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Lung adenocarcinoma promotion by air 
pollutants
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A complete understanding of how exposure to environmental substances promotes 
cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to 
occur in a two-step process: an initiating step that induces mutations in healthy cells, 
followed by a promoter step that triggers cancer development1. Here we propose that 
environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated 
with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing 
oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, 
which is more common in never-smokers or light smokers, we found a significant 
association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR- 
driven lung cancer cases in four within-country cohorts. Functional mouse models 
revealed that air pollutants cause an influx of macrophages into the lung and release 
of interleukin-1β. This process results in a progenitor-like cell state within EGFR 
mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep 
mutational profiling of histologically normal lung tissue from 295 individuals across  
3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% 
of healthy tissue samples, respectively. These findings collectively support a tumour- 
promoting role for  PM2.5 air pollutants  and provide impetus for public health policy 
initiatives to address air pollution to reduce disease burden.

Barrier organs such as the lung are directly affected by exposure to 
environmental challenges. Accordingly, more than 20 environmen-
tal and occupational agents are lung carcinogens2, and exposure to 
these are of particular relevance in understanding lung cancer in the 
never-smoking population. Lung cancer in never-smokers (LCINS) 
is the eighth most common cause of cancer death in the UK and has 
distinct clinical and molecular characteristics compared with lung 
cancer in smokers3. LCINS frequently harbour adenocarcinomas with 
oncogenic EGFR mutations and are more commonly observed in female 
individuals and in individuals with East Asian ancestry compared with 
patients with Western ancestry4. Several factors have been proposed to 

explain the observed sex and geographical disparities of lung cancer 
driven by EGFR mutations, including germline genetics5, ethnicity, 
radon exposure, occupational carcinogen exposure and air pollution6.

Air pollution accounts for 7 million deaths per year, with 99% of peo-
ple living in areas that exceed World Health Organization guidelines 
(<5 μg m–3 annually)7. Particulate matter (PM) is a key constituent of air 
pollution and is classified by aerodynamic size. Fine particles ≤2.5 μm 
(PM2.5) are able to travel deep into the lung and are linked to multiple 
adverse health effects, including heart disease and lung cancer7.

Traditionally, it is thought that carcinogens cause tumours by 
directly inducing DNA damage. However, recent data suggest that 
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many carcinogens do not cause a detectable DNA mutational signature 
in tumours following exposure8,9. Genetic analyses of oesophageal  
cancer showed that mutational signatures do not fully explain the 
varied geographical incidence of this cancer10, and efforts that have 
profiled tumour genomes in LCINS failed to detect a dominant carcino
genic signal of mutations deriving from exogenous sources11–13.

We propose that air pollutants might promote inflammatory changes 
in the lung tissue microenvironment that permit pre-existing mutated 
clones to expand, consistent with the two-stage carcinogenesis model 
of initiation and promotion1. To address this hypothesis, we combined 
epidemiological evidence with functional preclinical models and clini-
cal cohorts to decipher potential mechanisms of air-pollution-induced 
lung tumour promotion and actionable targets for molecular cancer 
prevention (Extended Data Fig. 1a).

Lung cancer incidence and PM2.5 levels
In a companion article14, our analysis of lung adenocarcinoma 
(LUAD) tumours from the TRACERx 421 cohort revealed that despite 
a history of smoking, a minority of patients (8%) lacked evidence of 
smoking-mediated mutagenesis, including 6.4% of patients with 
>15 years of smoking. Consistent with that analysis, in the current study, 
7–12% of smokers in the TRACERx 421 cohort did not have a driver single 
nucleotide variant that could be attributed to a smoking-related single 
base substitution (SBS) mutation signature (SBS4 or SBS92) (Extended 
Data Fig. 1b). This result suggests that smoking may promote cancer 
through additional mechanisms15. To understand whether air pollut-
ants can promote the formation of lung tumours without inducing 
exogenous mutational signatures, we studied EGFR-driven lung cancer, 
which has a high prevalence in LCINS (in England, the probability that 
a LCINS is caused by an EGFR-driven tumour is 36–40%), owing to its 
low mutational burden11–13 and greater incidence in countries in Asia4 
(Supplementary Tables 1–3).

To examine the relationship between air pollutants and EGFR-driven 
lung cancer incidence, we used several ecological correlation anal-
yses, acknowledging that these analyses only provide estimates of 
incidence. We considered data from three countries to explore differ-
ent ranges of PM2.5 air pollution and ethnicities: England (92% white; 
PM2.5 interquartile range (IQR): 9.95–11.2 μg m–3); South Korea (>99% 
Asian16; PM2.5 IQR: 24.0–27.0 μg m–3); and Taiwan (>98% Asian17; PM2.5 
IQR: 24.3–38.2 μg m–3) (Supplemetary Tables 1–3). In each country, 
there was a consistent relationship between PM2.5 levels (average 

concentration per geographical area) and estimated EGFR-driven lung 
cancer incidence (Fig. 1a–c). The relative rates of EGFR-driven lung 
cancer incidence (per 100,000 population), per 1 μg m–3 increment 
of PM2.5 levels were 0.63 (P = 0.0028) in England, 0.71 (P = 0.0091) in 
South Korea and 1.82 (P = 4.01 × 10–6) in Taiwan. When restricting the 
English cohort to adenocarcinoma cases, the relationship remained 
significant (Extended Data Fig. 1c).

In the above analyses, we were not able to account for the migra-
tion of individuals before the diagnosis of lung cancer. As such, we 
analysed samples from a group of female patients with LCINS (92% 
LUAD, n = 228) from British Columbia, Canada. For this dataset, PM2.5 
cumulative exposure was individually calculated for each individual 
through a detailed residential history from birth to current address. 
Most of the patients in this group (83%) were born outside Canada, and 
46.7% harboured an EGFR mutation. An analysis of 3-year and 20-year 
PM2.5 cumulative exposure (Methods) revealed that the frequency of 
EGFR-driven lung cancer cases was significantly higher after 3 years 
of high air pollutant exposure compared with low exposure (EGFR 
mutation frequency in high compared with low pollution (Methods): 
73% versus 40%, respectively, P = 0.03; Extended Data Fig. 1d,e). Of 
note, this association was not observed after 20 years of high com-
pared with low cumulative exposure (high versus low pollution: 50% 
versus 38%, respectively, P = 0.35; Extended Data Fig. 1d,e). This result 
could indicate that 3 years of high PM2.5 exposure may be sufficient for 
EGFR-driven lung cancers to arise.

To explore whether 3 years of cumulative PM2.5 exposure is asso-
ciated with lung cancer in an independent cohort not restricted to 
EGFR-driven cases, we obtained data from 407,509 participants in 
the UK Biobank. An analysis that included all participants, regardless 
of changes in residential location before registration, demonstrated 
that PM2.5 levels (calculated at 1 μg m–3 increments) were associated 
with lung cancer incidence (hazard ratio (HR) = 1.08 (95% confidence 
interval: 1.04–1.12), raw P ≤ 0.001, false discovery rate (FDR) = 0.001; 
Supplementary Table 4), a result that is consistent with a previous 
analysis18. By contrast, lung cancer incidence was not associated with 
outdoor radon levels (HR = 0.96 (0.89–1.03), P = 0.262; Methods). 
Interaction tests between ever-smoking status and PM2.5 exposure 
levels suggested that smoking and high PM2.5 levels may have a com-
bined effect on lung cancer risk (P = 0.049; Supplementary Table 4). We 
also noted nominal significance (raw P < 0.05, FDR > 0.05) for lip and  
oropharyngeal cancer (HR = 1.10 (1.01–1.19), raw P = 0.023, FDR = 0.215) 
and mesothelioma (HR = 1.11 (1.00–1.24), raw P = 0.048, FDR = 0.339; 
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Fig. 1 | Exploring the association between cancer and air pollution.  
a–c, Scatter plots showing relationships between PM2.5 levels and estimated 
EGFR-driven (EGFR mutant; EGFRm) lung cancer (LC) incidence (per 100,000 
population) at the country level in England (a), South Korea (b) and Taiwan (c). 
Grey shading indicates 95% confidence intervals. d, Forest plot indicating the 
relationship between lung cancer risk and various co-variates, including 

residential PM2.5 exposure levels (range: 8.17–21.31 μg m–3) in the UK Biobank 
dataset. Only participants who have lived at the same location for 3 years 
before registration (n = 371,543) are included. Each co-variate is displayed on  
a different row. Cox regression P values are indicated on the right. BMI, body–
mass index; NS, not significant.
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Supplementary Table 4 and Methods). Finally, we restricted our analy-
sis to participants resident at the same address in the 3 years before 
registration (n = 371,543). This analysis showed that the relationship 
between lung cancer incidence and PM2.5 exposure levels remained 
significant (Fig. 1d; HR = 1.07 (1.03–1.11); P ≤ 0.001).

Collectively, these data, combined with published evidence6, indi-
cate that there is an association between the estimated incidence of 
EGFR-driven lung cancer and of PM2.5 exposure levels and that 3 years of 
air pollution exposure may be sufficient for this association to manifest.

PM-mediated promotion of lung cancer
Next we used genetically engineered mouse models of LUAD to function-
ally examine whether PM exposure promotes lung tumour development. 
We induced expression of oncogenic human EGFRL858R in mouse lung 
through the intratracheal delivery of adenoviral-CMV-Cre to mice engi-
neered with Rosa26LSL-tTa/LSL-tdTomato;TetO-EGFRL858R alleles (ET mice). Mice 
were exposed to physiologically relevant doses of fine PM or PBS for 
3 weeks after the induction of EGFRL858R, and tumour burden was assessed 
10 weeks after oncogene induction (Fig. 2a and Methods). In this model, 
rare, sporadic lung epithelial cells expressing oncogenic EGFR expanded 
to form pre-invasive neoplasia by 10 weeks (Fig. 2a,b). An analysis of 
ET mice at 10 weeks after exposure to PM revealed a dose-dependent 
increase in the number of pre-invasive neoplasias (PBS compared 
with 5 μg PM, P = 0.047; PBS compared with 50 μg PM, P = 0.0007; 
Fig. 2b). PM also enhanced the number of pre-invasive neoplasia when 
EGFRL858R induction was restricted to alveolar type II (AT2) cells using 
lineage-specific adenoviral-SPC-Cre (Extended Data Fig. 2a). Exposure 
to PM before the CMV-Cre-mediated induction of EGFRL858R also resulted 
in an increased number of early neoplasias (P = 0.024; Extended Data 
Fig. 2b), which indicated that PM exposure before or after oncogene 
induction is sufficient to promote carcinogenesis.

PM exposure also increased the number of adenocarcinomas in a more 
aggressive CCSP-rtTa;TetO-EGFRL858R model of doxycycline-inducible 
LUAD (P = 0.032; Extended Data Fig. 2c). Moreover, the number of 
hyperplasias in an adenoviral–CMV-Cre KrasG12D model of lung can-
cer was also increased (Rosa26LSL-tdTomato/+;KrasLSL-G12D/+ mice; 5 μg PM, 
P = 0.048; 50 μg PM, P = 0.0087; Extended Data Fig. 2d). Together, 
these data suggest that PM can promote tumour progression in both 
oncogenic Kras and EGFR models of LUAD.

Next we explored the mechanisms by which PM might promote 
EGFR-driven lung tumorigenesis. Spatial analysis of clonal dynamics 
throughout early tumorigenesis in ET mice indicated that the expansion 
of EGFR mutant cells did not occur during PM exposure but manifested 
in the period after PM cessation (3 weeks, P = 0.82; 10 weeks, P = 0.013; 
Fig. 2c,d and Methods). Both the fraction of EGFRL858R cells that grew into 
clusters and the number of cells within these clusters were increased in 
PM-exposed ET mice at 10 weeks but not at 3 weeks (Fig. 2d,e). These 
data suggest that PM acts in two ways to promote early tumorigenesis: 
by increasing the number of EGFR mutant cells with the potential to 
form a tumour and by increasing the proliferation rate of EGFR mutant 
cells within these early lesions.

