

A Brief History of T cell Cancer Therapy: From Transplant to CARs

Renier Brentjens, M.D., Ph.D.

Leukemia Service Memorial Sloan-Kettering Cancer Center

Memorial Sloan Kettering Cancer Center

T cells as anticancer agents: allogeneic T cells

Adoptive T-cell therapy of cancer refers to treatment with T cells specific to tumour cell antigens¹

» In the allogeneic setting, this results in graft versus tumour effect²

1. Perica K, et al. Rambam Maimonides Med J. 2015;6:e0004;

Evidence of GvL effect in the setting of allo-BMT

Indirect

- » Abrupt withdrawal of immunosuppression, or a flare of graftversus-host disease induces complete remission in some patients with relapsed leukaemia after BMT (anecdotal)
- » Syngeneic BMT is associated with a higher risk of relapse than allogeneic BMT
- » Graft-versus-host disease after BMT is associated with a lower risk of relapse
- » Depletion of T cells from the donor bone marrow results in an increased risk of relapse, especially for patients with CML

Direct

 » Donor leukocyte infusions given to patients who relapse with haematological malignancies after allogeneic BMT will reestablish complete remissions

Porter DL and Antin JH. Annu Rev Med. 1999;50:369-86.

Donor Leukocyte Infusion (DLI)

The transfer of HLA-matched allogeneic T cells from the donor to the host as a therapeutic intervention

- Infusion of EBV-specific T cells for treatment of EBVlympho proliferative disease (EBV-LPD)
- » Infusion of donor T cells in patients with relapsed CML following allo-BMT

EBV-LPD

- » Malignancy commonly seen in immunesuppressed patients (transplantation, AIDS)
- » Secondary to active EBV infection of B cells
- » More common following T-cell depleted allo-BMT (incidence 12–25%)
- » In the BMT setting, the malignant clone is invariably of donor origin
- » Poorly responsive to lymphoma-based chemotherapies

DLI after BMT for EBV-LPD

Study	Cell Product	Therapy or prophylaxis	Responses	GVHD
O'Reilly <i>et al.</i> [20•]	Donor T cells	Therapy	17/19	3 acute, 8 chronic
Heslop <i>et al.</i> [42]	Donor T cells	Therapy	1/1	1/1
Gross <i>et al.</i> [37•]	Donor T cells	Therapy	0/3	NR
Lucas <i>et al.</i> [10•]	Donor T cells	Therapy	4/13*	4/13
Nagafuji e <i>t al.</i> [44]	Donor T cells	Therapy	0/1	0/1
Sasahara <i>et al.</i> [43]	EBV-specific CTLs & donor T cells	Therapy	0/1	0/1
Rooney <i>et al.</i> [47•]	EBV-specific CTLs	Therapy	2/3	0/3
Rooney <i>et al.</i> [47•]	EBV-specific CTLs	Prophylaxis	0/39 developed LPD	1/39

* One responding patient received EBV-specific CTLs.

Aguilar LK, et al. Curr Opin Oncol. 1999;11:96–101.

Rapid response of EBV copy number to DLI treatment

EBV DNA concentrations before and after CTL inclusions in three patients with evidence of EBV-related lymphoproliferation

CTL were given when EBV DNA rose >1000-fold EBV DNA copy number/per µg mononuclear-cell DNA (x 10³)

Rooney CM, et al. Lancet. 1995;345:9-13.

DLI therapy for relapsed CML after BMT

Complete remissions after donor leukocyte infusions for re-lapsed CML

CML phase	North America (26) (n=55)	EBMT (27) (n=75)
Chronic phase	76%	79%
Advanced phase	28%	12%
Total	60%	72%

Abbreviations: CML, chronic myelogenous leukemia; EBMT, European Group for Blood and Marrow Transplantation

Cancer Control. 2002;9:114-22. Autologous adoptive T-cell therapy: Tumour infiltrating lymphocytes

> The isolation of patient T cells (presumably tumour specific), followed by ex vivo expansion and subsequent re-infusion into the patient

Gattinoni L, et al. Nat Rev Immunol. 2006;6:38-93.

TIL therapy: Melanoma

Gattinoni L, et al. Nat Rev Immunol. 2006;6:38–93.

Autologous T-cell therapy: Melanoma

Table 1. Patient demographics, treatments received, and clinical outcomes.

