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Cas enzymes are programmable genome perturbation tools
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Structure of an sgRNA

* sgRNAs are highly structured short RNAs Modules of single guide RNAs
expressed from Pol lll promoters

* Target specificity set by the protospacer ‘.
sequence, which is ~20 nt long .

* The stem loop is responsible for binding to
Cas9

e The first hairpin tolerates large insertions
and is frequently modified:

* inthe SAM CRISPRa system, insert bindingsites
for phage RNA binding proteins

. J
Protospacer

* indirect capture Perturb-seq,inserta primer
bindingsite to enable custom library prep

https://teichlab.github.io/scg_lib_structs/methods_html/10xChromium3fb.html
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CRISPR cutting '
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e Typically introduce a single double strand break away
from the 3’ end of the targeted gene

* How this is resolved depends on relative activity of DNA
repair pathways (NHEJ vs. MME)) in cell type, plus
sequence context
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* Most common indels are single base pair insertion (10-
25%) and 1-2 bp deletions (20-25%), then a tail of
increasingly diverse edits up to ~30 bp
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* Some cell types seem to behave quite differently. E.g. ES
cells generate large rearrangements quite frequently.

* Not all breaks will result in frame shifts—i.e. not all
edited cells will have loss-of-function of the targeted
gene! (Some cells may also have heterozygous LOF.) G -

Most frequent indels observed at target site

TGCC 1 TGCC

https://doi.org/10.1016/j.cell.2021.10.002



CRISPR cutting

* One approach to improve activity is to target known functional domains or conserved regions.
Even in-frame indels may then result in loss-of-function.

e Also useful in the opposite direction for mapping functionally important regions, which may not
be well-characterized for many genes

* Note the variability in efficacy here for 64 different guides targeting Brd4
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https://doi.org/10.1038/nbt.3235



Cas enzymes are programmable genome perturbation tools
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Gene knockdown using CRISPR inhibition (CRISPRIi)

* Usually realized using a fusion of dCas9
with a KRAB domain from a zinc finger
transcription factor e.g. ZIM3-dCas9

* Most effective when targeted just after
the transcription start site of a gene

* Repression occursin two ways:

* Physical occlusion of RNA polymerase
binding/elongation

* KRAB domain triggers histone 3 lysine 9
trimethylation (H3K9me3)

* May act “digitally” — silencing is sticky

once installed

https://doi.org/10.1016/j.cell.2014.09.029
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Gene activation using CRISPR activation (CRISPRa)

* Less understood and still a work-in-progress dCas9-VPé4 Synergistic Activation Mediator
* Overall goal is to associate various activating 0 ?
domains (usually virus-derived) with dCas9, — U‘
but many strategies for tethering: vre &
* Direct fusionse.g. dCas9-VPR i
« SAM system: use phage RNA-binding proteins to sunlag VPR

recruit domains to sgRNA

* Nanobodiesto recruit multiple copies of activating o B ﬂ DD s
domainsto arrays of bindingsites R4S 8 5 ta

e Activating genes is hard: still likely many false
negatives. Works better at manipulating
expression of genes that are already on rather
than turning on dormant genes.

https://blog.addgene.org/crispr-activators-dcas9-vp64-sam-suntag-vpr
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Therapeutic appeal of “hit and run” epigenome editing

* |t’s currently difficult to control the outcome
of editing DNA using cutting, base editing, or
prime editing. Truncated or mutant proteins
can be immunogenic.

* Technologies like CRISPRi require constant
expression of the effector, making them ill-
suited as therapeutics

* Could we instead permanently modify the
epigenome by transient delivery of
epigenome editors?

* E.g. Silence CCR5 to conferresistance to HIV

* E.g. Silence BCL11A to reactivate fetal hemoglobin
expression to help treat sickle cell disease or B-
thalassemia

Adult hemoglobin gene

CTX001
(CRISPR/Cas9)

BCL11A gene

(@ Subunit of hemoglobin
@ subunit of adult hemoglobin
@ Subunit of fetal hemoglobin

o
=
i o 4
[hg

Normal adult hemoglobin

”“x

1\% Q D Q)@“\

Fetal hemnglobln



Permanent silencing using CRISPRoff

* Most human gene promoters contain CpG islands (region with high frequency of CG
dinucleotides)

* >75% of CpG islands are methylated: this is the default state, and unmethylated CpGs generally
indicate specific regulation

e Evolutionarily ancient form of gene regulation: CoG methylation correlates negatively with gene
expression almost always in eukaryotes. Likely a form of genome defense against elements like

transposons.
Typical mammalian DNA methylation landscape
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Permanent silencing using CRISPRoff

* KRAB zinc fingers: are the initiators of the
silencing cascade; bind to a site and recruiting
epigenetic modifiers that set up a repressive
chromatin environment

* DNA methyltransferases (DNMTs): eventually
recruited and install CpG methylations

* DNMT3A and DNMT3B are the de
novo methyltransferases that set up DNA
methylation patterns early in development

* This effect can “spread” over time upstream and
downstream of the target

Engineered Transcriptional

Antigen
Embryonic stem cell-derived & %, o-chain } MHC-I
effector domains GV —B2M
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https://doi.org/10.1016/j.cell.2016.09.006



Permanent silencing using CRISPRoftf

* In CRISPRoff, a four-part fusion of dCas9 to e ~ Linker Cleavage
KRAB, DNMT3A, and DNM3TL (stimulates A) sy el ol
enables semi-permanent gene silencing KTENED XTENBD 2
through DNA methylation S el

W1 MI_dcass_H_HHa NLSHERNELHN LS [ER)EFR)

* Design informed by structure of Cas9 B e P

Stapper et al

dimer 3A-3L dimer




Permanent silencing using CRISPRoftf

* Delivered in “hit and run” format— CRISPRoff
transiently transfect effector + cocktail "
of sgRNAs 7 - mor  Monlor
* (Note: now many studies indicating that G?Efjﬁfler w tran:;ﬁgted Sigi’;fng
using multiple sgRNAs can improve
performance in various contexts) Co-fransiect CRISFRON

and sgRNA vectors
* Canisolate clones that remain silenced

for 15 months at some loci
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The four elements of @ CRISPR screen

Model: Which cells is the screen performedin?

