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Today’s Lecture

e Data Types and Visualization
* Review of Last Week



Types of Statistical Variables

* Outcomes vs predictors (correlates, causes, exposures)

e Qutcome

* The things we want to know
e Variables that we do not want to “control” even if we can

* Predictor

* The things that we think have an effect on or move with the outcome
e Variables that we want to “control” if we can



Outcomes

 Most clinical research is conducted to find about outcome variables

* Example: Vemurafenib in BRAF-mutant melanoma

 Serial tumor biopsies and look at changes in tumor cell proliferation (cyclin
D1, ki-67) and phosphorylated extracellular signal-related kinase (p-ERK)

* This is an outcome, we treat cells, or animals or humans with the drug and
measure these markers at multiple time points.

* This is an outcome because it is why we do the study, what we want to know



Predictors

* Same example: Vemurafenib in BRAF-mutant melanoma
* Dose and schedule of treatment
* Tumor characteristics (size, location etc)
* Timing of biopsies

* These are all predictors (or correlates, or some of them may actually
carry a causal relationship with the outcome) because we do not
want to know about them but we think their presence (or amount) is
related to the outcome



One person’s outcome is an another’s
predictor

* p-ERK levels can be a predictor in another study

* |s the amount of change in p-ERK associated with survival?
* Now change in p-ERK is a predictor?

* What is the outcome in this case?



Types of OQutcomes

* Binary
 Continuous
e Censored

* There are many others but these cover 90%+ of all clinical cancer
research studies



Binary Outcomes

* Yes/No, Present/Absent, Up/Down, Good/Bad

* Represent the many dichotomies that we deal with in clinical care and
research

e Easy and a strict definition: each case must be classified as one of
exactly two possibilities.



Binary variables follow a Bernoulli distribution

 Sometimes Bernoulli is used exchangeably for binary
* | will assume binary variable is coded as 0/1.

* P(V=1)=p (read this is as “probability of the variable V being equal
tolisp”)

* There is a nice symmetry to Bernoulli distribution. We only need to
know p to understand how it behaves.

e Why? Because P(V=0)=1-p

* This happens because there are exactly two possibilities.



History Corner

e Bernoulli family originated in Antwerp, Belgium and settled in Basel,
Switzerland in the 17t century

* Eight members of the family turned out to be prominent
mathematicians

 Jacob Bernoulli (1654-1704) formalized the Bernoulli distribution

* In addition to the Bernoulli distribution: Bernoulli differential
equations, Bernoulli triangle, Bernoulli inequality and Bernoulli
polynomials



Cancer example: Response

* Did a cancer patient given a certain treatment respond?

* We need a precise definition of response
e Such as RECIST, or MRD

* Response rate (clinical language)
* Probability of response (statistical language)
* Both refer to P(Response =1) =r



Continuous Outcomes

e A variable that takes on numeric values
* Age, bilirubin, tumor size

* Technically it refers to a variable that can take on infinitely many
values

* You can talk about the mean, median, standard deviation etc for
continuous variables



Surgical Data Example (Sex and Age)

* 1231 patients undergoing a certain type of Gl resection for cancer at
MSK

 Example variables: Sex and Age
 Out of 1231, 552 were female (45%)

* Pretty much the only thing you can report is this, an estimate of P(Sex
= Female)

e Equivalent to reporting 1 — P(Sex = Female) = P(Sex = Male) = 55%



Surgical Data Example (Sex and Age)

* Age: continuous variables --- so many things to report
* Mean: 64.1
* Median: 66.0
* Range: 16 -94
* Interquartile Range: 55 - 75
* Five Number Summary: 16, 55, 66, 75, 94 (min, quartiles, max)

 What are these numbers? What do they mean?
* Histogram
* Cumulative density function (CDF)
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Waterfall Plots

* Not every bar chart is a
histogram

* Waterfall plot: A popular way of
displaying response rates

* https://ascopubs.org/doi/full/10
.1200/JC0.23.00774
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Surgical Data Example (Survival Time)

* Dead/Alive

* A binary variable

* If we only use dead/alive (very common misleading practice) time
element is completely ignored

* Someone who is alive with 6 months of follow-up is treated the same way
with someone who is alive with 10 years of follow-up; and differently than
someone who died at 5 years



Surgical Data Example (Survival Time)

* Time Between Resection and Death (always define in papers)
* A continuous variable with a time unit

* How to deal with those who are alive?

