
both M1 and
M2 genes

Diffusion component 4

-0.02 «

-0.04 -

-0.06 -

A

0.06 -

0.04 -

Activated
Monocytes

Monocyte- )
precursor R
in tumor S ':-J'
Sl
S 4
5
R

in blood

Diffusion component 1

pDCs

Activated

Macrophages

(TAMs)

Monocyte-precursor

C21: mDC:
* C23: Macrophage
* C24: MONOCYTE:precursor|
* C25: Macrophage
* C27: Dendritic Cell
* (C28: Macrophage
* C37:mDC:
€38: Dendritic Cell
® (C40: MONOCYTE:
e C41:pDC:
® C42: MONOCYTE:precursor|
C49: MONOCYTE:precursor|
© C54: MONOCYTE:
C64: MONOCYTE:precursor|
* C67: MONOCYTE:
C68: MONOCYTE:
® (C84: MONOCYTE:
C86: MONOCYTE:
* C91: MONOCYTE:
C94: MONOCYTE:

Diffusion component 2

Diffusion component 4

Diffusion component 4

s
8

002

APOE (TAMs)

D

~ BLOOD
NORMAL
- TUMOR

0.02 0

0.04 -0.05
Diffusion component 1

Diffusion component 2

m

OS (monocytes)

= Dendtic Cell
MONOCYTE:

MONOCYTE precursor
rophage

S . bt

ITGAL

0 0.04
002 o
0.04 -0.02
Diffusion component 1
Diffusion component 2




Does TCR repertoire diversity contribute to
the continuous spectrum of T cell activation?

Paired single-cell TCR- and RNA-seq on 27K sorted T cells

y. | -

T cell Activation

Individual

T cell Activation

Al TCR
clonotypes




Does TCR repertoire diversity contribute to
the continuous spectrum of T cell activation?

Paired single-cell TCR- and RNA-seq on 27K sorted T cells Dominant clonotypes from one tumor
- SD=0.2114 © SD=0.2238 - SD=0.2314 © SD=0.2466
AII TCR 8 0-2 -1.5 -1 -0.5 8 0—2 15 -1 -0.5 8 0—2 1.5 -1 -0.5 8 072 15 -1 -0.5
C|On0types o SD=0.224 ~, $D=0.2208 -y SD=0.2211 ~ SD=0.2637
g g 3 @2
8 O-2 15 - -0.5 8 c'72 1.5 -1 0.5 8 0-2 -15 -1 -0.5 8 0.2 15 1 05
H H . SD=0.2355 © SD=0.1889 ™ SD=0.2324 © SD=0.2044
T cell Activation i, /\/W\ 3 /L\ e /\”\\ e
2 2 £ §1
8 0—2 15 - -0.5 o 072 1.5 -1 -05 8 0.2 15 A 05 8 0-2 15 1 0.5
| nd |V|d Ual < 8D=0.1973 o, §D=0.2137 - SD=0.2732 o SD=0.2492
g&s g g2 g2
clonotypes X /M\ ,,J»/\M £ _/\,/\NW 5,
o0 o0 So So
-2 -1.5 -1 -0.5 -2 -1.5 -1 -0.5 O 5 15 1 05 O 15 1 05
— © SD=0.2156 ° SD=0.2404 w0 SD=0.2357 ° SD=0.1875
®4 © o2 9
T cell Activation g2 g g g’
50 80 S0 So
2 -1.5 1 -0.5 -2 -1.5 -1 0.5 (S 15 -1 05 (SR 15 B 05
T cell Activation
TCR diversity is not the exclusive driver 30-50% of the variation in activation explained

of the continuity of T cell activation by clonotypes (ANOVA test on 3 tumors)



We constructed a cell atlas of the tumor immune system:

» Captured a rich
diversity of tumor
immune cell types

» Captured tissue
specific
differences in
tumor-immune
environment

» Strongest axis of
variation:
continuum of
activation states




Data analysis of scRNA-seq =
is not straightforward ]

égle Csll science
» Every step in data-processing matters. ‘, Da.ta‘/ Journals

LY

» Within sample normalization: / \
down-sampling, total count, log, B
z-score, scran, sc-transform

Statistical modelling

Normalization @,

» Featu re SEIGCtion: Biological noise correcticn :
all genes, highly variable genes Batch correction &

Doublet exelusion

» Clustering Read depth fil{ring )

Gene filtering

» Batch-Correction arcotie/um A




Sorting allows us to discover increasing heterogeneity

: Cell types
Cell Ontology Class ¥' : R
* Bcell B . &? ﬁ;"
e $M (F % LR 7 5 Enrich for DCs
* dendritic cell i g v using FACS

* macrophage

* natural killer cell

“ ]
naturﬁ&.er
1

dendritic cell

Dendritic cells are rare

Data from: CZI/Quake
Tabula Muris spleen

cDC1

cDC2 Tbet-
cDC2 Thbet+
cDC2 mixed
Monocyte

Siglec DC

cDC2 Tbet+ are rare yet play important
role in type 1 immune response

Data from Brown*, Gudjohnson*, et.al. Cell 2019



Sorting allows us to discover
increasing heterogeneity

» Clusters are not a one to one match
with cell types

» Annotating clusters is still one of the
most laborious tasks in the analysis:

» Cite-seq will help

» Computational methods to
automate are being developed

» cDC2A and cDC2B Have Distinct
Phenotypic and Functional Properties

Brown*, Gudjohnson*, et.al. Cell 2019

12

Y3 fl"v- ¥
CERGS R
~ $1a .?{N Y
i RO T3 ;)
K i o -,.03- N
3, 1}'."&. b
R T ¥
Al i