Perturbations: Which genes are perturbed and how?

Challenge: What is the selective pressure?

Readout: How is the phenotype of each perturbation quantified?



The prototypical CRISPR screen: fitness/dropout
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Model: typically a cancer cell line

Perturbations: Disrupt every gene in the genome (4 - 10 sgRNAs per gene)

Challenge: outgrowth

Readout: count number of cells with each sgRNA at each time point by sequencing

https://doi.org/10.1038/s41582-020-0373-z



Where to get sgRNA libraries

* For screening, a cell line is typically constructed containing the desired Cas9 effector, and sgRNAs
are delivered separately by pooled lentiviral transduction.

* sgRNA libraries are synthesized and cloned in pooled format. Tens of thousands of sgRNAs
possible.

» Efficacy of different sgRNAs against the same gene can be variable and hard to predict. To buffer,
libraries usually include 4 — 10 sgRNAs per targeted gene.

* There are published libraries for many of the most common effectors. The Broad’s CRISPick tool is
popular, as are the CRISPRi/a libraries from the Weissman Lab.
Nuclease
(e.g.Cas9)

Targeting
sequence SgRNA

Oligo array synthesis Cloning into
of guide library lentiviral CRISPR vector https://doi.org/10.1016/j.ab.2016.05.014



Reading out a CRISPR fitness screen by sequencing

e Screens typically amplify the sgRNA protospacerfrom genomic DNA.

e Thisisa single-molecule assay—only one copy per cell. As a result, library prep must be donein “clean”
conditionsto avoid contamination (e.g. by ambient plasmid DNA).

* Library prepis essentially a careful PCR with primers that attach the sequences necessary for lllumina
sequencing:

Read 1 primer I7 primer
bt Insert S
P5 i 7/ i e
A A
I9 primer Read 2 primer

* Quicktour:
* Two reads(can be up to 300 bp longand are what you typically think of as the result of sequencing)

 Two indexreads (read usually 8 bp barcodes that are used to distinguish different librarieson same sequencing flow
cell)

* P5andP7 are sequencesthatarenecessary for bindingto lllumina flow cell during sequencing



What do the data look like?

* Resultis a large matrix of counts for each sgRNA across replicates/conditions

* Fit a model to integrate effects across guides targeting the same gene while correcting for
confounders such as variable guide representation and outgrowth during the screen

* Model output is an estimate of enrichment or depletion for each gene relative to cells with non-
targeting control sgRNAs, plus some measure of statistical significance derived from how
concordant behavior is among different sgRNAs targeting the same gene

Workflow Data processing —>  Quality control —>  Gene ranking —> Hit analysis e Visual interpretation
Main tasks  Read mapping e Calculation of e Statistical testing * Gene set analysis for * Manual inspection of
* Derivation of quality metrics for differences in the hits of the screen count data for hits
count matrices * Quantification gRNA frequency * Overlay with regulatory across all experiments
of consistency * Aggregation of networks and protein e ldentification of outliers,
across replicates results and ranking interactions biases and unexpected
of individual genes behaviour
Example results Mapping rate gRNA level
Condition A Condition B Al T
Replicates 1 2 3 1 2 3 A2 AL 8 P
gRNA1 845 749685  IEZEIECIREE: B1 s | oo '. .' " | Coéﬁ?l
B2 ‘—’Q - g S
© gRNAZ PZEEEER A 60 75 53 B3 I X 4 A !
© gRNA3 748 695 680 76 Al S log, (fold change) .—.
gRNA4 510 470 493 289 330 Genel |||||| H \

A2 ~
A3 Gene level -—>. Gene?

o 9RNA1 330 280 291 660 623 725

|
o) |
U gRNA2 270 244 310 750 744 800 B1 3 oy ) Gene3 ||
& 9RNA3 440 410 398 921 963 898 B2 Qg: *e! e 7 Gened | |11 NI |
gRNA4 343 417 408 550 512 610 B3 =
. =3
Correlation ]

log, (fold change)



What do the data look like?
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Example: genome-wide measurement of fitness effects

* Fitness screens can measure hundreds of
thousands of quantitative phenotypes over orders
of magnitude in a single pooled experiment

* A high-quality screen will show good correlation
across replicates

e Model: K562 cells

* Perturbations: Knockdown every gene in the
genome with CRISPRi (200k sgRNAs)

* Challenge: Growth

* Readout: growth defect relative to control

Targeting sgRNAs R -':.‘_:' ._._ ) _'

Chromosome Y
| Olfactory

|
N
l

Replicate 2 growth phenotype
(log, enrichment)

I
oo
I

_1 2 I I I I
-12 -8 -4 0 4
Replicate 1 growth phenotype
(log, enrichment)

Gilbert & Horlbeck et al. Cell 2014



Coverage (aka how many cells do | need?)