			Treatn	nent*			D		
Patient	Age/sex	Cells infused† (×10 ⁻¹⁰)	CD8/CD4 phenotype‡ (%)	Antigen specificity§	IL-2 (doses)	Sites of evaluable metastases	Response duration (months)	Autoimmunity	
1	18/M	2.3	11/39	Other	9	Lymph nodes (axillary, mesenteric, pelvic)	PR¶ (24+)	None	
2	30/F	3.5	83/15	MART-1, gp100	8	Cutaneous, subcutaneous	PR (8)	Vitiligo	
3	43/F	4.0	44/58	gp100	5	Brain, cutaneous, liver, lung	NR	None	
4	57/F	3.4	56/52	gp100	9	Cutaneous, subcutaneous	PR (2)	None	
5	53/M	3.0	16/85	Other	7	Brain, lung, lymph nodes	NR-mixed	None	
6	37/F	9.2	65/35	Other	6	Lung, intraperitoneal, subcutaneous	PR (15+)	None	
7	44/M	12.3	61/41	MART-1	7	Lymph nodes, subcutaneous	NR-mixed	Vitiligo	
8	48/M	9.5	48/52	gp100	12	Subcutaneous	NR	None	
9	57/M	9.6	84/13	MART-1	10	Cutaneous, subcutaneous	PR (10+)	Vitiligo	
10	55/M	10.7	96/2	MART-1	12	Lymph nodes, cutaneous, subcutaneous	PR¶ (9+)	Uveitis	
11	29/M	13.0	96/3	MART-1	12	Liver, pericardial, subcutaneous	NR-mixed	Vitiligo	
12	37/F	13.7	72/24	MART-1	11	Liver, lung, gallbladder, lymph nodes	NR-mixed	None	
13	41/F	7.7	92/8	MART-1	11	Subcutaneous	NR	None	

Dudley ME and Rosenberg SA. Nat Rev Cancer. 2003;3:666–75.

Autologous EBV T-cell therapy: Nasopharyngeal carcinoma

Patient No. Treated				Before
in remission	Toxicity	Clinical Response	Outcome	
729	None	N/A	Remains in remission > 27 mo	1
606	None	N/A	Remains in remission > 26 mo	1. 1. 1.
697	None	N/A	Remains in remission > 25 mo	1. 4 C
815	None	N/A	Remains in remission > 19 mo	Ret .
Treated with relapsed or refractory disease				1.20
845	Swelling at tumor site	No response then PR after chemotherapy	PR for 4 months then progressed and died at 12 mo	After
894	None	CR	Remains in remission > 23 mo after CTLs	Ser 2
389	None	CR	Remains in remission > 11 mo after CTLs	1.11
918	None	PR	PR for 12 mo after CTLs then relapsed	- tra-j
1042	None	Stable disease	Stable disease for >14 mo	
1046	None	No response	Died of disease at 3 mo	- 1 4 4 V

Straathof KCM, et al. Blood. 2005;105:1898–1904.

After

Adoptive therapy with genetically targeted autologous T cells

The isolation of patient T cells, genetic modification to recognise tumour antigen, subsequent ex vivo expansion and re-infusion

- » TCR gene-modified T cells
- » CAR-modified T cells

Morgan RA, et al. Science. 2006;314:126-9.

TCR-modified T cells

1. Isolate and clone T cells specific to the target tumour peptide

2. Clone the genes encoding the TCR $\alpha\beta$ chains

3. Transduce autologous patient T cells with these genes to generate tumour-specific T cells

Sharp M, et al. Disease Models & Mechanisms. 2015;8:337–50.