To test whether PM induces DNA mutagenesis, we performed 
whole-genome sequencing on tumours from ET mice exposed to PM 
or PBS. We did not observe an increase in the number of mutations in 
tumours from PM-exposed mice (P = 0.30; Extended Data Fig. 3a–c), 
or an enrichment in any established SBS signatures (P = 0.26–0.68). 
This result suggests that short-term exposure to PM does not enhance 
mutagenesis. Most of the mutations in tumours from PM-exposed 
mice and PBS-treated mice were attributable to the ageing SBS signa-
tures (Extended Data Fig. 3d). We next examined whether the immune 
system is required for PM-enhanced EGFR-driven tumorigenesis. We 
crossed Rosa26LSL-tTa;TetO-EGFRL858R mice with Rag2−/−;Il2rg−/− mice, 
which lack T cells, B cells and natural killer cells and have an altered 
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myeloid compartment19, to generate CMV-Cre delivery (Rag2−/−;Il2rg−/−; 
Rosa26LSL-tTa/+;TetO-EGFRL858R). In contrast to the ET mice (Fig. 2b), expo-
sure to PM following EGFRL858R induction in these immune-deficient 
mice did not result in increased neoplasia. This result suggests that a 
competent immune system is required for PM-enhanced EGFR-driven 
lung tumorigenesis (P = 0.879; Fig. 2f).

The inhalation of toxic particles induces a local response in the 
lung, which is mediated by macrophages and lung epithelial cells20. 
We profiled the acute myeloid response to PM in immunocompetent 
lungs from Rosa26LSL-tdTomato/+ mice (control) and from mice harbouring 
an EGFR mutation (ET mice) 24 h after the final exposure to PM. We 
observed an increase in the proportion of interstitial macrophages 
(control mice, P = 0.043; ET mice, P = 0.034; Fig. 2g) and an increase in 
PD-L1 expression on these cells in both control and ET mice following 
PM exposure (control mice, P = 0.031; ET mice, P = 0.0061; Fig. 2g,h). 
No change was observed in alveolar macrophages (Extended Data 
Fig. 4a). In addition, lungs from control mice displayed an increase 
in neutrophils, whereas dendritic cells were increased in lungs from 
ET mice (Extended Data Fig. 4a). Immunofluorescence staining of 
lungs from ET mice with the pan-macrophage marker CD68 revealed 
a greater density of macrophages after PM exposure, both acutely (24 h 
after exposure) and at 7 weeks after exposure (3 weeks, P ≤ 0.0001; 
10 weeks, P = 0.022; Extended Data Fig. 4b). These macrophages were 
confirmed to be CD11b+CD68+ interstitial macrophages (Extended 
Data Fig. 4c). We also observed an increased number of macrophages 
in both the doxycycline-inducible EGFRL858R mice and Rosa26LSL-tdTomato/+; 
KrasLSL-G12D/+ mice 10 weeks after induction and PM exposure (Extended 
Data Fig. 4d,e). These data support the hypothesis that transient PM 

exposure is associated with enhanced and sustained lung macrophage 
infiltration beyond the period of PM exposure.

PM-mediated AT2 cell reprogramming
To investigate the effects of PM exposure on early tumorigenesis, lung 
epithelial cells were purified by flow cytometry, and RNA sequencing 
(RNA-seq) was performed acutely following exposure in four differ-
ent conditions: control mice exposed to PM or to PBS, and ET mice 
exposed to PM or to PBS. Principal component (PC) analysis of gene 
expression values showed that PM exposure accounted for 19% of the 
variance (genes differentially expressed between control mice that 
were exposed to PM and control mice that were exposed to PBS display 
higher PC2 ranks, P < 0.001) and EGFR mutation accounted for 38% 
of the variance (genes differentially expressed between ET mice that 
were exposed to PM and control mice that were exposed to PM display 
higher PC1 ranks, P < 0.001; Fig. 3a and Supplementary Table 5). Gene 
set enrichment analysis of PM-treated ET mice showed that compared 
with PBS-treated ET mice, the IL-6–JAK–STAT pathway, inflammatory 
responses and the allograft rejection pathway were only upregulated 
following PM exposure in epithelium with EGFR mutations. This was 
in contrast to the pathways induced by PM exposure in control mice 
(Extended Data Fig. 5a,b). In ET mice, PM exposure led to an upregula-
tion of genes known to regulate macrophage recruitment, including 
those that encode interleukin-1β (IL-1β), GM-CSF, CCL6 and NF-κB and 
the epithelial-derived alarmin IL-33 (Fig. 3b). AT2 cells are a probable 
cell of origin of lung adenocarcinoma21, and the bleomycin lung injury 
model has identified a keratin 8-positive (KRT8+) subset of these cells as 
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images of tdTomato+ organoids at day 14 from ET mice exposed to PBS (control) 
or PM in vivo. Right, OFE within unrecombined (tdTomato–) or recombined 
(tdTomato+) EpCAM+ lung cells from ET mice exposed to PBS or PM. Two mice 

were pooled for each biological replicate for sufficient tdTomato+ cells. Data 
represent mean from tdTomato−, n = 8 (16 mice); tdTomato+EGFRL858R, n = 9  
(18 mice). One-way ANOVA. e, Schematic of macrophage isolation from mice 
exposed to PM or PBS and co-cultured with naive (non-PM exposed) EGFRL858R 
AT2 cells. f, Left, representative fluorescent images of tdTomato+EGFRL858R 
AT2-cell-derived organoids from ET mice, co-cultured with IMs exposed to PM 
or PBS. Right, quantification of OFE of EGFRL858R AT2 cells alone and compared 
with AT2 cells from the same mouse co-cultured with IMs alveolar macrophages 
(AMs) exposed to PBS or PM (n = 5 mice, data are average of 2 technical 
replicates per mouse). Paired-t test. g, Left, representative haematoxylin and 
eosin images of PM-exposed mice treated with IgG control antibody or anti- 
IL-1β throughout exposure duration. Right, quantification of tumours (n = 8 
mice per group). Mann–Whitney test. Scale bar, 500 μm (d,f). The illustrations 
in c and e were created using BioRender (https://biorender.com).

https://biorender.com
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progenitors that mediate alveolar regeneration driven by inflammatory 
signals such as IL-1β22. Consistent with our data showing that PM can 
promote tumorigenesis in EGFRL858R AT2 cells, we noted upregulation 
of genes previously associated with AT2 progenitor cell states (Fig. 3b). 
Deconvolution of our bulk RNA-seq expression data with signals trained 
on a single-cell RNA-seq dataset of bleomycin-treated mouse lungs23 
identified an increased AT2 activated progenitor score only in ET mice 
exposed to PM (Extended Data Fig. 5c and Methods). This result sug-
gests that EGFRL858R AT2 cells are transcriptionally reprogrammed to this 
progenitor cell state following PM exposure. We compared the mouse 
RNA-seq data to a human clinical crossover study in which lung brush-
ings from individuals who never smoked were taken after exposure to 
diesel exhaust and filtered air24,25 (Extended Data Fig. 5d). A number 
of significantly upregulated genes within the mouse lung epithelium 
were also upregulated in human lung epithelium (but not reaching 
significance) after PM exposure, including markers of macrophage 
recruitment (IL1B and IL1A) and markers of AT2 progenitor state (ORM1 
and LRG1) (Extended Data Fig. 5e and Supplementary Table 5).

These results identify PM-induced transcriptional changes in lung 
epithelium associated with inflammation and lung progenitor cell 
states22. To test whether these alterations are reflected in functional 
differences in epithelial cell progenitor behaviour, we isolated lung 
epithelial cells from ET mice following in vivo exposure to PM, and 
cultured them in a 3D lung-organoid-formation assay with lung 
fibroblasts26 ex vivo (Fig. 3c). Non-recombined (EGFR wild-type) 
cells from ET mice exposed to PM did not display an increase in 
organoid-formation efficiency (OFE; P = 0.075; Fig. 3d). By contrast, 
recombined tdTomato+EGFRL858R cells demonstrated an increase in 
OFE (P = 0.025; Fig. 3d). To validate whether AT2 cells specifically are 
functionally altered by PM, we purified AT2 cells from non-induced ET 
mice and control mice exposed to PM, induced recombination in vitro27 
and then plated the cells (Extended Data Fig. 5f). Increased OFE was 
observed only in tdTomato+EGFRL858R AT2 cells from mice exposed to 
PM in vivo (P = 0.0043; Extended Data Fig. 5g,h). This result is consist-
ent with our in vivo data (Extended Data Fig. 2a,b) and demonstrates 
that reversing the temporal order of oncogenic mutation initiation 
and PM exposure also increases OFE. PM-exposed AT2 organoids were 
KRT8+ and SPC+, consistent with an AT2 progenitor state (Extended Data 
Fig. 5i). These data suggest that the combination of in vivo exposure to 
PM and induction of the EGFRL858R-driver mutation increases AT2 cell 
progenitor function, a phenotype that is not seen with PM exposure 
or expression of EGFRL858R alone.

PM induces IL-1β production from macrophages
We proposed that lung macrophages, which release inflammatory 
cytokines when exposed to PM28, may be central to tumour promo-
tion. We isolated AT2 cells from ET mice not exposed to PM, induced 
EGFRL858R expression ex vivo and co-cultured the cells with macrophages 
exposed in vivo to either PM or PBS (Fig. 3e). Both PM-exposed intersti-
tial macrophages and alveolar macrophages increased the OFE of EGFR 
mutant AT2 cells (interstitial, P = 0.0095; alveolar, P = 0.0002; Fig. 3f). 
This result indicates that a key mediator of PM-induced inflammation 
arises from macrophages.

Previous reports have shown that IL-1β, derived from lung mac-
rophages, is required for the formation of KRT8+ AT2 progenitor cells 
after bleomycin injury22. Therefore, we reasoned that IL-1β may be a key 
molecular mediator of tumour promotion and the pollutant-driven 
change in cell state. IL-1β was upregulated in PM-treated lungs and 
predominantly appeared within CD68+ macrophages (Extended 
Data Fig. 5j,k). Furthermore, treatment of EGFR mutant AT2 cells 
in vitro with IL-1β resulted in larger KRT8+SPC+ organoids (Extended 
Data Fig. 5l). Finally, to test the requirement of IL-1β in PM-enhanced 
adenocarcinoma formation, we initiated oncogene expression in the 
doxycycline-inducible CCSP-rtTa;TetO-EGFRL858R model and exposed 

mice to PM with concomitant administration of an anti-IL-1β or a control 
antibody (200 µg per dose; Extended Data Fig. 5m). Treatment with 
an anti-IL-1β antibody during PM exposure was sufficient to attenuate 
EGFR-driven LUAD formation (P = 0.034; Fig. 3g). Collectively, these 
data establish that PM-exposed macrophages are sufficient to induce a 
progenitor-like state in EGFR mutant AT2 cells. Moreover, macrophages 
are a key source of IL-1β in response to PM and IL-1β signalling is required 
for the promotion of PM-mediated EGFR-driven LUAD.

Oncogenic mutations in healthy lung
The model of tumour initiation and promotion is contingent on histo-
logically normal tissue cells harbouring oncogenic driver mutations1. 
In 15 reported studies involving deep sequencing of human histologi-
cally normal tissues from different anatomical sites (n = 9,380 samples 
from 380 patients), an oncogenic EGFRL858R mutation was only reported 
in a single clone from a skin microbiopsy, which indicated that these 
mutations are rare (Supplementary Table 6). Using digital droplet PCR 
(ddPCR) and duplex sequencing (Duplex-seq), we sought for evidence 
of EGFR-driver mutations in non-cancerous lung tissue from patients 
with lung cancer or with cancers of other organs and from individuals 
with no evidence of cancer (Extended Data Figs. 7 and 8a and Supple-
mentary Table 7).