Number of cells per sgRNA = coverage. This sets the quantitative resolution of the screen.

In negative selection (dropout) screens, perturbed cells deplete relative to controls

* Example:when using CRISPRI, essential genes will dropout over time

* Here people often suggest 500x —1000x coverage per sgRNA. E.g. for a 100k element genome-wide library, 50 — 100
million cells per replicate.

In positive selection screens, perturbed cells enrich relative to controls
 Example:a CRISPRa screen for genes that mediate drugresistance
* Here lower coverageis possible due to the enrichment, so 200x may suffice

If coverage is too low, sgRNAs or genes will become overrepresented by chance. The screen will
then be bottlenecked. This is an important consideration for in vivo screens.

Bottlenecking will result in poor correlation between replicates



Incomplete outcomes are important confounders

* CRISPR perturbations do not always work

* CRISPR cutting can produce in-frame indels or only
edit one copy of a gene, creating a heterozygote

* If knockdown of a gene by CRISPRi is toxic, thereis
selection for cells to escape it. These cells will
outgrow the perturbed cells over time.

* Some guides simply work better than others

e Overall, critical to remember what is happening
mechanistically when conducting analyses—screens are
large evolution experiments
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Dependency Map (DepMap)/Project Score

e Goal: Find genes that are (conditionally) essential in different cancers

* Each project performed genome-wide CRISPR cutting screens in hundreds of
cancer cell lines

Broad Institute
Library:
avana4
Guides/gene: IIiumina_l;
4 _ ) Puromycin after 24 h, sequencing
3 technica Total gui Spin-fection; puromycin+blasticidin pdiversity fromH_ sgRNA read counts

500 cells/guide for 7 days. with library plasmi ‘_

Total guides: ' primer;
90,709 & 101,094 19bp SE
BFP fluorescent marker

Sanger Institute



The DepMap can be used to find synthetic lethal pairs

 Two genes A and B are synthetically lethal if cells can '
survive loss of each on its own, but the double mutant is .~ WXLBY B viable

IEthaI lung cancer //, /
/' genes
* Potential route to targeted therapies: one gene might be ) FYTF b viabie

mutated in a cancer and the other can be inhibited
pharmacologically
@# lethal



The DepMap can be used to find synthetic lethal pairs

Genome-wide screening for
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The DepMap can be used to assign gene function

* A gene’s fitness profile across diverse genotypes 20,000 genes
is a type of high-content phenotype that can be Sy
clustered to identify related genes

* Essentially we are using the phenotypic and
genetic variation intrinsic to different cancer cell
lines to reveal gene function

1000 cell lines

https://doi.org/10.1038/s41588-021-00840-z



The DepMap can be used to assign gene function

* Not trivial: many cell lines in the
DepMap are similar (e.g. same
source tissue), so measurements
are not independent

* To look for statistically significant
associations, must correct for
these dependencies

* Create nonlinear embedding of
each gene based on these
corrected profiles

doi.org/10.1038/s41588-021-00840-z
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a  Module no. 1,431: mTORC1 regulation b Module no. 1,193: mTORC2/PI3K/AKT signaling

GATOR2 complex  GATOR1 complex ~ Folliculin complex
DDIT4 Growth
WDR59 NPRL2 FLCN TSC factors pisp O popki Plasma membrane
MIOS | SEHIL. —| NPRL3 FNIP1 TBCID7 | complex e 1
WDR24 SEC13 DEPDCS TSC1  Tsc2 mTORC2 complex
J’ VPS39 GNBz _, | PIKSCA AKT!  «— | MTOR RICTOR
Leucine i szT2 ITFG2 RRAGA PiKscs > —
. MTOR ERED - (e MAPKAP1 ~MLSTS
SESNZ Ci20RF66 KPTN (RRAGC 578 \ Gproteins PI3Kinase
KICSTOR Cell complex
complex LAMTOR1 LAMTOR3 I — growth
LAMTOR2 LAMTOR4 Other 'PDCL | WDR59 Cell survival and proliferation
Ragulator complex

assign gene function

* Lots of structure explained by known biology, can
nominate new genes within known pathways based
on the clustering

* Overall, a great resource for learning about
possible interactors with your genes of interest