Cohort	Patient	Age/sex	Total cells infused (×10 ⁻⁹)	CD4/CD8 (%)	VB12 (%)	MART-1 cells infused (×10 ⁻⁹)‡	Days in culture	Doubling time (days)†	IL-2 doses§	Sites of evaluable disease	Response (duration in months)
1	1	28/M	11.0	27/73	67	7.4	19	8.7	7	Ln, Cu	NR
	2a*	44/F	13.0	3/95	64	8.3	19	11.9	10	Ln, Cu	NR
	3	58/M	14.0	17/82	35	4.9	19	10.0	11	Cu, Sub	NR
2	4	52/M	1.0	50/50	42	0.5	6	1.4	9	Li, Sub	PR(21)
	5	50/M	12.0	18/82	17	2.2	8	1.0	7	Lu, Ln, Sub	NR
	6	55/F	7.0	37/72	51	3.6	7	1.3	8	Lu, Ln	NR
	7	56/M	9.0	75/21	40	3.6	7	1.0	5	Lu, Ln	NR
	8	37/M	6.1	68/40	32	1.9	7	1.3	12	Lu, Ln	NR
	9	53/M	4.2	72/24	41	1.7	7	2.0	9	Ln, Ad, Sub	MR
	10	45/M	8.6	53/30	34	2.9	6	0.6	5	Ln, Sub	
	11	45/M	6.3	7/92	45	2.8	6	0.8	5	Lu, Pa, Ln	NR
	12	32/F	4.7	30/60	61	2.9	6	0.7	5	Br, Sub	NR
	13	41/M	7.7	40/67	42	3.2	6	0.9	7	Lu, Sub	NR
	2b*	44/F	2.1	30/59	53	1.1	6	1.9	14	Ln, Cu	NR
3	14	30/M	86	11/60	40	34.4	18+9	0.9	5	Hi	PR(20)
	15	51/M	38	16/82	45	17.1	18+9	3.3	8	Lu	NR
	16	25/F	33	13/76	21	6.9	18+9	1.2	2	Lu, Li, Sub	NR
	17	20/F	23	17/78	30	6.9	17+8	1.1	3	Lu, Ln, Sub	NR

TCR-modified T cells: Melanoma

This patient was treated twice; treatments were separated by 7 months. †Determined based on cell counts in the 2 days before infusion. \$720,000 international units/kg every 8 hours. All patients were previously refractory to treatment with IL-2 alone. IBased on RECIST criteria.

Morgan RA, et al. Science. 2006;314:126-9.

0 100 200 300 400 Inf. Days Post-Treatment

Limitations of TCR-modified T cells

- » Dependent on HLA expression
- » T-cell clones isolated for each HLA background
- » Limited to recognition of either HLA class I or class II molecules
- » Only protein (peptide) specific
- » Undesired autoimmunity

Sharp M, et al. Disease Models & Mechanisms. 2015;8:337-50.

TCR-modified T cells: Risk of autoimmunity

Sharp M, et al. Disease Models & Mechanisms. 2015;8:337–50.

CAR T cell Therapy of Cancer

*M*emorial Sloan Kettering Cancer Center

Generation of a tumourtargeted CAR

Sadelain M, et al. Nat Revs Cancer. 2003;3:35–45.

Generation of TAA-targeted T cells for treatment of cancer

Sadelain M, et al. Nat Revs Cancer. 2003;3:35-45.

What is the ideal TAA?

Qualities of the "ideal" tumour antigen:

Memorial Sloan Kettering Cancer Center

> Cheever MA, et al. Clin Cancer Res. 2009;15:5323–37.

- f » Expression restricted to the tumour cellpopulation alone
 - » Restricted expression to tumour and otherwise non-vital tissues
 - » Expressed by all tumour cells
 - » Expressed on the tumour cell surface
 - » The target antigen is required by the tumour cell for survival

1. Jackson HJ, et al. Nat Rev Clin Oncol. 2016;13:370–83; 2. Charrot S and Hallam S. Hemasphere. 2019;3:e188.

В

50 10 Number of studies

Single antigen target

CD19

- » CD19 expression is restricted to B cells and possibly follicular dendritic cells
- » CD19 is not expressed on pluripotent bone marrow stem cells

- » CD19 is expressed on the surface of most B-cell malignancies
- » Antibodies against CD19 inhibit growth of tumour cells

Mostolizadeh R, et al. Numer Algebra Control Optim. 2018; 8:63-80; Wang K, et al. Exp Hematol Oncol. 2012;1:36.

19z1+ T cells lyse CD19+ tumour cells in vitro and in vivo

Brentjens RJ, et al. Nat Med. 2003;9:279-86.

19z1+ T cells require in vivo co-stimulation

NALM6/CD80

Brentjens RJ, et al. Nat Med. 2003;9:279-86.