We selected non-cancerous lung tissue from 195 out of 1,346 pro-
spectively recruited treatment-naive patients with lung cancer from 
the TRACERx cohort (NCT01888601), balancing the cohort for sex, 
EGFR mutation status and smoking status within the limits of tissue 
availability (Supplementary Table 7 and Extended Data Figs. 7 and 
8a,b). We used ddPCR to detect the presence of five oncogenic EGFR 
driver mutations (exon 19 deletion, G719S, L858R, L861Q and S768I)29 
in these tissue samples.

We filtered out occurrences where the same mutation was identified 
in both tumour and non-cancerous tissue using MiSeq-based analysis 
of corresponding primary tumour tissue (Methods), which were poten-
tially attributable to contamination from the tumour. After this filtering 
step, 38 out of 195 (19%) patients harboured activating EGFR mutations 
in non-cancerous lung tissue that were not detectable in tumour tissue 
(Fig. 4a and Extended Data Fig. 8b). In one patient (identifier CRUK267), 
both EGFRL858R and EGFRL861Q were detected in healthy lung, but only 
EGFRL861Q (the less common driver mutation) was found in the tumour. 
These findings indicate that EGFR-driver mutations can be present in 
histologically normal lung tissue, even in patients in whom the same 
mutations were not selected during NSCLC tumorigenesis.

To examine whether EGFR mutations exist in healthy lung tissue 
from people who never develop lung cancer in their lifetime, we pro-
filed 59 healthy lung samples collected at autopsy (median 3 samples 
per patient, n = 19 patients) from participants in the PEACE study 
(NCT03004755) who died of other cancers (Supplementary Table 7 and 
Extended Data Figs. 7 and 8a). An EGFR-driver mutation was detected in 
the healthy lung of 16% (3 out of 19) patients (Fig. 4a). Despite spatially 
separated multiregion ddPCR analysis of healthy tissue in 15 out of the 
19 patients, EGFR-driver mutations were only detected in 1 region per 
patient. Based on the frequency of oncogenic EGFR-driver mutations 
identified in healthy tissue across all patients in the PEACE and TRAC-
ERx cohorts (Supplementary Table 7), we used Bayesian inference 
(Methods) to estimate the presence of an EGFR-driver mutation in 
lung cells. The calculation showed that 1 in 554,500 lung cells (95% 
credible interval of 1 in 341,500 to 1 in 865,750 cells) would harbour 
an oncogenic EGFR mutation.

We next used the TRACERx cohort to address whether there was 
an association of oncogenic EGFR mutations within non-cancerous 
tissue and exposure to ambient pollution. Anthracosis, determined 
by the presence of anthracotic pigment (Extended Data Fig. 8c), can 
act as a surrogate marker of exposure to ambient air pollution30. We 
classified anthracosis within the samples of non-cancerous lung tissue 

https://clinicaltrials.gov/ct2/show/NCT01888601
https://clinicaltrials.gov/ct2/show/NCT03004755
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with and without EGFR-activating mutations (Fig. 4b). Although there 
was no association between the presence of an EGFR-driver mutation 
in non-cancerous tissue and anthracosis (P = 0.39; Fig. 4b), there was 
an association between anthracosis and increased variant allele fre-
quencies (VAFs) of EGFR-driver mutations (t-test P =  0.015; Fig. 4c). 
Although there was a trend towards enrichment of smokers in the 
anthracosis-positive group (Fisher’s exact test, P = 0.065), several 
reports30–32 have shown that cigarette smoking is not a risk factor 
for anthracosis. In our cohort, the degree of anthracosis observed in 
never-smokers and smokers did not differ, which is in line with these 
reports (P = 0.43; Extended Data Fig. 8d). Even though there are multiple 
environmental contributors to anthracosis30, these data suggest that 
pollutants are not associated with the frequency of activating onco-
genic mutations but rather with the expansion of EGFR mutant clones. 
Smoking status, sex, anthracosis and age of patients in the TRACERx 
cohort were entered into a multivariable model for the likelihood of an 
EGFR mutation in healthy tissue. Female sex demonstrated the strong-
est association (P = 0.06; Extended Data Fig. 8e).

We next addressed whether driver mutations existed at other 
genomic loci in EGFR and in KRAS using an independent ultradeep 
sequencing platform in a separate group of patients with and without 
cancer (n = 81). We analysed 48 samples of non-cancerous lung tissue 
from the PEACE study (lung cancer, n = 9; other cancer, n = 39) and 

33 samples of healthy lung tissue derived from the Biomarkers and 
Dysplastic Respiratory Epithelium (BDRE) study (NCT00900419; Sup-
plementary Table 7 and Extended Data Figs. 7 and 8a). The BDRE cohort 
consisted of patients with suspicious lung nodules identified through 
computed tomography scans and who were referred for evaluation 
by navigational bronchoscopy. For each patient, a brushing sample 
enriched for bronchial epithelial cells (>89%)33,34 from the uninvolved 
contralateral lung was taken for research purposes and used as the 
source of healthy tissue. Profiling was carried out using Duplex-seq, 
which covers a broader range of mutations (EGFR exon 18, 19, 20 and 21, 
KRAS exon 2 and 3 and other cancer genes). Thus, we only considered 
mutations featured in the cancer gene census35 and further filtered 
these by evidence of driver mutation status in the literature (Supple-
mentary Table 8). In 24 out of 68 cancer cases for which tissue was 
available, we also performed Duplex-seq or MiSeq on the correspond-
ing tumour tissue to confirm that the identified mutations were found 
exclusively in the healthy tissue samples. Based on the Duplex-seq 
data, 13 out of 81 (16%) samples harboured an EGFR-driver mutation 
(E709X, G719X, T725M, exon 19 deletion, R765X, R776X, L858R or L861X; 
Fig. 4d and Extended Data Fig. 9a), whereas 43 out of 81 (53%) samples 
harboured a KRAS driver mutation (G12X, G13X or Q61X; Fig. 4d and 
Extended Data Fig. 9b). BRAF inhibitors used to treat BRAF mutant 
melanomas are known to promote the accelerated growth of clones 
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Fig. 4 | Mutational landscapes of healthy lung tissue. a, Counts and 
proportions of non-cancerous lung samples from PEACE (n = 19) and TRACERx 
(n = 195) patients that harbour EGFR mutations (EGFRm) identified using 
ddPCR. The EGFR mutation type is indicated by the colour of the bars (key in b). 
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that harbour EGFR mutations identified by ddPCR. The EGFR mutation type is 
indicated by the colour of the bars. c, Proportion test Beeswarm plot of ddPCR 
TRACERx data indicating the VAFs of EGFR mutations. Samples organized 
according to presence (yes; n = 31) or absence (no; n = 9) of anthracotic 
pigment. Shapes of dots indicate smoking status. Two-sided t-test. d, Gene 

models of KRAS (top) and EGFR (bottom), where dots represent mutations 
identified in the Duplex-seq PEACE and Duplex-seq BDRE cohorts. The position 
of the dots correspond to the loci of the mutations, whereas the height of the 
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coordinate. The shape of the dot indicates the disease diagnosis of the patient, 
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including EGFR and KRAS. Spearman correlation coefficient and P value are 
indicated in the plot.
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harbouring RAS mutations36. Excluding patients with melanoma from 
the analysis did not change the percentage of cases harbouring a KRAS 
mutation (36 out of 68 (53%); Extended Data Fig. 9c), which suggests 
that this parameter did not confound our analysis. Concordant with 
KRAS being commonly mutated in ever-smoker LUAD, KRAS mutation 
frequency and VAFs were significantly higher than EGFR mutation and 
VAFs in samples from ever-smokers (P  = 0.012; Extended Data Fig. 9d). 
Moreover, VAFs of high-confidence KRAS mutations were consistently 
higher than those in EGFR in the four ever-smoker cases that harboured 
oncogenic mutations in both genes (P = 0.015; Extended Data Fig. 9d), 
which indicates that KRAS mutant clones may be more highly selected 
for than EGFR mutant clones in healthy lungs of ever-smokers.

In summary, 54 out of 295 (18%) of samples of non-cancerous lung tis-
sue harboured an EGFR driver mutation, and 43 out of 81 (53%) samples 
of non-cancerous lung tissue harboured a KRAS driver mutation. No 
associations between EGFR or KRAS mutation in non-cancerous tissue 
and smoking status or cancer diagnosis were observed (Supplementary 
Table 9). To address whether oncogenic mutations accumulate with the 
natural ageing process, we examined the driver mutation frequency 
in all 31 genes (including EGFR and KRAS) present in the Duplex-seq 
panel. We limited this analysis to 17 never-smoker individuals from 
the PEACE study to control for any effect of smoking. Consistent with 
previous work37,38, there was a significant correlation between age and 
mutation count (Fig. 4e).

Discussion
In this study, we explored the paradigm of tumour promotion driven 
by the air pollutant PM in the development of lung cancer. We build on 
previous studies proposing that engine exhaust39 and air pollution40 
induce lung tumours through genotoxicity, induction of oxidative 
stress and inflammation. We propose that PM can trigger the expan-
sion of pre-existing mutant lung cells through an inflammatory axis 
that may be amenable to therapy to limit the risk of tumour promotion.

Extending previous findings that established associations between 
air pollution and lung cancer18,41, including in LCINS6, we found an asso-
ciation between the frequency of EGFR mutant lung cancer incidence 
and increasing PM2.5 levels. Temporal analysis suggested that 3 years 
of PM2.5 exposure may be sufficient to increase the risk of developing 
EGFR-driven lung cancer. A limitation of our epidemiological analysis is 
its ecological nature: using aggregate data instead of participant-level 
data. We also acknowledge that variables such as female sex, Asian 
ancestry and adenocarcinoma histology, which are associated with 
EGFR mutation status, may confound our conclusions. We balanced 
our study cohorts with respect to sex and covered geographically 
and ethnically distinct populations, and when restricting the analy-
sis to LUAD in the English cohort, the positive association remained 
significant. This study suggests that PM exposure contributes to the 
observed geographical disparities of EGFR-driven lung cancer, in addi-
tion to other established intrinsic (for example, germline genetics5) and 
extrinsic (for example, occupational exposure3) factors, and it will be 
important to understand how these factors interact to increase risk.

We observed that PM induces an altered progenitor state in EGFR 
mutant AT2 cells through the macrophage release of IL-1β, which pro-
motes lung cancer. A caveat of our work is that these mouse models 
will develop cancers in the absence of PM and probably do not repli-
cate the complex spectrum of mutations found in healthy tissue of 
a healthy adult. However, they provide controlled environments to 
provide insight into early tumorigenesis. These experiments dem-
onstrate that a key driver of tumorigenesis is a clinically targetable 
inflammatory axis that could be applicable to a range of risk factors and  
malignancies15,42. It is notable that the antibody canakinumab, which 
is targeted against IL-1β, a cytokine induced in both mice and humans 
following PM exposure, has been shown to reduce lung cancer incidence 
in the cardiovascular prevention trial CANTOS43.

A limitation of our DNA profiling strategies of non-cancerous tissue 
is that we did not purify epithelial cells, specifically AT2 cells, which 
are the probable initiators of lung tumours. Further work would be 
required to pinpoint which lineages harbour these mutations. From 
histological analyses, AT2 and AT1 cells account for on average 22% 
of distal lung parenchyma cells in autopsy or surgical resection lung 
samples, mixed with 37% endothelial cells, 37% interstitial cells and 
3% macrophages44.