doi.org/10.1038/s41588-021-00840-z

€ Module no. 520: autophagy

d  Module no. 307: notch/TGF signaling

1 ATG14 BEGNT) pi3 yinase complex Signaling cell
PIK3C3  PIK3R4 o
< TGF-B1
ULK1 inase complex p|3|:/ UvRAG EPa5 QQ = =
rBicc1 ATGI01 (. Lcas Lysosome 33~ S g8
Fr ey / LC3 conjugation e g Gamma seoctase £ £
13 1 ATGaB System =l S = - 5 &
ATG7 > 27 —>R 30T~
c5%) @I > Autophagic Fusion = I =\ “Zr:‘ ‘Q\z Receiver
| target and target < > \Z\Z2\= cell
ATG10 destruction S
N NICD
ATG5 ATG12
ATG16L1
wipi2
ATGIA /O NoTey;
Phagophore glyco SMAD3
Expanding autophagosome Completed autophagosome POGLUTY SR
LEMD3
— POFUT1
€ Module no. 595: p53 signaling f Module no. 739: IFN & Module no. 1,826: §
- " Endoplasmic reticulum
signaling glycolysis
// RBPJ “NICD 'SMAD3  Gene expression
DNAdamage IFN \ MAML1  SMAD4
SLczat
o @
Usps) (TP53BP1 g ‘§t 3 Gmcoie% G Other METRNL Nucleus
ATM 5
Uspaz vV o« £E H ) s
usP7. CHEK: RPL22 v v h  Module no. 473: chromatin remodeling
X .L \( GPI PGD
P53 |— MDM2 TYK2  JAK1 v v ARIDIA  ARIDIB  $518
l MDM4 PFKP. N RPE BAF | ACTL6A SMARCE1 SMARCA4  SMARCB1
PEMID CDKN1A STAT1 ) 1sGF3 ¥ T:T DPF2  SMARCC1 ~ SMARCC2 ~ SMARCD2 | PBAF
Transcription ’ Trars) complex ALD+OA ) e G O
) : ——
IR C160RF72 IRF9 i / / o
v ' A
Other | BRAP' (CENPF | ADRM1 | 1
. 1
i Module no. 1,311: snRNA transcription IRF1  USP18 ¥ PGKi2. .
ADAR  1SG15 2ATP ¥ ! «  Module no. 405: cell cycle
-|_>— PGAMI !
INTS2  INTS8  INTS6 Integrator —— : o
INTS12 INTST ASUN ~ VWA9  complex oD M Cyclin/CDK complexes
INTS5  INTS10  INTS7 Uncharacterized v i ccnD3 | conpi ) — DYRKIA
INTS9  INTS3  INTS4 PKM | > 2-P-L CDK6 || CDK4 | |— CDKN2C
2ATP ¥
Uncharacterized (R SnRNA other | XANT | LPPAI o l PGP o }
> Lactose S «— E2F F—RB1
Other (BRATI WDR73 |: J\N BUB1B | MAD2L1
Spindle MCT1/4 BSG
¥ GLccnIFAM530] | Other ~ AMBRA1
k Module no. 256: mitochondrial respiration
‘Complex | ii Complex IV iv Complex V/ATP synthase
— (@7 ‘ui 3'7“ :uen:um(s) i Complex 111 (6 of 14 subunits) H (9 of 18 subunits)
NDUECH NDUFB3. NDUFAZ oo aiso module no. 2104 (7 of 9 subunits) see also module no. 2,104 see also module no. 4,250

NDUFC2 NDUFB4  NDUFA3
NDUFB5 ~ NDUFAS H

NDUFS1 NDUFS7

see also module n0. 2104 Hs

NDUFB7 ~ NDUFA8
NDUFB8  NDUFA9
NDUFB9  NDUFA10

NDUFS2 NDUFS8.

NDUFS3 NDUFVL
.

NDUFS5 NDUFV2
i

NDUFB10 NDUFA11

R NDUFAF1  NUBPL e
a:s”;fr“i’:y' NDUFAF3 TMEM261 v’
NDUFAF4. FOXRED1 ~NADH
NDUFAFS  TIMMDC1
NDUFAFS  ECSIT
NDUFAF7  ACAD9
ci70AF89

TMEM242 | SLC25A51

Uncharacterized

Other mitochondrial  (NOAT SSBP1 (LIAS' (C1QBP
MIPEP RPUSD3 LIPT{ PYURF LRPPRC GTPBPS

TBRG4 POLG MCAT RTN4IP1 MDH2 TFAM DLD

synthesis | prees (COQ4

coa [PD5‘81 coaz
coa7

Synthesis
of mitochondrially
encoded subunits of
complexes I, I, IV, V.

Mitochondial
coxalt intermembrane
PR ~-?v?s coxsA space
=0 ~— coxsB
T ey UQCHFSH o =
uacr1o ¢ mitochondrial
vacra o
uacRet X631 membrane
uacrs 2 cox7C ~
coas BesiL COA3 (COX10 COXTE) 1, ATPAR2 Mitochondial
coas coas coxit Coxi7 0P malrix
coae Complox V| coss ‘coxia coxia W
assemOY | coaz ‘coxts COX19
SCO1 SC02 HIGD2A
v Mitoribosome
SURF1 (PET100 (PET117 see also module no. 2,072
Fo-S cluster  —
assembly Translation reguiation 1ANA synthesis
T 1
ISCAT " C120RFES NGAN GRSFI MTIE2 ANMTLY oo o MAPLE MAPLIS " gapgy pans
Iscaz YBEY MTFMT MTERF3 MTO1 MTIF3 — MRPL10. (MAPL24.  upch (LARS2
1BAST NSUN4 TBFIM MTERF4 MTG1 DDX28 — " MAPLIS MAPL41 EARS? NARS2
GLAXS GFM2 RMND1 MALSU1 MTG2 FTSJ2 MRPS12 METTLI7  MRPL17 MRPL43 WARS2 KIAA0391
NFUT GTPBP10 FASTKDS MTRFIL MRRF PDE12 ICT1) MRPL4E




Outline

1. Functional genomics background
e Current CRISPR tools
e The four elements of a CRISPR screen

2. High-contentreadouts
* The DepMap
Development of Perturb-seq
* Using genome-scale Perturb-seq to assign gene function
* Using imaging CRISPR screens to assign gene function
* In vivo screens and adding lineage information

3. High complexity perturbations
* Genetic interaction mapping
e Highly multiplexed studies of enhancers



Two benefits of single-cell technologies

oo

Understand how distinct cell types A means of achieving parallelization—
contribute to large-scale phenotype each cell is an experiment



Single-cell CRISPR screens

* All CRISPR screens are single-cell assays: each cell reports
sgRNA contained within

* Can we get more information from each cell?