T-cell co-stimulation

T-cell activation and proliferation requires both signaling through the TCR (signal 1) and signaling through a co-stimulatory receptor (signal 2) (CD28, 4-1BB, OX-40)¹

In the absence of co-stimulation (signal 2), the T cell will either become unresponsive (anergic) or undergo activation-induced cell death (AICD/apoptosis)²

 Cavanagh M. Bitesized Immunology: T cell activation. British Society for Immunology. Available at https://www.immunology.org/public-information/bitesized-immunology/systems-and-processes/t-cell-activation. Accessed August 2020;
 Arlen P, et al. Future Oncol. 2009;5:187–96.

T-cell activation and anergy/cell death

Cavanagh M. Bitesized Immunology: T cell activation. British Society for Immunology. Available at https://www.immunology.org/pub lic-information/bitesizedimmunology/systems-andprocesses/t-cell-activation. Accessed August 2020; Arlen P, et al. Future Oncol. 2009;5:187–96.

Brentjens RJ. Discov Med. 2010;9:277–88.

Second-generation CARs: in vitro

Table 1. Interleukin-2 production by human PBL transduced with different CD3ζ–CD28 fusion receptors^a

Fibroblast feeder		PSMA-specific	c receptor	
	P28	Pz1	P28z	Pz28
Unmodified NIH3T3 B7.1 PSMA PSMA + B7.1	<50 (-) <50 (-) <50 (-) <50 (-)	<50 (-) <50 (-) <50 (-) 164,236 (3,285)	<50 (–) <50 (–) 21,900 (1,153) 52,936 (2,786)	<50 (-) <50 (-) <50 (-) 29700 (958)

Finney HM, et al. J Immunol. 1998;168:2791–97; Imai C, et al. Leukemia. 2004;18:676–84; Maher J, et al. Nat Biotechnol. 2002;20:70–5.

Second-generation CARs: in vivo

Brentjens RJ, et al. Clin Can Res. 2007;13:5426–35.

CAR T cell: Mechanism of action (2)

Benmebarek MR, et al. Int J Mol Sci. 2019;20:1283.

Clinical Trial Outcomes: CD19-targeted CAR T cells to treat R/R B-cell ALL

Iemorial Sloan Kettering 'ancer Center

A Phase 1 trial of precursor B-ALL treated with autologous T cells genetically targeted to the B-cell-specific antigen CD19

Brentjens R et al. Sci Transl Med. 2013;5:177ra38; Clinical trials. NCT01044069. Available at: https://clinicaltrials.gov/ct2/show/NCT01044069. Accessed August 2020.

Patient characteristics and treatment outcomes

*MSK-ALL02 patient was removed from the study prior to the planned T-cell infusion because they deferred Tcell infusion for an allo-SCT.

**Disease status within 1 week of infusion with CD19-targeted T cells.

***This patient's T cells were harvested while in remission. All other patients listed had their T cells harvested while they had relapsed disease.

Brentjens R, et al. Sci Transl Med. 2013;5:177ra38.

Patient ID*	Age	FISH/Cyto genetics	Initial therapy	Duration of CR1	Salvage therapy	Disease response to salvage therapy**	Disease response	Steroid s	Outcome
MSK- ALL01	66	Normal karyotype	$\begin{array}{c} \text{Mito/Cy} \rightarrow \\ \text{Vinc/Pred} \rightarrow \\ \text{Cy} \rightarrow \\ \text{Etop/Cy} \end{array}$	27 weeks	Vinc/Pred/Pe g	MRD+	MRD-	N	Allo-SCT
MSK- ALL03	56	Normal karyotype	HyperCVAD	45 weeks	Inotuzumab ozogamicin → Vinc/Pred/Pe g	MRD-	MRD-	Ν	Allo-SCT
MSK- ALL04	59	t(9;11), 9p21 deletion	ECOG2993(2 4)	5 weeks	Vinc/Pred	Refractory disease, 63% blasts in BM	MRD-	Y	Ineligible for Allo-SCT, relapse 90 days
MSK- ALL05**	58	9p21 deletion	ECOG2993	28 weeks	HIDAC/Mito	Refractory disease, 70% blasts in BM	MRD-	Y	Allo-SCT
MSK- ALL06	23	Normal karyotype	NYII ref (25)	34 months	Modified NYII Consolidatio n I ref (25)	MRD+	MRD-	N	Allo-SCT

Study outcome: Complete remission rates

MRD was assessed by multiparameter flow cytometry with a sensitivity of 10-4.

MRD assessment available in 48 patients with available BMA samples.