Our results provide additional evidence that a major trigger of cancer 
development is not only the inevitable acquisition of driver mutations 
in healthy epithelium but also intrinsic and extrinsic mechanisms that 
promote nascent mutant cell expansion and progenitor activity. Assum-
ing little can be done to prevent the acquisition of oncogenic mutations 
with age, it may be beneficial to address whether additional carcinogens 
promote cancer through similar inflammatory mechanisms. Broad 
approaches will be necessary to establish how these carcinogens, as 
well as potential hormonal, environmental and germline influences, 
might promote or restrict mutant clone expansions and contribute to 
tumour promotion. There is an urgent need for carcinogenic assays to 
identify potential tumour-promoting agents across different tissues 
and to understand tissue-specific mediators. Such efforts may guide 
new screening paradigms in high-risk, under-served populations and 
molecularly targeted cancer prevention approaches to inhibit cancer 
initiation.

In conclusion, our data suggest a mechanistic and causative link 
between air pollutants and lung cancer, as previously proposed45, and 
substantiate earlier findings on tumour promotion1, providing a public 
health mandate to restrict particulate emissions in urban areas.
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Methods

ddPCR of tumour and healthy lung tissue samples from the 
TRACERx and PEACE studies
This project leverages the infrastructure established by the national 
pan-cancer research autopsy programme (PEACE, NCT03004755) 
and the prospective, longitudinal cohort study (TRACERx) of NSCLC 
(NCT01888601)12.

To explore whether clinical disparities in lung cancer in never-smokers 
were reflected in EGFR mutation status in non-cancerous lung tissue, we 
sought to assemble a cohort comprising participants in the TRACERx 
study that was as best as possible balanced for sex (male individuals 
compared to female individuals), smoking status (never-smoker com-
pared with ever smoker) and EGFR mutation status in tumour samples 
(EGFR mutation versus EGFR wild-type). To uncover whether EGFR 
mutations were also found in non-cancerous lung tissue from patients 
who never acquire a lung cancer diagnosis in their lifetimes, we also 
assembled a cohort of individuals from the PEACE study.

Based on tissue that was available for study, our dataset consisted 
of 195 tumour and 195 non-cancerous lung tissues from 195 patients 
from the TRACERx study and 59 non-cancerous lung tissues from 19 
participants in the PEACE study (median 3 samples per patient, range  
of 1–10).

For the TRACERx study, tumour and non-cancerous lung tissue were 
obtained at surgery. Healthy (non-cancerous) lung tissue was collected 
distally from the primary tumour tissue (at least approximately 2 cm 
apart). All tissue was initially snap-frozen and then a portion fixed and 
made into a formalin-fixed paraffin-embedded (FFPE) block. A hae-
matoxylin and eosin (H&E) section of each block underwent pathol-
ogy review. DNA was extracted from frozen healthy and tumour tissue 
proximal to these sections. For the PEACE study, healthy lung tissue 
was collected at post-mortem tissue from patients who never acquired 
lung cancer in their lifetimes. Each piece of collected tissue was imme-
diately bisected, and one half was snap-frozen and the other was fixed 
and made into a FFPE block. The H&E section of each block underwent 
pathology review. DNA was then extracted from an adjacent frozen 
healthy tissue sample.

All aforementioned H&E slides from tissues underwent central 
pathology review. In particular, to exclude the possibility of contamina-
tion with tumour cells, thoracic pathologists confirmed that all healthy 
lung tissue samples did not contain any indication of tumour tissue or 
morphologically defined, pre-invasive disease. Thoracic pathologists 
also identified anthracotic pigment and reflected this in a binary score 
for its presence. For anthracosis-positive cases, the proportion of the 
tissue covered by anthracotic pigment was quantified.

EGFR mutation profiling of non-cancerous tissue samples by  
ddPCR. DNA was extracted from healthy lung tissue samples as previ-
ously described12. The DNA concentration was measured using Qubit, 
and up to 3,000 ng of DNA was fragmented to approximately 1,500 bp 
using a Covaris E220 evolution focused-ultrasonicator following the 
manufacturer’s standard protocol. SAGAsafe assays46 for five EGFR 
target variant alleles (L858R, exon 19 deletion, S768I, L861Q and G719S) 
were used (SAGA Diagnostics). SAGAsafe is a digital PCR-based ultra-
sensitive mutation detection technology that utilizes an alternative 
chemistry alongside a modified thermocycling program, such that 
the true positive variant allele signal is enriched during a linear phase, 
and signals for both the variant and the wild-type alleles are amplified 
during the exponential phase. The method effectively suppresses the 
false-positive variant allele signal arising from polymerase base mis-
incorporation errors and DNA damage, making reliable detection of 
rare-event mutations possible to exceedingly low limits of detection. 
The assays were performed on a Bio-Rad QX200 Droplet Digital PCR 
system. At least three positive droplets were required to call a sample 
positive. Using control experiments containing 265,000–381,000 

copies of wild-type genome equivalents per test, the achievable limit 
of detection for the five EGFR SAGAsafe assays was determined to be at 
least 0.004% VAF. For each patient sample, 500 ng of fragmented DNA 
(corresponding to about 150,000 copies of genome equivalents) was 
analysed per assay across 4 reaction wells, with positive and negative 
control samples included for every run.

The copy number concentration of the variant and the wild-type 
alleles was calculated as follows:
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where CVi is the copy number concentration of the target (variant or 
wild-type allele) in the input DNA sample, P is the number of positive 
droplets for the target, T is the number of total droplets analysed, Vd is 
the volume a droplet (0.85 × 10−3 μl), Vr is the total volume of a ddPCR 
reaction (20 μl), and Vi is the input volume per ddPCR reaction of the 
input DNA sample.
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To estimate the EGFR mutation rate, we considered all five oncogenic 
EGFR mutations detected by ddPCR in all TRACERx and PEACE samples 
analysed (253 samples in total). Using the approximate Bayesian compu-
tation model, we simulated ddPCR results of oncogenic EGFR mutations 
and inferred a mutation rate of 4.07 × 10−7 per mutation (confidence 
interval: 1.61 × 10−7 to 6.08 × 10−7). Considering this mutation rate, we 
estimated that the frequency of identifying 1 EGFR mutation (of any of 
the 5 mutation types) would be 1 in 2,035,000 (95% confidence interval: 
1 in 805,000 to 1 in 3,040,000). When we took the average of the two 
limits of the confidence interval, we obtained an estimate of an EGFR 
mutation being present in 1 in 554,500 cells (or around 1:600,000 cells).

EGFR mutation profiling in corresponding tumour tissue by MiSeq. 
To exclude the presence of clonal or subclonal spatially distinct EGFR 
mutations that may be present in the corresponding matched lung tu-
mour, we performed multiregion deep next-generation sequencing of 
NSCLC samples from the same patients (>3,000× coverage) of 19 driver 
genes (including EGFR) using the MiSeq platform. We sequenced 751 
tumour regions from the 195 tumours (median of 3 regions per tumour) 
with an achievable limit of detection in each tumour region of 0.966% 
based on a median sequencing depth per region of 3,490× and a MiSeq 
error rate of 0.473%47.

For each tumour region and matched germline, capture of a custom 
panel of genes (including the EGFR locus) was performed on 125 ng DNA 
isolated from genomic libraries. The TruSeq Custom Amplicon Library 
Preparation method was used. Following cluster generation, samples 
were 100 bp paired-end multiplex sequenced on an Illumina MiSeq 
platform at the GCLP Laboratory at University College London, as pre-
viously described12. The generated data were aligned to the reference 
human genome (hg19). Mutations were called as previously described12.

Duplex-seq of samples from the PEACE and BDRE studies
Non-cancerous lung tissue samples. Samples from the PEACE cohort  
were collected as described above. For Duplex-seq, we obtained  
additional non-cancerous lung tissue from 48 participants of the PEACE 
study. Here patients with lung cancer or with another cancer type were 
profiled (lung cancer, n = 9; other cancer, n = 39).

Participants in the BDRE study (NCT00900419) consisted of indi-
viduals recommended for a computed tomography (CT) scan based 
on age, smoking history or other indications. If a suspicious nodule 
was detected by CT scan, a navigational bronchoscopy was indicated. 
The nodule site was sampled for accurate diagnosis. For each patient, 

https://clinicaltrials.gov/ct2/show/NCT03004755
https://clinicaltrials.gov/ct2/show/NCT01888601
https://clinicaltrials.gov/ct2/show/NCT00900419


a brushing from a remote site in a contralateral lobe was also taken 
for research as a representative sample of non-cancerous tissue and 
subsequently profiled for mutations using Duplex-seq. The absence 
of nodules or masses detected by chest CT scans was indicative of  
the non-tumour nature of these contralateral samples. Each procedure 
was performed under fluoroscopic guidance, with the brush advanced 
from the sheath only after documentation that the working channel 
was in the peripheral airways.

EGFR and KRAS mutation profiling by Duplex-seq. Genomic DNA 
was extracted from brushing samples using a Qiagen DNeasy Blood 
and Tissue kit according to the manufacturer’s instructions. Duplex 
libraries were prepared using a commercially available kit from Twin-
Strand Biosciences (CKD-00042 panel 000323), starting with 250 ng 
of input DNA. Custom probes were designed for targeted capture of 
EGFR exons 18, 19, 20 and 21, and KRAS exons 2 and 3, along with 29 
other cancer genes.

By independently capturing and sequencing the two strands of DNA 
for selected genomic regions, combined with the use of a common 
unique molecular identifier for both strands, Duplex-seq enables the 
detection of rare mutations46 with a sensitivity of less than 1 in 107. 
After shearing and capturing of gDNA spanning the panel, primers 
were ligated so that the two strands of DNA for each segment were 
uniquely labelled and matched with its opposing strand. These strands 
were then amplified, and libraries were sequenced on a NovaSeq 6000 
sequencing system (Illumina), and sequencing data were processed 
using a DNAnexus platform. Samples had an average number of 
150,000,000 raw reads, producing a mean on-target duplex depth of 
4,500. Duplex-seq reads were processed using a previously published 
pipeline48, similar to a bioinformatics pipeline provided by TwinStrand 
BioSciences. Using this, we were able to identify mutations that were 
present in both the involved and contralateral lung samples.

Epidemiological studies
UK Biobank dataset. The UK Biobank (UKBB) study comprises more 
than 500,000 participants, aged between 37 and 73 years, who were 
recruited between 2006 and 2010. Participants provide detailed infor-
mation regarding a comprehensive set of lifestyle factors, in addition to 
physical measurements and biological samples. PM air pollution levels 
(in 2010) were estimated for addresses within 400 km of the Greater 
London monitoring area using a land-use regression model developed 
as part of the ESCAPE study49.

Lung cancer cases were those with International Classification of 
Diseases (ICD; tenth revision) codes C33 or C34. Associations between 
PM2.5 levels and lung cancer incidence in the UKBB data have already 
been calculated and previously reported18.

We accessed the UKBB data under project number 82693. Ethical 
approval of the UKBB study was given by the North West Multicentre 
Research Ethics Committee, the National Information Governance 
Board for Health and Social Care, and the Community Health Index 
Advisory Group.