* Richer phenotypes are more interpretable — e.g. cell cycle
arrest or cell death might be conflated as “fitness defects”

* More information per cell means fewer cells needed,
more applicable to precious cell types

* Can expand screening to systems where cells are not
actively growing and dividing, such as in vivo

O -

‘ | DNA
N

molecule

| cell

Many
molecules/
measurements

)y
23




Single-cell CRISPR screens

* Natural synergy with the many emerging methods for gathering rich
phenotypes of single cells—single-cell genomics and imaging

Transcriptome
(Surface) Proteome

Chromatin accessibility

Morphology/localization

Single-cell RNA sequencing
Multiplexed RNA FISH (MERFISH, seqFISH)

Barcoded antibodies (CITE-seq/REAP-seq)
Flow/Mass cytometry (Pro-Codes)

Single-cell ATAC-seq

Imaging



Single-cell CRISPR-screens: the devil is in the details

We will start by looking at the original Perturb-seq approach

* Idea c. 2015: want to somehow read out how each cell is perturbed genetically, along with some
rich measure of its state

* Problem: most single-cell RNA sequencing methods only capture polyadenylated transcripts,
sgRNAs are expressed by Pol lll and are not captured

* One solution: Encode identity in an auxiliary barcode transcript that is captured

hU6 eF1a

I.>_ r—L




Example: Perturb-seq: a screen with RNAseq as the readout

Introduce barcoded Droplet single-cell Single-cell Rich characterizations
pool of CRISPR RNAseq transcriptomes tagged of hundreds to thousands
perturbations with perturbation identity of perturbations
OFO @@%@
®p 00
©

Lo

perturbation identity
encoded in transcript

Adamson & Norman et al., Cell 201 6, Dixit & Parnas et al., Cell 2016, Jaitin et al., Cell 201 6, Datlinger et al., Nature Methods 2017



Interpreting results

 Comprehensive: Thousands of “virtual screens”
performed in parallel. Phenotypesdon’tneed to
be prespecified—can revisit data with a new
hypothesis later.

* Informative: can discover genes associated with a
process and reason about why they appear

* E.g. Cluster RNAseq profiles to identify genes with
similar functions

* Can identify and ignore “boring” hits

* But can also do more sophisticated machine
learning. E.g. Separate independent effects like
cell cycle and genetic perturbations.

https://doi.org/10.1016/j.cell.2016.11.048
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Subsequent improvements to avoid template switching

Lentiviral template switching: lentiviruses are pseudodiploid and randomly hop between genomes
during transduction, can lead to recombinant viruses with scrambled association between sgRNA
and barcode when libraries are packaged in pooled format. Surprisingly pernicious: two markers
separated by 1 kb can lead to ~“30% rate of uncoupling. Common problem in the literature!
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Subsequent improvements to avoid template switching

SN
5LTR JLTR
* CROPseq vector: exploits a trick of lentiviral N IEED Ill
replication to embed the sgRNA during integration CROPseq-Guide-Puro by
into the target cell 51TR
aBMA casseite
copied during
|esrtinvirad irbagratian

* Direct sgRNA capture: manipulate single-cell assay
to capture sgRNAs as well as mRNAs (e.g. 10x
Feature Barcoding)

TruSeqRead 1 Poly(dT)VN

\ 10x UMI
" Nextera Read 1

Single Cell 3' \ (Read IN) 10x ywmy Capture Sequence
v3 Gel Bead

/

/ MNexteraRead 1
(Read 1N)

X

UMI

/

doi: 10.1038/s41587-020-0470-y doi: 10.1038/nmeth.4177



Genome-scale Perturb-seq to understand cell biology

Genome-scale Perturb-seq constructs a comprehensive genotype-phenotype map

Genome-scale sgRNA Perturb-seq: links each >2.5 million cells in an
library targeting all genetic perturbation to its information-rich genotype-
expressed genes single-cell transcriptional phenotype map o
3 response 5 -
CRISPRI cells rirf

Joseph Replogle Reuben Saunders Jonathan Weissman
s |

Discovering gene function and subcomplexes from transcriptional phenotypes

C70rf26 and Integrator submodules Massively parallel inference of gene New ribosome biogenesis factors
function by phenotypic clustering
shoulder/backbone 60S: CCDC88,
et PEETNY SPATASL1,
; e On2Rimodue 50 0 SPOUT1, CINR,
: TMA16

' S 408S: Clorf131,
' : : ’ ZNF236, NEPRO,
cleavage module & ] NOPCHAP1

Using composite phenotypes to explore complex cellular behaviors

Mitochondrial genetic perturbations

cell cycle analysis

Identification of drivers and

Mitochondrial stress elicits diverse,
consequences of aneuploidy

specific responses from the
mitochondrial genome

@,

4 [ =
4 [ =, o S5
L | = =2
- . ® | < s | g
L = g o g

Stable karyotype Abnormal karyotype = 3

S

&4

https://doi.org/10.1016/j.cell.2022.05.013



Genome-scale Perturb-seq to understand cell biology

* Until this study Perturb-seq had always been applied to targeted gene sets
(usually the hits from other screens)

* We wanted to see what happened when it was applied in unbiased fashion. In
the largest dataset, we knockdown every expressed transcript using CRISPRI.