- » Overall CR rate: 84.6% (44 of 52 pts)
- » MRD-CR rate:
 66.6%
 (32 of 48
 evaluable pts)

Park J, et al. ASCO 2017; Abstract 7008.

Park J, et al. ASCO 2017; Abstract 7008. Median follow-up = 29 months (range, 1-65)

CD19 CAR T cells: Paediatric B-ALL (SCH/FHCRC, 19-41BBz)

H

Gardner RA, et al. Blood. 2017;129:3322-31.

Patient Autologous PBMCs (Leukapheresis Product) Stimulate on CD3/CD28 beads with IL-2 and IL-15 CD8-Depleted T cells CD8-Enriched T Cells **CD4-Enriched T cells** Stimulate on CD3/CD28 Stimulate on CD3/CD28 beads with IL-2 and IL-15 beads with IL-7 and IL-15 Activated CD8-Enriched Activated CD4-Enriched T cells T cells Transduce with lentivirus (60-Transduce with lentivirus (60-80% efficiency) 80% efficiency) Transduced CD8-enriched Transduced CD4-enriched T cells T cells Continue culture with Continue culture with EGFRt enrichment EGFRt enrichment Expanded CD8/ Expanded CD4/ EGFRt-Enriched T Cells EGFRt-Enriched T Cells Cryopreserve Cryopreserve Cryopreserved Cryopreserved CD4/EGFRt-Enriched CD8/EGFRt-Enriched T Cells T Cells

CD4 and CD8 product

infusions thawed at bedside, CD4:CD8 ~ 1:1

Patient disposition

Lee DW, et al. Lancet. 2015;385:517-28.

CD19 CAR T cells:

Patients at Risk, n 21 20 17 12 10 9 6 3 2 2 1

Patients Achieving MRD-Negative Remission

Tisagenlecleucel in children and young adults with R/R B-ALL

Phase 2, global, 25-centre study

» Primary endpoint: Overall response in 3 months

92 pts enrolled and 75 pts (82%) treated

- » Median age: 11 (range, 3–23)
- » Median prior # of tx: 3 (range, 1–8)
- » Prior alloHSCT: 61%

Conditioning regimen: Cy and Flu

T-cell dose (median): 3.1x106 CAR T cells/kg

Maude S, et al. N Engl J Med. 2018;378:439-48.

Patient disposition

Maude S, et al. N Engl J Med. 2018;378:439-48.

Approved CAR therapy in B-cell ALL

FDA approved tisagenlecleucel (Kymriah) August 2017 for treatment of patients up to age 25 years with B-cell precursor ALL that is refractory or in second or later relapse

- » First CAR T-cell immunotherapy approved by FDA
- » No CAR T cells approved for adults with ALL older than 25

^{1.} KYMRIAH. FDA Prescribing information. 2018; 2. FDA press release. 2018. Available at: https://www.fda.gov/drugs/resources-information-approveddrugs/fda-approves-tisagenlecleucel-b-cell-all-and-tocilizumab-cytokine-releasesyndrome#:~:text=On%20August%2030%2C%202017%2C%20the,in%20secon d%20or%20later%20relapse. Accessed August 2020.

Clinical Trial Outcomes: CD19-targeted CAR T cells to treat DLBCL

lemorial Sloan Kettering ancer Center

Axicabtagene ciloleucel in R/R DLBCL [ZUMA-1]

Baseline patient characteristics

- » Primary endpoint: ORR
- » Conditioning regimen:
 Flu 30 mg/m2 and Cy
 500 mg/m2 x 3d
- » CAR T cell dose: 2x106 CAR T cells/kg

Baseline characteristics	Pts (n = 111)
Median age, yrs (range) §≥ 65 yrs, %	58 (23-76) 24
Histology, % §DLBCL §Transformed FL	73 27
No. prior lines of antineoplastic tx §≥ 3	69
Prior autoHSCT	21

Neelapu S, et al. N Engl J Med. 2017;377:2531-44.

Axicabtagene ciloleucel in R/R DLBCL: Survival

Neelapu S, et al. N Engl J Med. 2017;377:2531-44.