To impute missing data, we first excluded all participants who had 
any cancer diagnosis pre-recruitment, or a cancer diagnosis date entry 
but no corresponding cancer annotation, alongside those with miss-
ing particulate matter or genetic principal components data. Multiple 
imputation with chained equations50 was used to impute missing smok-
ing status (categorized into never, previous and current; <1% missing), 
passive smoking (weekly hours of home tobacco exposure; 10.0% miss-
ing), pack-years of smoking (15.4% missing), body–mass index (BMI) 
(<1% missing), household income (dichotomized by ≥GBP£31,000 
annually; 14.6% missing) and educational attainment (split by degree 
or professional qualification status; 1.31% missing) values. In addition 
to these variables, imputation models used the following variables to 
predict values for missing data: PM2.5, age at baseline, sex, BMI and the 
first 15 genetic PCs (to account for ethnicity). These were used alongside 

cancer outcome and duration of follow-up. We used predictive mean 
matching, logistic regression and random forest for continuous, binary 
and categorical variables, respectively, performing a maximum of 180 
iterations for the generation of each imputed dataset. This produced 
15 complete versions of the original dataset in which the missing values 
were imputed. This dataset comprised 407,509 individuals and repre-
sented 28 cancer types. Each imputed dataset was independently used 
in the same analysis protocol.

Participants were followed up from recruitment until either date of 
each cancer diagnosis (obtained through linkage to national cancer 
registries) or censoring, which was defined as time of death, lost to 
follow-up or the end of 2018, whichever was earlier. We created a mul-
tivariate Cox regression model for each imputed dataset and primary 
cancer type with ≥100 cases (excluding non-melanoma skin cancer, 
and cancers restricted to a single sex), and pooled results across these 
models, which were consistent for each cancer type, into a single set 
using Rubin’s rules50. Confidence intervals were calculated using 
eestimate ±(1.96 × standard error )pooled pooled . These models included the same 
covariates as in the imputation model. For laryngeal alongside lip and 
oropharyngeal cancers, we further corrected for alcohol consumption, 
excluding those participants with missing alcohol data owing to the 
high missingness of these variables (30.7%). Schoenfeld residuals were 
examined to assess the proportional hazards assumption, with 
non-proportionality confirmed using Kaplan–Meier curves for binary 
and categorical variables. Potential departures from the proportional 
hazards assumption were noted for anal (smoking status), bladder 
(genetic PC 12), kidney (age and smoking status) and melanoma 
(genetic PC 9 and sex). We note high median (across all 15 imputations) 
variance inflation factor values (≥5) for the following covariates: genetic 
PC 1 (other and unspecified biliary tract parts); PC 2 (acute myeloid 
leukaemia, follicular nodular non-Hodgkin lymphoma, larynx, meso-
thelioma, other and unspecified biliary tract parts, peripheral and 
cutaneous T lymphomas, retroperitoneum and peritoneum); and PC 3 
(acute myeloid leukaemia, follicular nodular non-Hodgkin lymphoma, 
larynx, mesothelioma, other and unspecified biliary tract parts, periph-
eral and cutaneous T lymphomas). Finally, we report FDR-corrected 
P values for the association between PM2.5 levels and cancer incidence 
to account for multiple testing.

Our methods differed from those of Huang et al.18 in the following 
ways: (1) we increased the number of imputations from 5 to 15 and itera-
tions from 90 to 180; (2) we augmented our multivariate analysis to 
better account for the effect of smoking by categorizing participants 
into never, previous and current smokers, and included passive smok-
ing; (3) we included the first 15 genetic PCs in our multivariable analysis 
of PM2.5 and cancer incidence.

An interaction test between PM2.5 and smoking was then performed 
for lung cancer, considering only participants with complete covariate 
data in the multivariable Cox regression.

For the LUAD-specific analysis, we considered only participants with 
cancer registry histology entries that map to LUAD (Supplementary 
Table 4). Imputations and all downstream modelling was performed 
independently for this analysis.

To take into account migration, as the PM2.5 data are available for each 
participant’s address, we assumed that participant PM2.5 exposure levels 
remained constant throughout the study period. To account for expo-
sure misclassification, we additionally performed a separate analysis 
that included only participants who had lived at their current address 
for at least 3 years before baseline. All imputations and downstream 
analysis was performed independently for this subgroup.

Radon exposure data from the British Geological Survey (BGS) was 
merged with the UKBB dataset based on home location coordinates. 
As the data from BGS had greater spatial resolution, values were aggre-
gated by the mode radon potential class (breaking ties through taking 
the higher class value) across all BGS coordinate values that map to 
each rounded coordinate in the UKBB. Imputations and downstream 
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analyses were performed as described above, using modal radon  
exposure instead of PM2.5.

Comparison of the UKBB population with the general UK popu-
lation. Estimated HRs from UKBB analyses are higher than in some 
population-based epidemiological surveys41, which may reflect 
over-representation of less wealthy, never-smoker individuals in the 
UKBB.

We have provided a table (Supplementary Table 4) comparing 
some characteristics between the UKBB population we studied and 
UK population estimates for reference. Compared with the general 
population, UKBB participants consisted of fewer current smokers, 
were more highly educated, had lower household income, were more 
likely to be female individuals, older, white and to live in areas with 
lower PM2.5 levels.

Within-country datasets
England dataset (NDRS). Air pollution, lung cancer incidence and 
EGFR mutation status could be estimated for 20 Cancer Alliance regions 
in England. This was the geographical level at which all three factors 
could be quantified.

Annual PM2.5 air pollution data (μg m–3) from 2006 to 2017 was 
obtained at the grid code level (1 × 1 km) from DEFRA51. Radon poten-
tial (defined as the estimated percentage of homes in an area above the 
radon action level) in 2011 was obtained from the British Geological 
Survey at the grid code level52. Postal code coordinates were sourced 
from the Office of National Statistics 2018 Postal Code Directory53. To 
link every postal code to a grid code with pollution data, the coordi-
nates of every postal code centroid was mapped to those of the near-
est grid code centroid using the RANN package in R. The postal codes 
with pollution data were binned into 1 of 20 Cancer Alliance regions. 
Then PM2.5 concentration estimates were aggregated to the Cancer 
Alliance region level and then averaged over the period 2008–2017 
for 2018 diagnoses, 2007–2016 for 2017 diagnoses and 2006–2018 
for 2016 diagnoses—these were selected because they represented the 
10 years before a lung cancer diagnosis. The air pollution levels in each 
Cancer Alliance region were broadly stable (within 5 μg m–3) in this time  
period.

Incidence data on 118,019 (2016, 39,229; 2017, 39,500; 2018, 39,290) 
lung cancers (ICD codes C33 to C34) diagnosed in England between 
1 January 2016 and 31 December 2018 were extracted from the National 
Cancer Registration Dataset (AV2018 in CASREF01 (end of year snap-
shot)), held by the National Disease Registration and Analysis Service at 
England’s NDRS. Lung cancer incidence for each Cancer Alliance region 
was calculated based on these cases. This represented a predominantly 
white cohort: white, 92.06%; Asian, 1.48%; Chinese, 0.23%; Black, 1.05%; 
mixed: 0.28%; other: 0.94%; unknown: 3.96%.

The age-standardized lung cancer incidence (using population 
counts obtained from the Office of National Statistics 2019 (2018 
mid-year estimates)) was obtained according to each 5-year age group 
and sex. Incidences were then combined across age and sex to pro-
duce a single value for each Cancer Alliance region as follows: lung 
cancer incidence = (sum(wi × xi/di)/sum(wi)) × 100,000. Where wi is 
the European population standard, di is the population count and xi the  
case count.

Standardized rates were standardized according to the 2013 Euro-
pean Standard Population. Confidence intervals for age-standardized 
rate point estimates were calculated using the Dobson method.

For lung cancer diagnoses listed above, EGFR mutation statuses were 
extracted from the National Cancer Registration Dataset (AT_GENE_
ENGLAND table in the CAS2210 monthly snapshot), which includes data 
on somatic tests undertaken from 1 January 2016 to 31 December 2019. 
Only cases with ‘Overall: TS’ as ‘a:abnormal’ and ‘b:normal’ for EGFR 
were used in the calculation for the EGFR mutation rate (n = 25,567). 
The EGFR mutation rate was calculated for each Cancer Alliance region 

as follows: EGFR mutation rate = [number of a:abnormal]/[(number of 
a:abnormal) + (number of b:normal)].

The NDRS data included in this study were collected and analysed 
under the National Disease Registries Directions 2021, made in accord-
ance with sections 254(1) and 254(6) of the 2012 Health and Social Care 
Act. Further ethical approval for this study was not required per the 
definition of research according to the UK Policy Framework for Health 
and Social Care Research.

South Korea dataset (Samsung Medical Center). Air pollution, lung 
cancer incidence and EGFR mutation status could be estimated for 16 
geographical regions in South Korea. This was the geographical level 
at which all three factors could be quantified.

PM2.5 air pollution data were obtained from Air Korea54 for the years 
2015–2017 for 16 standard geographical regions across Korea. Within 
each of the geographical regions, we averaged PM2.5 levels across the 
2-year period before the year of lung cancer diagnosis. PM2.5 levels 
between 2015 and 2017 were broadly stable. We were only able to 
include PM2.5 data for a 2-year period for 2017 and 2018 diagnoses, 
as air pollution data per region in Korea was only available starting  
from 2015.

Lung cancer incidence data were obtained from the Korean National 
Cancer Center55 for the years 2017 to 2018 for 16 geographical regions 
across Korea. Sex and smoking data were not available. Lung cancer 
incidence was obtained separately for each year and considered inde-
pendently in Pearson correlations that are described below.

Lung cancer EGFR mutation status was obtained from Samsung 
Medical Center lung cancer diagnoses for the years 2017 to 2018 for 
16 geographical regions across Korea (n = 2,563). The EGFR mutation 
rate was calculated as described above.

The study was conducted under an institutional review board- 
approved protocol (number 2021-06-043) at the Samsung Medical 
Center.

Taiwan dataset (Chang Gung Medical Foundation). Air pollution, 
lung cancer incidence and EGFR mutation status could be estimated for 
12 standard geographical regions in Taiwan. This was the geographical 
level at which all three factors could be quantified.

Annual PM2.5 air pollution data were obtained for 12 standard geo-
graphical regions in Taiwan from the Environmental Protection Admin-
istration Executive Yuan R.O.C. (Taiwan)56. PM2.5 (μg m–3) concentration 
estimates were available for each county in Taiwan from 2006 to 2017. 
We averaged PM2.5 levels across the period (up to 10 years before a 
2-year washout period) before the year of lung cancer diagnosis. For 
example, for a diagnosis in 2017, 2006–2015 aggregated air pollution 
levels were used for analysis, whereas for a diagnosis in 2011, 2006–
2009 aggregated air pollution levels were used for analysis. A 2-year 
washout period was necessary to account for substantial decreases in 
air pollution levels after 2013.

Institutional lung cancer incidence and EGFR mutation rates for 
each of 12 different counties in Taiwan were obtained from the Chang 
Gung Research Database for the years 2011–2017 (n = 4,599). Lung 
cancer incidence was obtained separately for each year and con-
sidered independently in Pearson correlations that are described  
below.

Institutional lung cancer incidence was estimated based on recorded 
lung cancer diagnoses in all of Chang Gung Medical Foundation hospi-
tals, and the age-standardized rates per 100,000 were calculated using 
the world (World Health Organization 2000) standard population of 
lung cancer incidence.

EGFR mutation testing data were available for all of these cases. How-
ever, only nine counties had at least ten cases with EGFR mutation tested 
per year and constituted >5% of the total population; these were the 
counties that were retained for analysis. The EGFR mutation rate was 
calculated as outlined above.



The data from the Taiwan cohort was from the Chang Gung Research 
Database, which is approved by the institutional review board of Chang 
Gung Medical Foundation (202101202B0).

Relationship between EGFR mutant lung cancer incidence and 
PM2.5. Analyses were performed separately for each of the three  
cohorts: England, South Korea and Taiwan.

For each geographical region (for example, each country or the 20 
Cancer Alliance regions in England), EGFR-driven lung cancer incidence 
was calculated by multiplying the total lung cancer incidence by the 
EGFR mutation rate (as reported as a proportion out of 1) as follows: 
EGFR mutation lung cancer incidence = lung cancer incidence × EGFR 
mutation rate.