Genome-wide

20,
K562 —»
C@D@ targeting all expressed

@@ K562

X@ RPE1

genes (n=9,867)

Essential-wide
. targeting all common

essential genes (n=2,285)

« >2 5 million cells after
filtering

* median >100 cells per
perturbation

 median ~10,000 UMIs
per cell



Genome-scale Perturb-seq

* Model: K562 cells (womp womp)
* Perturbations: CRISPRi knockdown (dual sgRNA library) of 9,867 transcripts

* Challenge: outgrowth
* Readout: single-cell RNA sequencing

Introduce barcoded Droplet single-cell Single-cell

pool of CRISPR RNAseq transcriptomes tagged
perturbations with perturbation identity
O o
B @0
000 — [* — AR
®g 00 Sl
. @
A\ VoV
NNV
_|z ’_\/\-

perturbation identity
encoded in transcript



Optimized CRISPRi vields median ~90% knockdown

We use a dual sgRNA library to improve the
EF1a

chances of knocking down target genes mue " a
| ;El o | iﬂ-ﬂ |;-m-m -

A
o
|

* We developed an optimized ZIM3-dCas9
CRISPRI effector that we used in later
experiments

=
o
1

=
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1

* An advantage of CRISPRI in single-cell contexts
is that you can assess on- and off-target activity

=
>
1

Cumulative density

=4
N
1

* Optimized effector leads to median 90% L o
knockdown of targeted genes 0 02 04 06 08 1
On-target knockdown (fraction mRNA remaining)

=
o



A global view of the data structure

* Most analysis is done at the pseudo-bulk level—average single-cell Cells with linked genetic

RNAseq profiles of cells with same perturbation (sgRNA) together perturbation identity

: : H . = e R
* Experiment is overall a large matrix of gene expression x 8 o S od
perturbations 3 i Jd
< S
2 4
8 i £ 2 B T-



Annotating gene function from transcriptional phenotypes

Cells with linked genetic
perturbation identity

R T
» =T s =k
U') 3 H 'f; 35 19
Q ;' ?&“- S el
o " o Bt S
3 T
) SZQ
8 =i

: SR Bl -
o

» To assign function to perturbations, we can cluster this matrix based
on gene expression profile correlations

* We can visualize these similarities using a nonlinear embedding that
places correlated profiles close to each other

Cluster perturbations to
define gene function
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Defining functional submodules through transcriptional phenotypes

Correlation
B _
; * Integrator complexis a global regulator of
- = = transcription:
1 Y _INTS13 * Processes enhancer transcripts and
- INTS14 some small nuclear RNAs into their
- CTorf26 mature forms by cleavage
- INTS10 . . .
NTe1 * Regulates transcription of protein
_INTS4 coding genes by controlling
Q - INTS3 transcription termination
R - INTS9 * Functions of most subunits are unknown
- INTS6

- INTS12
- INTS51
INTS5
INTS8
INTS2
INTS7




Comparing structural and functional submodules

Correlation
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IntS10,13,14 were present in prep but
not resolved in CryoEM maps



C70rf26, which we rename INTS15, is a core component of the INTS10-
13-14-15 subcomplex
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Outline

1. Functional genomics background
* Current CRISPR tools
* The four elements of a CRISPR screen
* How is single-cell RNA sequencing performed?

2. High-contentreadouts
* Development of Perturb-seq
* Using genome-scale Perturb-seq to assign gene function
* Using imaging CRISPR screens to assign gene function
* In vivo screens and adding lineage information

3. High complexity perturbations
* Genetic interaction mapping
e Highly multiplexed studies of enhancers



Optical pooled screening
| py e Gene

perturbation

* An alternative to Perturb-seq: introduce [ ln [amlm  tibrary
genetic perturbations using CRISPR, but use lzqtgoeﬂuccgl)
cell morphology as a high-content phenotype

instead of the transcriptome
Pooled cell
library

Existing approaches to phenotyping Optical phenotyping

%0 || #@0 gpg:@ \z é%:/)

Vol
Q00||0 #| M

Selection FACS Single cell Cell morphology Live cell Cell—cell
sorting RNA-Seq and protein  dynamics interaction
localization
| Il | | |
Bulk sequencing sc-seq of Imaging followed by optical
of enriched perturbations demultiplexing of perturbations

perturbations and gene TACTG. . .
expression @ GTACCA. ..

AGTCA...



Reading out the guide by in situ sequencing

e Cas9 target is encoded in
protospacer part of guide —
only 20 nts

* An excellent target for in situ
sequencing, which is still quite
finicky

10X objective; 3,552 cells
barcode 1

= CCAGTACGAATG

barcode 2

= GACAAGTACACT
1 12

seqguencing cycle










Screening cell morphology in response to knockouts of
essential genes

* Cells stained for:
 DNA (DAPI)
* DNA damage yH2AX (anti-phospho-Ser139 H2AX antibody)
* microtubules (anti-a-tubulin antibody)
* filamentous actin (phalloidin)

» Total 31,884,270 individual cells with a median of 6,119 cells per gene target across each set of
four sgRNAs (i.e. ~¥1500 per sgRNA)!

DNA content DNA damage Microtubules F-actin in situ sequencing- Cell & nuclear
(DAPI) (yH2AX) (a-Tubulin) (Phalloidin) by-synthesis




Imaging phenotypes can
cluster genes by function

* For each cell, extract 1084 morphological
features using CellProfiler and Python image
processing

* Use the PHATE dimensionality reduction
algorithm to produce a visualization of how
genes relate

* Amusingly, they identify the same gene of
unknown function that we did: C7orf26is a
member of the Integrator complex

ER-Golgi
F Integrator complex mTOR signaling  transport

A DNA replication &
damage response
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Outline

1. Functional genomics background
* Current CRISPR tools
* The four elements of a CRISPR screen
* How is single-cell RNA sequencing performed?