* Use time from resection to last follow-up?
* We need to distinguish which times are survival times and which are follow-
up times
* Hence we need two columns to represent survival data

* Time to death or last follow-up

* Status (dead/alive), equivalently an indicator of whether the time variable
contains survival or follow-up



Censored variables

* This kind of variable is called censored in statistical literature

* Many people mistakenly believe censored means excluded, i.e. only
survival times are analyzed

* No observations are excluded in censored data analysis, the word
censoring refers to the situation that we have not observed death

time for some patients (hence their death times are censored)

* The binary component of a survival variable is sometimes called
survival indicator



Examples of Censored Variables

* Almost always they are time to an event
e Death
* Progression
* Treatment

* Censored variables require special methods. They cannot be analyzed
as if they are binary (just the censoring indicator column) or
continuous (just the time column)

* Most common outcomes in cancer studies are censored

* Most incorrect statistical analysis in the literature pertain to censored
variables



Three Musketeers of Statistics

* Point Estimation
* Interval Estimation

* Hypothesis Testing
* Prediction

* REVIEW



Populations =2 Samples
Parameters =2 Estimates

* We need to recognize that our data is a sample from some
populations

* It may not be (most likely is not) a random sample

* The population may not be so easy to define but it is there, at least
conceptually

* Parameters are population quantities, samples give us estimates of
parameters

 Many many concepts in statistics depend on this duality between
population and samples



What is our population?

* |deally we should begin all clinical research studies with a definition
of the population

e Clinical trials try to do this
* Inclusion/exclusion criteria in the protocols is an attempt to define the
population

* In observational studies we too often start with the data (sample) and
try to figure out the population from the data
e Exactly the opposite of what we should do
* We will come back to this over and over again in this course



But what is it?

* It is difficult to define your population
* Suppose we have a single-institution Phase Il clinical trial

 All patients with stage IV colorectal cancer scheduled for resection
and candidates for adjuvant chemotherapy

* This is our population, give or take some details such as sufficient liver
function, no chronic Gl disease etc etc

* So the sample (patients who will enroll) is from this population



Not so quick

 All patients will be at MSK
* Does this mean our population is such MSK patients?

* Or do we mean such patients everywhere but we think sampling MSK
patients is enough

* Worth thinking
* Not entirely a statistical issue but has statistical consequences



Assuming we agreed on a population

 And we were able to obtain a sample ...

e Our conceptual problems have not ended

* There is almost never a random sample

 What we can hope for is a representative sample
* Famous failures of sampling ...
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Example: Phase Il Trial

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Long-Term Follow-up of CD19 CAR Therapy
in Acute Lymphoblastic Leukemia

Jae H. Park, M.D., Isabelle Riviere, Ph.D., Mithat Gonen, Ph.D.,
Xiuyan Wang, Ph.D., Brigitte Sénéchal, Ph.D., Kevin J. Curran, M.D.,
Craig Sauter, M.D., Yongzeng Wang, Ph.D., Bianca Santomasso, M.D., Ph.D.,
Elena Mead, M.D., Mikhail Roshal, M.D., Peter Maslak, M.D.,

Marco Davila, M.D., Ph.D., Renier J. Brentjens, M.D., Ph.D.,
and Michel Sadelain, M.D., Ph.D.



Population & Parameter

* CD19+ B-cell acute lymphoblastic leukemia (ALL)
* Relapsed of refractory disease

* Primary endpoint: response (complete remission)
* What is our parameter?

* Response rate: P(Response=1) =r



Sample and Estimate

* 53 patients

* Table 1 of the paper describes
the sample

* It is a subjective evaluation
whether this is representative of
the population

* 44 of 53 patients responded

* What can we do this with this
information?

Table 1. Characteristics of the 53 Patients at Baseline.*

Characteristic
Age
Median (range) — yr
Distribution — no. (%)
18-30yr
31-60yr
>60 yr
No. of previous therapies — no. (%)
2
3
=4
Primary refractory disease — no. (%)
Yes
No
Previous allogeneic HSCT — no. (%)
Yes
No
Previous treatment with blinatumomab — no. (%)
Yes
No
Pretreatment disease burdent
Median bone marrow blasts (range) — %

Bone marrow blasts — no. (%)

=5%
<5% with extramedullary disease
=0.01% and <5%
<0.01%
Philadelphia chromosome—positive — no. (%)
Yes
No

Value

44 (23-74)

14 (26)
31 (58)
8 (15)

21 (40)
13 (25)
19 (36)

12 (23)
41 (77)

19 (36)
34 (64)

13 (25)
40 (75)

63 (5-97)

27 (51)
5(9)
15 (28)
6 (11)

16 (30)
37 (70)




Things we can do

* Point estimate: produce a single number that represents our best
guess at what the parameter value might be