EGFR mutant lung cancer incidence values were compared with mean 
PM2.5 values across geographical regions using Pearson correlation 
tests, weighted Pearson correlation tests (to account for number of 
tested cases in each geographical region) and robust linear regression 
(to account for outliers).

Sensitivity analysis for the England and Korea datasets. In the England  
dataset, there were two Cancer Alliance regions (South East London 
and Thames Valley) with sparse data owing to data unavailability (<5% 
of lung tumours diagnosed in 2016–2018 have a definitive test result 
recorded for EGFR). To exclude the possibility of this confounding our 
analysis, we performed a sensitivity analysis, whereby we excluded 
data from these two regions. Of note, the correlation between PM2.5 
and EGFR-driven lung cancer incidence was still significant (r = 0.55, 
P = 0.019) after these exclusions.

Similarly, in the South Korea dataset, Jeju-do (2017) was excluded 
owing to poor data availability. The correlation between PM2.5 and 
EGFR-driven lung cancer incidence was still significant (r = 0.38; 
P = 0.033) after this exclusion.

However, for the sake of completion, we report the full datasets 
(including these two regions in England regions and one region in 
South Korea region) in the main text.

Canada dataset (BC Cancer Research Centre, Vancouver BC, Canada). 
This dataset comprises 228 lung cancer cases from female patients 
and has been previously reported6. These patients were seen at the 
Thoracic Surgery Department of the Vancouver General Hospital or 
the BC Cancer Vancouver Cancer Center between 15 November 2017 
and 31 May 2019, and were prospectively invited to take part in the 
study. Detailed residential histories from birth to cancer diagnosis for 
residences within Canada and previous residences outside of Canada 
(for foreign-born immigrants) were recorded. Street and city address 
or postal codes enabled accurate linking of residential locations to 
satellite-derived PM2.5 exposure data that were available from 1996 
onwards. A personal PM2.5 cumulative exposure value was individually 
calculated using a detailed residential history from birth to current ad-
dress, and input into Geographical Information System mapping. By 
applying high-resolution (10 × 10 km) concentration estimates of PM2.5 
from satellite observations, chemical transport models and ground 
measurements to each individual’s residential history, a cumulative 
exposure value was estimated by taking into account the intensity and 
duration of exposure and summing over all residences. EGFR mutation 
status for each patient was obtained from each patients’ hospital record.

This study was approved by the UBC_BC Cancer Research Ethics 
Board.

Defining pollution exposure groups. Low, intermediate and high 
air pollution groups were defined by considering quintiles of the dis-
tribution of PM2.5 exposure levels across the entire dataset (3 years of 
cumulative pollution data and 20 years of cumulative pollution data).

The following thresholds were applied: bottom quintile, 6.77 µg m–3; 
top quintile, 7.27 µg m–3; PM2.5 low, PM2.5 < bottom quintile; PM2.5 

intermediate, PM2.5 > bottom quintile and PM2.5 < top quintile; PM2.5 
high, PM2.5 > top quintile.

Comparing EGFR mutant frequencies. EGFR mutation frequencies 
were compared between high and low pollution exposure groups using 
chi-squared tests. Two comparisons were performed: high versus low 
pollution (based on 3 year data) and high versus low pollution (based 
on 20 year data).

Preclinical studies
Animal procedures. Animals were housed in ventilated cages with 
unlimited access to food and water. All animal regulated procedures 
were approved by The Francis Crick Institute BRF Strategic Oversight 
Committee, incorporating the Animal Welfare and Ethical Review Body, 
conforming with UK Home Office guidelines and regulations under the 
Animals (Scientific Procedures) Act 1986 including Amendment Regu-
lations 2012. Both male and female mice aged 6–15 weeks were used.

EGFRL858R (Tg(tet-O-EGFR∗L858R)56Hev) mice were obtained from 
the National Cancer Institute Mouse Repository. Rosa26tTA and 
Rosa26-LSL-tdTomato mice were obtained from the Jackson labora-
tory. Mice were backcrossed onto a C57Bl6/J background and fur-
ther crossed to generate Rosa26LSL-tTa/LSL-tdTomato;TetO-EGFRL858R mice. 
CCSP-rtTa;TetO-EGFRL858R and Rosa26LSL-tdTomato;KrasLSL-G12D mice have 
been previously described57,58. After weaning, the mice were geno-
typed (Transnetyx) and placed in groups of 1–5 mice in individually 
ventilated cages, with a 12-h daylight cycle. Cre-mediated recombina-
tion was initiated by adenoviral CMV-Cre (Viral Vector Core) deliv-
ered by intratracheal intubation (2.5 × 107 virus particles per 50 μl), 
by Ad5-SPC-Cre (Viral Vector Core, donated by A. Berns) delivered 
by intratracheal instillation (2.5 × 108 virus particles per 50 μl)21 or by 
using chow containing doxycycline obtained from Harlan-Tekland. For 
antibody treatment, mice were given 200 µg of anti-mouse/rat IL-1β 
(B122, InVivoMAb, BE0246) or rat IgG control (InVivoMAb, BE0091) by 
intraperitoneal injection on the same day as PM exposure.

For exposure to fine PM or PBS, SRM2786 from the National Institute 
of Standards and Technology (obtained from Sigma Aldrich) was resus-
pended in sterile PBS using sonication, and the particle size distribution 
was confirmed using a dynamic light scattering analyser (Zetasizer, 
mean particle diameter 2.8 μm). SRM2786 has certified mass frac-
tion values of both organic and inorganic constituents from multiple 
analytical techniques and represents fine PM from a modern urban 
environment59. Mice were briefly anaesthetized using 5% isoflurane 
followed by intratracheal administration of 50 µg or 5 µg in a volume 
of 50 μl (ref. 60). Mice were intratracheally administered with PM or 
PBS three times per week for 3 weeks with at least 48 h between each 
administration.

FACS analysis and cell sorting. For flow cytometry analysis of im-
mune cells, mouse lungs were minced into small pieces, incubated 
with collagenase (1 mg ml–1; ThermoFisher) and DNase I (50 U ml–1; Life 
Technologies) for 45 min at 37 °C and filtered through 100 µm strainers 
(Falcon). Red blood cells were lysed for 5 min using ACK buffer (Life 
Technologies). Cells were stained with fixable viability dye eFluor780 
(BD Horizon) for 30 min and blocked with CD16/32 antibody (BioLe-
gend) for 10 min. Cells were then stained with antibodies for 30 min 
(Supplementary Table 10). Intracellular staining was performed using 
a Fixation/Permeabilization kit (eBioscience) according to the manu-
facturer’s instructions. Samples were resuspended in FACS buffer (2% 
FCS in PBS) and analysed using a BD Symphony flow cytometer. Data 
were analysed using FlowJo (Tree Star).

For flow cytometry sorting of AT2 cells61, epithelial cells and immune 
cells, minced lung tissue was digested with Liberase TM and TH (Roche 
Diagnostics) and DNase I (Merck Sigma-Aldrich) in HBSS for 30 min at 
37 °C in a shaker at 180 r.p.m. Samples were passed through a 100 μm 
filter, centrifuged (300g, 5 min, 4 °C) and red blood cells were lysed as 
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described above. Extracellular antibody staining was then performed 
followed by incubation in DAPI (Sigma Aldrich) to label dead cells. 
Gating strategies for sorting and analysis are outlined in Extended 
Data Fig. 6. Cell sorting was performed on Influx, Aria Fusion or Aria 
III instruments (BD).

Immunohistochemistry. Mouse lungs were fixed overnight in 10% 
formalin and embedded in paraffin blocks. Then 4 μm tissue sections 
were cut, deparaffinized and rehydrated using standard methods. 
Antigen retrieval was performed using pH 6.0 citrate buffer and incu-
bated with antibodies (Supplementary Table 10). Primary antibodies 
were detected either using biotinylated secondary antibodies, fol-
lowed by HRP or DAB, or with subsequent OPAL fluorescence second-
ary antibodies (Akoya). A commercial kit was used to detect IL1B RNA 
transcripts by RNAscope (ACD Biotechne) following the manufacturer’s 
instructions. Staining for CD68 protein was subsequently performed 
and detected using OPAL fluorescence following the manufacturer’s 
protocols (Akoya). Probes visualized through fluorescence were used 
to detect IL-1β RNA and CD68 protein simultaneously. Slides were im-
aged using a Leica Zeiss AxioScan.Z1 slide scanner.

Tumour grading and lesion analysis was carried out by two board- 
certified veterinary pathologists. EGFR mutant cell foci were quantified 
from cell coordinate data by clustering cell positions by density using 
the DBSCAN algorithm, implemented in Python with the scikit-learn 
library62. We chose an EPS value of 35 for DBSCAN clustering as this 
produced spatial clusters with excellent concordance to visual inspec-
tion of foci in the original histological images. To assess the fraction 
of clusters that had expanded, we reasoned that wild-type cells may 
divide only once between 3 and 10 weeks, which is based on the low 
proliferation rate of alveolar epithelial cells63. As there was an average 
cluster size of 2 EGFR mutant cells at 3 weeks, we defined clusters of >5 
cells at 10 weeks as ‘expanded clusters’ that expanded above expected. 
Segmentation and analysis of immunohistochemistry and immuno-
fluorescence images was carried out using QuPath64.

Whole-genome sequencing. ET lung tumours from PBS-treated mice 
(n = 5) and PM-exposed mice (n = 5) were collected at ethical end points. 
Individual lung tumours were dissected from lung lobes and snap- 
frozen. Germline DNA was extracted from tail tissue. DNA was isolated 
and prepared for whole-genome sequencing (WGS), which was followed 
by sequencing on a NovaSeq instrument (Illumina) to achieve target 
coverage of 100× for PBS-treated and PM-exposed samples and 30× 
for germline samples. Sequences from all 20 samples were processed 
using the Nextflow (v.21.10.3) Sarek pipeline (nf-core/sarek v.3.0). In 
brief, sequences were aligned with BWA (v.0.7.17) to mm10, and muta-
tions were called using Mutect2 (gatk4: 4.1.8.1). Only mutations labeled 
as ‘PASS’ by Mutect2 that were uniquely present in each tumour were 
considered for analysis.  Mutational signatures were called using the 
DeconstructSigs R package65, restricting our analysis to the following 
common SBS signatures: SBS1, SBS4, SBS5, SBS2, SBS13, SBS40, SBS92, 
SBS17a, SBS17b and SBS18.

RNA-seq. CD45−CD31−TER119−EpCAM+ lung cells from PBS-treated 
and PM-exposed mice were sorted by flow cytometry. Total RNA was 
isolated using a miRNeasy Micro kit (Qiagen) according to the manu-
facturer’s instructions. Library generation was performed using KAPA 
RNA HyperPrep with RiboErase (Roche), followed by sequencing on a 
HiSeq (Ilumina) instrument to achieve an average of 25 million reads 
per sample.

The RNA-seq pipeline of nf-core framework (v.3.3) was launched with 
Nextflow (v.21.04.0) to analyse RNA-seq data66. Raw reads in fastq files 
were mapped to GRCm38 with associated ensemble transcript defini-
tions using STAR (v.2.7.6a)67. BAM files were sorted with a chromosome 
coordinate using samtools (v.1.12). RSEM (v.1.3.1) was used to calculate 
estimated read counts per gene and to quantify a measure of TPM68.

Differential expression analysis was performed using the R plat-
form (v.4.0.3) package DESeq2 (ref. 69), filtering with the absolute 
value of log(fold change) > 1 and FDR < 0.05. Significantly differentially 
expressed genes were determined using a generalized linear model 
within DESeq2 and a Wald test. Gene expression levels between treat-
ment groups was further analysed for their pathway enrichments using 
gene set enrichment analysis70. Normalization (using z-scores) of TPM 
scores across the dataset was performed before plotting heatmaps of 
gene expression.