2. High-contentreadouts
* Development of Perturb-seq
* Using genome-scale Perturb-seq to assign gene function
* Using imaging CRISPR screens to assign gene function
* Invivo screens and adding lineage information

3. High complexity perturbations
* Genetic interaction mapping
e Highly multiplexed studies of enhancers
e Opportunities for machine learning



In vivo CRISPR screens

* A current frontier, and interesting for obvious
reasons

* In many tissues, number of cells that are
feasible to infect or engraft is limited = limit
number of perturbations to avoid
bottlenecking

* Some cells may reside in environments that
are more or less permissible, leading to strong
clonal effects = use clone barcodes and
replicates

* Cells are likely not actively growing and
dividing, so different target proteins may
deplete on very different time scales because
of variability in turnover rates

https://manuals.cellecta.com/clonetracker-xp-lentiviral-barcode-
libraries/vlb/en/topic/clonetracker-xp-lentiviral-barcode-libraries

Barcode Library

Founder Cell Pool
(Different Genotypes)

Cell Growth / Drug Treatment

S
DNA
v ‘ Cell Enumeration
Clonal
Analysis RNA

» Phenotyping by
single-cell RNA-Seq

(10x Genomics, Drop-Seq,
BD Rhapsody, etc.)



In vivo CRISPR screens

* Use a NSCLC cell line called KPD
(Kras®12b/*:p537~:Dicer1*/~), which is not
naturally metastatic. Had previously
conducted screens to identify gene knockouts
that were pro-metastatic in this background.

* Wanted to study whether there was synergy
among these hit genes

* Used Casl2a (aka Cpfl), which has ability to
self-process arrays of guides. Have two
targeting positions for each gene in the pair,
plus a third position containing a random
barcode used to follow clones.

https://doi.org/10.1038/s41592-019-0371-5

NTC-NTC crRNA arrays
[ 52 NTC crRNAs ] =) I

n=1,326
4 crRNAS per gene 208 SKO crRNA arrays
% x 26 genes
52 NTC crRNAs I
n=5,408

~ y
PR

16 DKO crRNA arrays

human metastasis genomics x 325 gene pairs
+

Metastasis driver candidates:
X
4 crRNAs per gene Y

4 crRNAs per gene XJ *

mouse in vivo screen
n=5,200
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n= 11,934 crBNA arrays



In vivo CRISPR screens

Reference KO

* Inject 4 million cells subcutaneously into 10 Clones at 2 0.001% frequency e o8 845 8885 3., fad.s
replicate mice. Using their clone barcodes, can 10.0{ am o ) EREERSEE @
infer this gives 350x coverage of each element. g I ENEEEEEEEE

& 7 5. p= 32810 anis

 Challenges: £ v

e Casl2ais not as good at cuttingas Cas9 — g - — g Fana
many library elements inactive - BE womes
o 3 kmea| | |||
* Weak activity + strong selection means only B = w
41 H M * Notch1
positive selection screens are feasible. n é b e 1B
Intrinsically less reproducible. R
0.0' Trp53

* See strong evidence of progressive selection of Cells  Primary Lung | "n | |

clones frominjected cell pool, to primary b i

-0.5 0 205

tumor, to lung metastasis

* Also see evidence for synergy in enhancement
of metastasis, particularly with Nf2/Trim72



In vivo Perturb-seq

* GWAS studies have identified risk
alleles for diseases such as autism, but
phenotypes likely manifest through
action in specific cell types

* Targeted 35 genes in the mouse brain.
Mouse expresses Cas9, and guides
were introduced to E12.5 embryos by
injection. Used two guides per gene to
increase efficacy.

e Guides could be introduced into
several different cell types, enabling
analyses of whether guides altered cell
type composition. (They did not.)

https://doi.org/10.1126/science.aaz6063
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TTK KD cells

Impact of lineage on screens

rolling average gene expression ordered by position
Clones at 2 0.001% frequency

f

E £E EI%gEEgE: % %%%%% %%%;;_-ggg 100] 2z primary seeding re-seeding bidirectional seeding
g 7.5 p=3.28107 2"@ 2“6 n“ n+1“
‘ i | §50 pro0zz
e e o000 YXINEXXXXXX)
Clonal expansion is an important, Clonal expansion may be an
sometimes underacknowledged, important driver of phenotype in
confounder in CRISPR screens development or dynamic

processes such as metastasis



Evolving barcodes using lineage tracers

* Much interest in evolving barcoding systems: . S ——
these leverage the variable indels formed by . . .
Cas9 cutting to create diverse barcodes over time Ll ] —

= me——

H
B o
dsDNAbreak(s) s I

* E.g. One design has 3 synthetic “target sites” per HEE. dadaet oho DA e ——
construct, each designed to have variable cutting (three cutt sites) iy peab S
rates (slow to fast) and highly variable indels
(more labels) Capr -

* Integrate many copies of this into target cells |
using PiggyBac

e Expressed in 3’ UTR of mCherry, so capturable
using same approach as original Perturb-seq | |

-0 Capr - R

DOI: 10.1126/science.abc1944
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Tracing lineage in a 0O 6 6
model of metastasis AT.Y il X

e Use A549 cells (human KRAS-mutantlung
adenocarcinoma), implantinto left lung, monitor
metastasesto other parts of the body

* Using evolvingbarcode, canreconstruct phylogeny
of how cells relate to each other. E.g. Manyclones
primarily metastasized via the mediastinal lymph
tissue, indicatingit is a favorable niche.

left lung

mediastinal . )
lyrmph tissue primary site

liver
inject A549-LT cells: engraftment, sacrifice, dissect,
+ Luciferase (Neo®) growth, & metastasis dissociate, sort,
+ Cas9 (mCherry) single-cell prep, & seq

+ ~10x Target Site (GFP)
+ 3x sgRMAs (BFP-Puro®)




Tracing lineage in a model of metastasis

* Phylogeny can detect and quantify five different modes of metastasis that are happening

concurrently in the mouse.