Tisagenlecleucel in R/R DLBCL [JULIET]: Baseline patient characteristics

238 pts screened \rightarrow 165 enrolled \rightarrow 111 pts treated

- » Primary endpoint: ORR
- » Conditioning: Flu 25 mg/m2 + Cy 250 mg/m2 x 3d or Benda 90 mg/m2 x2d
- » CAR T cell dose: median, 3x108 CAR T cells (0.1– 6.0x108)

Schuster S, et al. N Engl J Med. 2019;380:45-56.

Baseline characteristics	Pts (n = 111)
Median age, yrs (range) §≥ 65 yrs, %	56 (22– 76) 23
Histology, % §DLBCL	79
§Transformed FL	19
No. prior lines of antineoplastic tx	
§≥ 3	52
Prior autoHSCT	49

Tisagenlecleucel in R/R DLBCL: Response and survival

Progression-free survival

Probability of Remaining Progression-Free

No. at Risk Patients with 37 36 35 32 31 30 26 26 26 23 21 15 9 8 8 8 7 4 Schuster S, complete et al. N response 48 All patients 37 32 27 27 22 10 9 8 Engl J Med. 2019;380:4 5-56.

No. at Risk																			
Patients with	40 39	39	36	35	35	33	31	31	29	24	23	15	9	9	9	8	7	2	
complete																			
response																			
All patients	111	65		38		34		32		25		16		10		9		3	

Approved CAR therapy in B-cell ALL

FDA approved axicabtagene in October 2017 for treatment of adult patients with R/R large B-cell lymphoma after \geq 2 lines of systemic therapy, including DLBCL not otherwise specified, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma^{1,2} FDA approved tisagenlecleucel May 2018 for treatment of adult patients with R/R large Bcell lymphoma after ≥ 2 lines of systemic therapy, including DLBCL not otherwise specified, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma

» FDA approved with a Risk Evaluation and Mitigation Strategy3,4

^{1.} YESCARTA. FDA Prescribing information. 2017;

^{2.} FDA press release. 2017. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-

approves-axicabtagene-ciloleucel-large-b-cell-lymphoma. Accessed August 2020;

^{3.} KYMRIAH. FDA Prescribing information. 2018;

^{4.} FDA press release. 2018. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-

approves-tisagenlecleucel-adults-relapsed-or-refractory-large-b-cell-lymphoma. Accessed August 2020.

CD19-		Axicabtagene ciloleucel	Tisagenlecleucel	Lisocabtagene maraleucel
targeted	Study populations	DLBCL, TFL, PMBCL	R/R DLBCL	CORE DL2*
	Target antigen	CD19	CD19	CD19
	Lymphodepletion	Flu/Cy	Flu/Cy	Flu/Cy
cells and	Costimulatory domain	CD28	4-1 BB	4-1 BB
DLBCL	T cell composition	Unspecified	Unspecified	1:1 CD4:CD8
	Cell dose	2 x 10 ⁶ cells/kg	5 x 10 ⁸	1 x 10 ⁸
	OR (best)	82% (n = 108)	53% (n = 81)	81% (n = 27)
	OR (6 mo)	41% (n = 101)	37% (n = 46)	50% (n = 14)
	CR (best)	58% (n = 108)	40% (n = 81)	63% (n = 27)
	CR (6 mo)	36% (n = 101)	30% (n = 46)	50% (n = 14)
	Any grade CRS/NT†	94%/87% (n = 108)	58%/21% (n = 99)	24%/17% (n = 29)
	≥Grade 3 CRS†	12% (n = 108)	23% (n = 99)	0% (n = 29)
Chow VA	≥Grade 3 NT†	31% (n = 108)	12% (n = 99)	7% (n = 29)
et al. Blood.	Grade 5 AEs	4% (n = 108)‡	None	—

2018;132:7 77–81.

Grupp SA, et al. N Engl J Med. 2013;368:1509–18.

Anti-CD22 CAR T cells in R/R B-ALL

- » Nine paediatric and young adult patients with R/R B-ALL patients treated
- » Seven patients previously treated with a CD19 CAR T cell, six with loss or dim CD19 expression on relapsed tumor cells
- » 22-4-1BBz CAR design
- » 44% CR in BM, all MRD-
- » CRs seen in both CAR T cell-naïve patients as well as patients with CD19 relapse after CD19 CAR T cell therapy

Shah NN, et al. Blood. 2016;128:650

CAR T cell associated toxicities

Maude S, et al. N Engl J Med. 2018;378:439-48.

Questions