The AT2 activated score was derived using a previously described 
method71. In brief, bulk RNA-seq data from mouse models, with or with-
out an EGFR mutation and in the presence or absence of PM exposure, 
were compared according to the degree to which they were similar to a 
signature of activated AT2 transitional progenitor cells (‘AT2 activated’) 
derived from previously published single-cell RNA-seq data23. This 
signature was estimated using a pseudoR2 value calculated using a 
previously described approach71. This approach was adapted to a mouse 
dataset using gene weights from mouse-to-human orthologous genes. 
The pseudoR2 value was used as a continuous input in a test between 
the different conditions.

Comparison of RNA-seq data from mice to never-smokers in the 
COPA study. RNA-seq was applied to 18 samples of bronchial brushings 
from nine never-smokers from the COPA study after exposure to filtered 
air and diesel exhaust. Salmon72 was used to estimate transcript-level 
abundance from RNA-seq read data. Differential expression analysis 
was performed using DESeq2 (ref. 69). The log twofold difference in 
gene expression was calculated between samples collected 24 h after 
exposure to diesel exhaust and filtered air (control) on separate occa-
sions but from the same participants. P values were adjusted using the 
Benjamini–Hochberg method. The log twofold change of significantly 
differentially expressed genes between the tdTomato control and td-
Tomato PM-treated mice were compared to the log twofold change 
expression of the genes from COPA participants.

All participants in the COPA study provided informed consent. The 
consent forms and study protocol were approved by the University of 
British Columbia Clinical Research Ethics Board (number H12-03025), 
Vancouver Coastal Health Ethics Board (number V12-03025) and Health 
Canada’s Research Ethics Board (number 2012–0040).

The limitation of this analysis is that the mouse and human RNA-seq 
datasets fundamentally differ in the following ways. (1) Mouse data 
were acquired from total lung EpCAM+ cells, containing both airway 
and alveolar tissue, whereas the human data were obtained from bron-
chial brushings only; therefore, different cell types are represented in 
the data. (2) The pollution exposure between species differed. Human 
participants were exposed to diesel exhaust for 2 h compared to 3 weeks 
of PM exposure for mice. Furthermore, the mice were kept in controlled 
environments, whereas a 4-week washout period between exposure 
to filtered air and diesel exhaust in human participants was required, 
where day-to-day PM exposures and lifestyle differences could not be 
controlled. (3) Fold changes from the human data were obtained by 
pairwise comparisons from each individual. By contrast, because we 
did not have pairwise matched data from each mouse, the fold changes 
from the mouse data were derived based on aggregated (mean) values 
across each condition (that is, air pollution versus control). (4) The 
RNA-seq was performed at two different sequencing centres and target 
depths were different. The human data were sequenced with a target 
depth of 30 million reads per sample, whereas the mouse data were 
sequenced with a target depth of 25 million reads per sample.

Organoid-forming assays. Lung organoid co-culture assays have been 
previously described22. In brief, tdTomato+ lung epithelial cells (tdTomato+ 
EpCAM+CD45−CD31−TER119−) and tdTomato– lung epithelial cells 
(tdTomato–EpCAM+CD45−CD31−TER119−) were isolated by FACS from 
PBS-treated or PM-exposed ET mice after 3 weeks of treatment and 



were resuspended in 3D organoid medium consisting of DMEM/F12 
with 10% FBS, 100 U ml−1 penicillin–streptomycin, insulin, transferrin, 
selenium, l-glutamine (all from Gibco) and 1 mM HEPES (in-house). 
About 5,000–10,000 cells were mixed with a mouse lung fibroblast 
cell line (MLg2908, American Type Culture Collection, 1:5 ratio) and 
resuspended in growth-factor-reduced Matrigel (Corning) at a ratio 
of 1:1. Next 100 μl of this mixture was pipetted into a 24-well Transwell 
insert with a 0.4 μm pore (Corning). After incubating for 30 min at 37 °C, 
500 μl of organoid medium was added to the lower chamber and the 
medium changed every other day. Bright-field and fluorescence im-
ages were acquired after 14 days using an EVOS microscope (Thermo 
Fisher Scientific) and quantified using Fiji (v.2.0.0-rc-69/1.52r; ImageJ).

For ex vivo IL-1β treatment of lung AT2 cells, single-cell suspensions 
from ET mice lungs (without in vivo Cre induction) were subject to 
AT2 cell purification as previously described (MHC Class II+CD49flow 
EpCAM+CD45−CD31−TER119−)61. Purified AT2 cells were incubated 
in vitro with 6 × 107 p.f.u. ml–1 of Ad5-CMV-Cre in 100 µl per 100,000 
cells in 3D organoid medium for 1 h at 37 °C as previously detailed27. 
Cells were washed three times in PBS before plating as described above, 
and 20 ng ml–1 IL-1β was added to the organoid medium in the lower 
chamber and changed every other day. TdTomato+ organoids were 
quantified in Fiji. For whole-mount staining of organoids, organoids 
were prepared according to previous published methods73 and stained 
with anti-proSPC (Abcam, clone EPR19839) and anti-KRT8 (DSHB Iowa, 
clone TROMA-1). 3D confocal images were acquired using an Olympus 
FV3000 microscope and analysed using Fiji.

For assessment of AT2 organoid formation after PM exposure, AT2 
cells were isolated from PBS-treated or PM-treated control mice and ET 
mice after 3 weeks, without in vivo Cre induction. Following Cre infec-
tion, 10,000 cells were plated in the organoid assay as described above. 
For co-culture of AT2 cells and macrophages, non-induced ET mice were 
exposed to either PBS or PM, followed by collection at 3 weeks, and 
AT2 cells, interstitial cells and alveolar macrophages were isolated as 
previously detailed22 (sorting strategies are defined in Extended Data 
Fig. 6c). AT2 cells from PBS-treated ET mice only were infected with Cre 
ex vivo as described above, before 10,000 AT2 cells were either plated 
with fibroblasts only or with a 1:6 ratio of PBS-treated or PM-treated 
macrophages as described above, modified from a previously published 
method22. tdTomato+ organoids were quantified in all conditions.

Statistics and reproducibility
Preclinical statistical analyses were performed using Prism (v.9.1.1, 
GraphPad Software) with centre line depicting median unless oth-
erwise stated. Analyses of epidemiological data and mutation and 
sequence data were performed in R (v.3.6.2. or v.4.1.3 (UKBB analysis)). 
Graphic display was performed in Prism, and illustrations in Fig. 3c,e 
and Extended Data Figs. 1a, 5d,f and 8a were created using BioRender 
(https://biorender.com). A Kolmogorov–Smirnov normality test was 
performed before any other statistical test. Afterwards, if any of the 
comparative groups failed normality (or the number was too low 
to estimate normality), a nonparametric Mann–Whitney test was 
performed. When groups showed a normal distribution, an unpaired 
two-tailed t-test was performed. When groups showed a significant 
difference in the variance, we used a t-test with Welch’s correction. 
When assessing statistics of three or more groups, we performed 
ANOVA or nonparametric Kruskal–Wallis test controlling for multi-
ple comparisons. Blinded analysis was carried out for all image and 
tumour analysis.

No data were excluded. No statistical methods were used to pre-
determine sample sizes in the mouse studies. Mice with matched sex 
and age were randomized into different treatment groups. All experi-
ments were reliably reproduced. Specifically, all in vivo experiments, 
except for omics data (RNA-seq), were performed independently at 
least twice, with the total number of biological replicates (independent 
mice) indicated in the corresponding figure legends.

Driver mutation probability
The list of driver mutations and the mutational signature exposures 
were obtained from the TRACERx 421 publication14. Only patients with 
detected smoking-related signatures are considered in the analysis 
(TRACERx 421). Each observed clonal driver mutation was given a proba-
bility to be caused by all active mutational signatures in the patient. This 
number was derived by multiplying the exposures of the mutational 
signatures with the 96-channel profile of each signature74. Then the 
value was normalized to 1 so that each driver mutation can be explained 
by a fraction of active mutational signatures. The probabilities were 
then aggregated, giving the overall contribution to driver mutations 
from each of the active mutational signatures. A patient was defined 
as non-carrier of a tobacco-related driver mutation if the probability 
of SBS4 and SBS92 (smoking-related signatures) was less than 0.5.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Duplex-seq data for the PEACE and BDRE cohorts are available at 
the European Genome–Phenome Archive (EGA) with the identifier 
EGAS00001006951. Duplex-seq data generated from PEACE study 
samples during this study are not publicly available and restrictions 
apply to the availability of these data. Such Duplex-seq data are available 
through the Cancer Research UK and University College London Cancer 
Trials Centre (ctc.peace@ucl.ac.uk) for academic, non-commercial 
research purposes upon reasonable request and subject to review of a 
project proposal that will be evaluated by a PEACE data access commit-
tee, entering into an appropriate data access agreement and subject to 
any applicable ethical approvals. Duplex-seq data generated from the 
BDRE study are available through J. DeGregori ( James.Degregori@cuan-
schutz.edu) for academic, non-commercial research purposes upon 
reasonable request, entering into an appropriate data access agreement 
and subject to any applicable ethical approvals. The Duplex-seq data 
for the BDRE and PEACE studies were generated using a larger panel of 
probes that covered approximately 50 kb of the genome, spanning hot-
spots frequently mutated in cancers. This full dataset has been provided 
for the 17 never-smoker individuals from the PEACE study. For all other 
samples, only data for the EGFR and KRAS regions queried are included 
in this manuscript. The RNA-seq data for the COPA study are available at 
the EGA with the identifier EGAS00001006966. De-identified partici-
pant data are available upon reasonable request to C.C. (christopher.
carlsten@ubc.ca) for academic, non-commercial research purposes. 
Data availability is subject to a data access agreement and applicable 
ethical approvals. Mouse WGS data are available at the European Nucleo-
tide Archive (ENA) with the identifier PRJEB58221 (ERP143287). Mouse 
RNA-seq data are available at the ENA with the identifier PRJEB59269 
(ERP144330). Source data are provided with this paper.