* As noted earlier, this example highlights how important it is to remember the evolutionary
dynamics that are occurring within screens

* Combining lineage tracing with CRISPR-mediated perturbations is a major current direction
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Outline

1. Functional genomics background
* Current CRISPR tools
* The four elements of a CRISPR screen
* How is single-cell RNA sequencing performed?

2. High-contentreadouts
* Development of Perturb-seq
* Using genome-scale Perturb-seq to assign gene function
* Using imaging CRISPR screens to assign gene function
* In vivo screens and adding lineage information

3. High complexity perturbations
* Geneticinteraction mapping
* Highly multiplexed studies of enhancers



Looking beyond genome-scale

1. Genetic interactions
* Instead of looking at single gene perturbations, look at how genes work together to realize

phenotype
1000

: ) = 499,500 possible pairwise

* Grow combinatorially: among 1000 genes there are (

interactions
* We already saw some instances of genetic interactions when discussing in vivo screens, and
they are a major target of the DepMap

2. Regulatory elements
* Millions of candidate regulatory elements in the genome

Both areas are the target of many current efforts



Genetic interactions (Gls)

Genes work together to generate emergent phenotypes:

* Development: transcription factors define cell type
e Cancer: synthetic lethal interactions
* Genetic disease: modifier genes alter severity

Core task: Does something “surprising” happen when | perturb genes
together vs. separately?



A fitness measure of genetic interactions

Genetic interaction (epistasis): when the phenotype of the double mutant deviates from the
expectation given by the single mutants

* Really measures how “surprised” we are by the outcoming of combining two effects
* Weaker than expected = buffering
e Strongerthan expected = syntheticlethal

WT

AAB
AA AR A

[ 4 A

Fitness

No Buffering
interaction




CRISPR genetic interaction mapping

* Fairly trivial to multiplex CRISPR experiments —simply deliver two sgRNAs (or
more) in each lentivirus and proceed as usual

— —

jﬁ_ ;ﬁﬂig.—

Barcoded Pooled lentiviral
sgRNA libraries transduction

Compare barcode
N/ abundance at beginning
N\

d and end of experiment
N :
>~ by deep sequencing
N\
=



CRISPR genetic interaction mapping
Gene B

e - -
\ J

v Buffering

Fix Gene A and measure fitness
with all possible partner Genes B

Gene A

Synthetic
lethal



CRISPR genetic interaction mapping
Gene B

Buffering

Gene A

Synthetic
lethal

Similar interactions

S

Similar function



Example: CRISPRi Gl Map

e Largest measurement of
genetic interactions in
mammalian system: ~500
x 500 genes,

~1 million sgRNA pairs

A way fitness can be used
for high-content
phenotyping

Unlike the DepMabp,
requires only a single cell
line, and combinations are
programmed and so more
interpretable
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Studying enhancers

 ENCODE (Encyclopedia of DNA
Elements) identified ~400,000

putative enhancers

* Challenges:

* Many enhancers have weak or
redundant effects, complicating
analysis

* Diverse mechanisms of action
and non-coding nature make
them harder to identify and study
than protein-coding genes

* Interactions between enhancers
and their target genes can occur
over long distances

https://en.wikipedia.org/wiki/Enhancer_%28genetics%29



Probing enhancer function by scRNA-seg

* Mosaic-seq is like Perturb-seq but targeting enhancers instead of promoters

dCas9-KRAB sgRNA virus
virus infection library infection

+ AT R » +
Blast Selection S¥e5-50F Puro Selection
& S04, R s
A P’ %
e
homogeneous dCas9-KRAB heterogeneous (‘'mosaic’)| In each cell, dCas9-KRAB epigenetically
cell population expressed cell population cell population suppresses enhancer activity, causing
B changes in gene expression.

e Can tie an enhancer to the genes it regulates by looking at gene expression changes in its vicinity

* Problem: scaling number of enhancers queried is expensive

doi.org/10.1016/j.molcel.2017.03.007



https://doi.org/10.1016/j.molcel.2017.03.007

Overcoming cost by multiplexing

* There are many enhancers to test:
* Many are expected to have weak or absent phenotypes

* Enhancers are expected to act locally, meaning interactions or far-reaching effects are
unlikely (though not impossible!)



Overcoming cost by multiplexing

* One idea: superinfect cells with lentivirus such that each cell contains a random mixture of 15
CRISPRi perturbations on average

* Data are amenable to computational “demultiplexing” by a regression model. Same cell can be
used in 15 different analyses on average, letting them test ~6,000 enhancers in a single screen

Random
combi ngtlons Candidate Target gene
h N
of multiplex enhancer ==

perturbations

@®

o
£

T

doi.org/10.1016/j.cell.2018.11.029

Expression

Expression
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An exciting frontier to think about
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Outline

1. Functional genomics background
* Current CRISPR tools
* The four elements of a CRISPR screen
* How is single-cell RNA sequencing performed?

2. High-contentreadouts
* Development of Perturb-seq
* Using genome-scale Perturb-seq to assign gene function
* Using imaging CRISPR screens to assign gene function
* In vivo screens and adding lineage information

3. High complexity perturbations
* Genetic interaction mapping
e Highly multiplexed studies of enhancers
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