* Interval estimate: produce an interval that is likely to contain the true
value of the parameter

* Hypothesis testing: produce a yes/no answer to question about r
(such as r<=ry vs r>ry where r; is a pre-specified number)



Point Estimate

* Most of the time there is a sample analog of the population definition

* r is the proportion of responders in the population; can we use the
proportion of responders in the sample to estimate r

* Yes, most of the time

 Some parameters (like slope, hazard ratio) does not have so easily
defined sample analogs

* Sometimes sample analogs are not great estimates, but we will ignore
that now (famous example: standard deviation)



Maximum Likelihood Estimates

* We use something called maximum likelihood to produce estimates
for them

* It turns out that sample analogs are also maximum likelihood
estimates

* We will not discuss what maximum likelihood estimates are in this
class, but you should know that it is a generically good way of
obtaining estimates to pretty much any parameter



Back to the Example

* 44/53 (= 0.83) responded
* We often say response rate is 83%

* Any time you hear this you should think in your mind “Our point
estimate for response rate in this data set is 83%”

* The true response rate in the population is very unlikely to be exactly
83% but we hope it is close

* It will be close if we did our homework: good sampling, good data
collection and good statistical analysis



Why is the parameter not 83%

* Imagine we repeated the study, same inclusion/exclusion criteria,
same everything but different individuals enrolling.

* It would be possible but unlikely to get 44 responders again.

* Imagine we repeated the study 100 times. Many of these would not
have 44 responders.

* So 44 responders and 83% is nothing special. It is somewhere in the
vicinity of the right answer but it is not the right answer. Each
repeated study will give a slightly different answer.



What then?

* Interval estimate: Can we produce an interval that is likely to contain
the true value?

* Go back to imagining the repeated studies

* What if there is a way to say: here is a formula to produce an interval
estimate from a given data set; do it for each of the 100 repeats and
obtain 100 interval estimates. 95% of these intervals will contain the
true value

* You have gotten yourself a confidence interval



Back to the Example

* 44 out of 53 =2 95% confidence interval: 70% - 92%
* What is the interpretation?

* There is a 95% chance that the true parameter value is between 70%
and 92%?

* 95% of the intervals produced this way will contain the true value of
the parameter

* Is this helpful? Maybe.



Confidence Interval

* An interval that is likely to contain the true value of the parameter

* More precisely, a 95% confidence interval means
* If the data were to be collected again under “identical” conditions
* And a confidence interval is formed for every one of these data sets
* Then 95% of these intervals will contain the true value

I”

* You observe only one data set and one confidence interval

* One interval out of many, 95% of which would contain the true value,
is likely to contain the true value



How is it helpful?

* Precise probabilistic interpretation is cumbersome
* But points out to why this is useful

* If most of the intervals will contain the true value, a single randomly
selected one of them is likely to contain the true value

* Confidence intervals are a bridge between point estimation and
hypothesis testing

* Single most underused statistical tool



Confidence Interval Brain Teaser

* For a given data set and a variable | give you two confidence intervals
* One is wider than the other
* Which one has higher confidence level? Narrower or wider?

* Example: two intervals for age

* 63.3 -64.9 (wider)
 63.5-64.7 (harrower)



Hypothesis Testing

e Suppose at the time of study design we thought 50% of patients in
this population would respond to standard of care

* Then a reasonable hypothesis to test is r<=0.50 vs r>0.50
* This is the inverse of interval estimation

* We start with pre-defined intervals and ask which interval is more
likely to contain the true value



How Does One Test A Hypothesis?

* Produce a confidence interval and see if it is entirely contained in one
of the hypothesized intervals or not.

* If it is then we rule in favor of that hypothesis

* In this example, confidence interval is 0.7 — 0.92, entirely contained
within r>0.5, hence we conclude r>0.5

 What is the interval spanned both intervals (say it was 0.4 - 0.6)?



Asymmetry of hypothesis testing

* r<=0.50 vs r>0.50 — each is a hypothesis. One of them we want to
disprove (to be called the null hypothesis, or H,) and the other we
want to prove (alternative hypothesis, H,).

* They are not symmetrical for reasons we will discuss over and over in
this class

* As long as our interval estimate contains a shred of the null region we
cannot rule in favor of the alternative

* For example, if the confidence interval here was 0.49-0.69



Another way of testing a hypothesis

* Generate a p-value (to be defined next week) from the data

* If p < 0.05 the conclude alternative hypothesis is consistent with the
data, otherwise conclude null hypothesis is still the best thing we
have

* We have many discussions coming on this alternative, very very
popular and infamous method
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