Code availability
Code for analysis of epidemiology, RNA-seq and WGS data and pro-
cessing of healthy lung tissue are available at Zenodo (https://doi.
org/10.5281/zenodo.7705022).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Study design, DNA analysis & epidemiology. A) Study 
design schematic featuring the 3 aspects of the paper. LEFT: Epidemiological 
analysis of cancer incidence and PM2.5. MIDDLE: Pollution exposure in mouse 
models. RIGHT: Normal lung tissue analysis. B) TX421 Tumours from Smokers. 
Barplots indicating proportion of SNVs in each tumour attributed to each  
SBS mutational signature. The barplots (Top: Lung adenocarcinoma (LUAD), 
Bottom: Lung sqaumous cell carcinoma (LUSC)) reflect the probability that 
clonal driver mutations in patients, where smoking-related signatures have 
been detected, are caused by different mutational processes (SBS4 and SBS92 
smoking, SBS2 and SBS13 APOBEC, SBS1 and SBS5 ageing). Each observed 
driver mutation in each patient is given a mutational-signature-causing 
probability based on the trinucleotide context and the signatures exposure of 
the patient (see Methods) and then these probabilities are aggregated. Asterisks 
represent patients where the smoking-related aggregated probabilities are 
below 0.5. C) Correlation between PM2.5 levels and EGFR mutant (EGFRm) 
adenocarcinoma lung cancer incidence in England. The blue line: robust linear 

regression line; grey shading: 95% confidence interval. D-E) The Canadian Lung 
Cancer Cohort. D) Distribution of 3 year and 20 year cumulative PM2.5 exposure 
levels for all patients in the Canadian cohort. Red lines mark the thresholds that 
were used to determine Low, Intermediate and High groups that are used in (D). 
These are the 1st (6.77 ug/m3) and 5th quintiles (7.27 ug/m3) of the distribution. 
The full distribution is displayed in the top plot, while the bottom plot displays 
a narrower range of 4–10 ug/m3 (for clarity). E) Counts and frequencies of 
EGFRm in the Canadian Cohort, where 3 year and 20 year cumulative PM2.5 
exposure levels were available. Patients are grouped into high, intermediate 
and low groups based on thresholds established as described in (D). These 
groups are defined based on 3 year cumulative PM2.5 exposure data (left) and 
based on 20 year cumulative PM2.5 exposure data (right). The bar plots display 
the counts and frequency of EGFRm amongst patients within each group. The 
map was created using DEFRA data in R. The illustrations in A were created 
using BioRender (https://biorender.com).

https://biorender.com
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Extended Data Fig. 2 | Effect of PM in multiple mouse models of lung  
cancer. A) Schematic of PM exposure and representative huEGFRL858R IHC  
of ET mice induced with AT2-specific Ad5-SPC-Cre exposed to PM or PBS 
control and quantification of neoplastic lesions (n = 14 PBS, n = 11 PM). 
Mann-Whitney test. B) Schematic of PM exposure followed by induction of 
EGFRL858R and quantification of precancerous lesions/mm2 of lung tissue (n = 9 
PBS; n = 7 5 μg; n = 11 50 μg PM). One-way ANOVA. C) Schematic of PM exposure 
and representative H&E of a lung adenocarcinoma in a 50 μg PM exposed, 

doxycycline treated CCSP-rtTa; TetO-EGFRL858R mice; quantification of number 
of adenocarcinomas per mouse below (n = 9 per group). One-way ANOVA. D) 
Schematic of PM exposure and representative IHC for red fluorescent protein 
(RFP, marks tdTomato+ cells) in Rosa26LSL-tdTomato/+;KrasLSL-G12D/+ mouse model  
in control or 50 μg PM exposed conditions; quantification of number of 
hyperplastic lesions per mouse (n = 9 control, n = 9 5 μg and n = 12 50 μg). 
One-way ANOVA. Scale bar 50 μm (C main), 20 μm (C insert), 100 μm A & D.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Whole genome sequencing analysis of mouse 
tumours. WGS analysis of tumours from ET mice exposed to air pollution 
(n = 5) and those exposed to PBS controls (n = 5). Each mouse tumour is 
compared vs the corresponding germline from the same mouse. A) Mutational 
profiles for each tumour sample according to the mutation trinucleotide 
context. LEFT: PBS Controls, RIGHT: 50 μg PM. B) Barplots indicate the counts 
of mutations in each sample, where bars are colored based on the base change. 
C) Boxplot comparing the counts of mutations between tumours from pollution 
exposed mice (50 μg PM) and tumours from PBS exposed mice (PBS Control). 
All mutations are summarised in one plot on the left, and are then further 

divided based on the base change of the mutation (n = 5 mice per group). Two-
sided t-test comparing numbers of mutations between PBS and air pollution 
p-values are displayed. The boxplot line represents the median, the hinges of 
the box represent the 1st and 3rd quartiles and the limits of the whiskers 
represent the 1.5 interquartile range. D) Attribution of mutations in each 
tumour sample to each single base substitution (SBS) mutation signature. The 
shading indicates the weight of the signature within each sample. Majority of 
the weights have been assigned to ageing related signatures (SBS40, SBS5, 
SBS1) Komogolomov-Smirnoff test p-value = 0.26–0.68.
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Extended Data Fig. 4 | Immune cell profiling in response to PM. A) Immune 
cell frequencies in the lungs determined by flow cytometry 24 h post-exposure 
from induced T and ET mice after 50 μg PM (red) or PBS control (blue) (n = 8 
mice per group). Data are presented as the frequency among live CD45+ 
immune cells. One-way ANOVA. B) Representative immunofluorescent images 
of CD68+ macrophages (cyan) and tdTomato+ EGFR mutant cells (red) within 
ET lungs exposed to control or 50 μg PM. Quantification of CD68+ cells per 
mm2 of lung tissue (n = 4 mice per group). One-way ANOVA. C) Representative 
immunofluorescent images of CD68 (red), CD11b (green) and merged images 
from induced ET mice after 3 weeks of exposure to PBS (top) or 50 μg PM 
(bottom). Quantification of alveolar macrophages (AMΦ, CD68+CD11b−) and 
interstitial macrophages (IMΦ, CD68+CD11b+) per mm2 of lung tissue, selecting 

10 x random 500 μm2 fields of view per mouse (n = 3 mice per group). One-way 
ANOVA. D) Representative immunofluorescent images of CD68+ macrophages 
(cyan) within CCSP-rtTA; TetO-EGFRL858R lungs treated with PBS (top) or 50 μg 
PM (bottom) 10 weeks post oncogene induction; quantification of CD68+ cells 
per mm2 of lung tissue, selecting 20 x random 500 μm2 fields of view per mouse 
(n = 3 mice per group). Unpaired t-test. E) Representative immunofluorescent 
images of CD68+ macrophages (cyan) and tdTomato+ KrasG12D mutant cells 
(red) within KT lungs treated with PBS (top panel) or 50 μg PM (bottom) 10 weeks 
post oncogene induction; quantification of CD68+ cells per mm2 of lung tissue, 
selecting 20 x 500 μm2 fields of view containing RFP+ cells per mouse (n = 3 
mice per group). Unpaired t-test. Scale bar 50 µm B & D, 150 µm C & E. Gating 
strategies for flow cytometry analysis provided in Extended Data Fig. 6.
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Extended Data Fig. 5 | PM-mediated transcriptional changes, effects on 
AT2 cells and characterising IL-1β. A-B) Significantly enriched GSEA pathways 
upregulated in T-PM lung epithelial cells compared to T control mice (A), in ET-
PM lung epithelial cells compared to ET control mice (B). For each comparison, 
barplots indicate the -log10(FDR) of the Komogolomov-Smirnoff test p-value 
for each pathway. C) AT2 activated progenitor score derived from scRNAseq  
of bleomycin treated mouse lung used to deconvolute bulk RNA-seq of T and ET 
mice exposed to 50 μg PM or PBS, (n = 5 mice per group). Welch’s t-test between 
control and PM. Line represents mean of data. D) Schematic displaying 
experimental set-up of clinical exposure study in never-smoker volunteers, 
crossover design with (i) and (ii) in random order separated by 4-week washout. 
E) Fold change (FC) of significantly upregulated genes (identified in mouse) 
compared to the fold change of genes changed in the clinical exposure study. 
Common directionality across species indicated by colour (negative: blue 
background; positive: red background). F) Schematic of AT2 culture from T or 
ET mice exposed to 50 μg PM or PBS, with induction of tdTomato or oncogene 
ex vivo. G) Representative fluorescent images of tdTomato+ AT2 organoids at 
day 14 from ET mice exposed to PBS or 50 μg PM in vivo. Scale bar 100 μm. H) 
Quantification of tdTom+ AT2 organoid forming efficiency, data represents 
averages from 2 technical replicates/mouse; n = 4 mice from T control and PM; 
n = 5 mice for ET control and PM. One-way ANOVA. I) Representative 

fluorescent imaging of tdTomato (yellow), Keratin 8 (magenta), SPC (blue) on a 
wholemount AT2 organoid from an ET mouse treated with 50 μg PM. Scale bar 
is 20 μm. J) LEFT: Representative IL-1β RNAscope performed on lungs from ET 
mice treated with PBS or 50 μg PM after 3 weeks of exposure. Scale bar 20 µm. 
RIGHT: Quantification of IL-1β+ cells per mm2 of lung tissue from 30 random 
fields of view (control, n = 3 mice) and 28 fields of view (50 μg PM, n = 3 mice). 
Mann-Whitney test p-value is displayed. K) LEFT: Representative image of IL-1β 
RNAscope (green) in CD68 positive (red) macrophages in an ET mouse exposed 
to 50 μg PM, arrows indicate positive macrophages. n = 3 mice  exposed 
to 50 μg PM. Scale bar 50 μm. RIGHT: Quantification of IL-1β positive CD68+ 
cells compared to CD68− cells at 3 weeks post induction in ET mice following 
exposure to PM. Mann-Whitney test. L) LEFT: Representative fluorescent 
images of EGFRL858R naive (non-PM exposed) AT2 organoids from ET mice 
treated with control or IL-1β in vitro. tdTomato (yellow) organoids stained with 
SPC (blue) and Keratin 8 (magenta). Scale bar 50 μm. RIGHT: Quantification of 
organoid size with each dot representing an organoid at day 14 of control (blue) 
or IL-1β treated (orange). Organoids derived from n = 2 mice per group. Mann-
Whitney test. M) Schematic of anti-IL-1β treatment treatment (black triangles) 
during PM exposure (black lines) and harvest (red triangle). The illustrations in 
d and f were created using BioRender (https://biorender.com).
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Extended Data Fig. 6 | Flow cytometry Gating strategy used to identify 
epithelial and immune cells. A, B) Example of flow gating strategy to 
determine frequency of lung (A) alveolar macrophages, interstitial 
macrophages, neutrophils, dendritic cells and (B) epithelial cells both 
tdTomato positive and negative. All samples were first gated to exclude debris 

and doublets, followed by live cell discrimination. C) Representative picture 
from a tdTomato mouse treated with control PBS for 3 weeks using sort 
strategy to enrich for for AT2 cells defined in Major et al. 61 and both alveolar 
and interstitial macrophages defined in Choi et al. 22.
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Extended Data Fig. 7 | CONSORT Diagrams for the normal lung tissue profiling cohorts. TOP: TRACERx study, MIDDLE: PEACE study, BOTTOM: BDRE study.
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Extended Data Fig. 8 | Normal tissue study design and ddPCR results.  
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sample. Two-sided Wilcox test p-value is reported. E) Regression analysis of 
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Normal tissue Duplex-seq results. A) Top: EGFR 
Mutations detected using Duplex-seq across EGFR exons 18–21 on normal lung 
samples from the BDRE Study. Bottom: VAFs of each EGFR mutation are 
displayed. B) Top: KRAS Mutations detected using Duplex-seq across KRAS 
exons 2-3 on normal lung samples from the BDRE Study. Bottom: VAFs of each 
KRAS mutation are displayed. A-B) Only cancer-related mutations annotated in 
the cancer gene census are displayed. Mutations with strong evidence of being 
a lung cancer driver mutation are indicated in red, while mutations with some 
evidence of being a lung cancer driver mutation are indicated in pink, all other 
drivers annotated in COSMIC are indicated in blue. C) VAFs of KRAS mutations 
across samples of different cancer types. The one patient who received BRAF 
inhibitor treatment is indicated in purple. D) Comparing VAFs of high confidence 

(var count >=2, strong evidence) driver mutations in EGFR and KRAS. TOP: 
Boxplots summarise VAFs across samples. The boxplot line represents the 
median, the hinges of the box represent the 1st and 3rd quartiles and the limits 
of the whiskers represent the 1.5 interquartile range. Mutations are grouped 
according to the gene harbouring the mutation and smoking status of the 
patient. Two-sided Wilcox test p-values are reported. BOTTOM: dot plots show 
VAFs of mutations in each sample. Where a sample has 2 mutations (n = 4), they 
are both indicated. Dots are coloured by the gene harbouring the mutation 
(EGFR or KRAS). A paired t-test was performed between the VAFs of EGFR and 
KRAS mutations in these 4 cases. (Paired t-test p = 0.015) (Details of driver 
mutations can be found in Supplementary Table S8).
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