@ 0:cDC2 T-bet*
1: cDC1

® 2: cDC2 T-bet*
3: cDC2 T-bet™

® 4:cDC1
5:cDC1

@ 6:cDC2 T-bet*
7:cDC1
8: cDC2 T-bet*

® 9:cDC1

® 10: cDC2 T-bet™

® 11: Siglec-H DC
12: CCR7" ¢cDC2

® 13:cDC1

® 14: cDC2 Mixed
15: cDC2 T-bet*

©® 16: Monocyte

e cDC1

@ cDC2 T-bet™
@ cDC2 T-bet*
® c¢DC2 mixed
® CCR7"DC
@ Siglec-H DC
® Monocyte



Continuous trends show differentiation trajectories

1 Fit3 Sox4 Idh2
Data from bone 4 . . g :
marrow shows 2 o 15 . |PCATEO I %
differentiation & 8 Mitotic 0
. - 11* ]cDCZB (T-bet™) . | gy
@ 11 Siglec-H DC ) e
cDC2A Tmem176a Tmem176b Thx21
» Pseudo-time trajectory P » i
analysis could determine » e
distinct paths of differentiation .
for cDC2A and cDC2B cDC2B
» As well as the genes and TFs ;

that change along these paths



Cohort design to Discovery cohort
find resistance (n7=31, n2=473) Validation cohorts (n = 138)

program i’ Validation Validation
(n=195) cohort 1 cohort 2
(n=26) (n=112)

» SearCh for Restimmincihiceapy Pre-treatment Pre-treatment

@ resistant biopsy biopsy

the signature O o (n=15)
at the single @ ) Post-immunotherapy :> ¢|c| / \aPD1

responder

cell level
(m=1)
Post-progression
Bulk RNA-Seq :
» Bulk to get (473 patients) biopsy
larger cohort
Non-responder/ Non-responder/ Responder
M scRNA-seq resistant resistant

SiZzes O Bulk RNA-Seq

Jerby et al., Cell 2018



Single cell RNA-seq data of melanoma cohort

» Melamona cells are different and unique to each patient

»

»

Immune
subsets
overlap
between the
patient

But very
much differ in
abundances
of different
immune
subtypes

Malignant cells

L
& “"-ﬁf‘gb
§ ¥ y @

&

il

Tumor

® Mel78
® Mel79
Mel88
Mel71
® Mel81
Mel80
Mel89
® Mel194
® Mel102
® Mel110
® Mel103
® Mel106
® Mel98
Mel129pa

Immune/stroma cells

® CD4 T cell ® Macrophage
CD8 Tcell @Bcell

T cell
NK cell

® CAF
® Endothelial cell



A program in malignant cells from T cell “cold” tumors

» Seed with
correlated
genes in

scRNA-seq

» Search for
tumor
programs
that correlate
with coldness

Single cell RNA-Seq

High

Genes

Myc targets
Low CDK4
495 tumors bulk RNA-Seq CDK targets

MHC-,
IFNg
SASP,



Exclusion program associated with resistance; but
some cells express the program pre-treatment

Exclusion UP - cold Exclusion DOWN - hot

|
N
o
N

n
=== _=— - == == == o
— ===_——— = ——_— E=— === _—==| ©
=== _— = -———- _ - =— —=- =38 ¢
Untreated (15) === -8 - _—— — = ===
F—===——=-— """ ———s & O Intrinsic
=== = - _ - == ————="= = ®© : n
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Post treatment | [F —  —  — —— - = = 2
(resistant) (16) || =~  — = 4 2
= - == —===———= @

T (O T T
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|
1
3

SMARCA4

Immune
resistance
(overall expression)

29
2l
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CDK4
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X4
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HSPATAI |
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CT3L1
LAMP2
TAPBP
HLAZA
HLA-B
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Fi
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R
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PL2
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s
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1
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ERENs
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Validation cohort: Program predicts immunotherapy outcome

Validation
cohort 2
(n=112)

Pre-treatment
biopsy

/\apm

Non-responder/ Responder
resistant

1. Progression-free survival

P=23x1073
Pc=2.0x10"2
log rank = 3.3 x 1072

Program low

Program high
7 — High (22) g 9
— Moderate (60)

— Low (22)

T T T T
0.0 04 0.8 1.2

Years

2. Clinical response and duration

c 159 o i
9 " :
® 1.0 i '
3 -
g 0.5+ : *
x e =
L o0l @ )
© ¥ i
— o .
o085 ] v ¥
O_-l 0_ _i_ ;:_ 4

T T T

0 Complete response (CR)
B Partial response (PR)
O Progressive disease (PD)

49
¢
L T
of s !
1 R
= o
04 @ | l |
PEE i-
T _T_ T T ‘:_
B Non-CB
O CB
B CB<6m
B CB<1yr
@ CB>1yr




Computational search predicts CDK4/6 as program regulators

Query: which drugs are more

toxic to cell lines overexpressing
the program in a screen of 131 0.75 7
drugs across 639 human cell

2.06*10

lines (Garnett et al., 2012)? -
0.25 -
CDK4 and CDK4/6 target 0.00 . -

genes are induced in the -2 -1 0 1
exclusion program Resistance signature score



Abemaciclib
sensitizes B16
melanoma
tumors to
checkpoint
immunotherapy

) eemieeesee.. CDKA4/6 inhibitor +
100 + Checkpoint inhibitors
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g 50
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Checkpoint inhibitors
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O 1 ] - 1
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Days since tumor injection

Benefit depends on both Rb in malignant (B16) cells and on presence of CD8 cells



Model: The
contribution
of malignant
cell programs
to immune
cell exclusion
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