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| will discuss investigational use in my presentation: IDH inhibitors



Unlike single cell organisms, mammalian cells are unable take up
nutrients in the absence of growth factor-initiated instruction.
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Metazoan cells have lost the cell-autonomous
ability to take up nutrients.

To support growth, growth factor receptors evolved
with the ability to direct nutrient uptake and utilization

Traditional demand model
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Cellular Metabolism

What is understood:
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What is not understood:
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Tyrosine kinase receptor signal transduction

Activating mutations in the p110 catalytic of
PI(3)K occur in 25% of epithelial cancers
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Glucose transporter surface expression
Hexokinase activity and localization
PFK-1 activation




Akt phosphorylation of ATP Citrate Lyase (ACL)
results in glucose-dependent lipid synthesis
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PI3BK/AKT-dependent TOR activation promotes protein synthesis
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Receptor signaling determines
glucose and glutamine uptake independently
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Pyrimidine biosynthesis requires intact electron transport
and ongoing oxidative phosphorylation
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Cell proliferation requires oxidative phosphorylation
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RTK/PI3K signaling initiates uptake of both
extracellular proteins and amino acids
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Receptor Signaling and Cell Contact regulate the
uptake of extracellular proteins and amino acids
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Metazoan cells use parallel pathways
to maintain their effector function

Differentiated parenchymal cells maintain their physiologic role
through lineage specific transcription and translation and
mitochondrial bioenergetics.

Growth factor Growth factor




Crosstalk between Metabolism and Epigenetics
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Akt phosphorylation of ATP Citrate Lyase (ACL) results in
glucose-dependent lipid synthesis and histone acetylation
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Many growth factors and oncogenes
regulate cellular metabolism

PATHWAYS IN HUMAN CANCER = =7 Metabolic Pathways

This poster

Weinberg, 2006 Nicholson, 2007




@ TaE CANCER GENOME ATLAS

DATA PORTAL ....... ., @casié

The Cancer Genome AHas Home Site

| | | Sequencing Data
The (GSCs) use high-throughput Sanger/di-deoxy technology to sequence gene and genomic target regions.
Putative mutations in tumor genomes are verified to have a somatic origin by comparison to DNA sequence derived from normal tissue from the
same patient. The result of these analyses will be identification of tumor mutations at single nucleotide resolution.
The targets for the TCGA genomic sequencing studies will consist of genes and candidate regions selected through the combination of two
different approaches. In one approach, genes of interest (e.g., tumor repressors or oncogenes) are identified from the scientific literature and by
consultation with experts in the field. The second approach, genes and genomic regions are identified by analyses of the data produced by the
TCGA

the entire gene and miRNA list.
NEW?* TCGA Network Selects More than 6,000 Gene and miRNA Targets:
The TCGA network has selected more than 6,000 gene and miRNA targets for sequencing that represent both protein-coding genes and
microRNAs (miRNAs). While not exhaustive, this list represents genes and sequences with a potential for being associated with human cancers
based on published and unpublished research.

GBM gene lists:
for the integrated GBM target list for phases one and two.
for the phase one GBM gene list.
for the phase two GBM target list.
Genes Being Sequenced in Glioblastoma:
Approximately 600 genes were selected for the first round of glioblastoma multiforme (GBM) tumor sequencing. To see the first GBM gene list,

This list of genes was generated through a cooperative process; for details about the process, . The process is unique to the selection of
the initial GBM targets and may or may not reflect future processes for selecting targets.

From the characterization data generated as of October 22, 2007 as well as input from the GBM disease experts, approximately 700 targets were
selected for the second round of GBM tumor sequencing. To read a brief description of the selection process, . To see the GBM target

list for phase two, .

To see the integrated GBM target list for phases one and two,


http://cancergenome.nih.gov/dataportal/data/about/
http://cancergenome.nih.gov/dataportal/tcga_portal_help.asp
http://cancergenome.nih.gov/dataportal/data/access/
http://tcga-data.nci.nih.gov/
http://cancergenome.nih.gov/dataportal/data/cma/
http://cancergenome.nih.gov/dataportal/data/about/
http://cancergenome.nih.gov/dataportal/data/about/types/
http://cancergenome.nih.gov/dataportal/data/about/types/clinical/
http://cancergenome.nih.gov/dataportal/data/about/types/genomic/
http://cancergenome.nih.gov/wwd/pilot_program/research_network/gsc.asp
http://cancergenome.nih.gov/wwd/pilot_program/research_network/cgcc.asp
http://cancergenome.nih.gov/dataportal/data/about/types/sequencing/TCGA6000.xls
http://cancergenome.nih.gov/dataportal/data/about/types/sequencing/GBM%20Phase%20I%20+%20II.xls
http://cancergenome.nih.gov/dataportal/data/about/types/sequencing/GBM_PhaseI.xls
http://cancergenome.nih.gov/dataportal/data/about/types/sequencing/GBM%20Phase%20II.xls
http://cancergenome.nih.gov/dataportal/data/about/types/sequencing/GBM_PhaseI.xls
https://gforge.nci.nih.gov/docman/view.php/268/5424/First%20target%20selection%20for%20GBM.pdf
https://gforge.nci.nih.gov/docman/view.php/298/8925/GEOI%20Nomination%20Process%20FINAL.doc
http://cancergenome.nih.gov/dataportal/data/about/types/sequencing/GBM%20Phase%20II.xls
http://cancergenome.nih.gov/dataportal/data/about/types/sequencing/GBM%20Phase%20I%20+%20II.xls

An Integrated Genomic Analysis of
Human Glioblastoma Multiforme

D. Williams Parsons,™** Sidn Jones,'* Xiaosong Zhang,™ Jimmy Cheng-Ho Lin,'*

Rebecca ). Leary,* Philipp Angenendt,’ Parminder Mankoo,” Hannah Carter,” |-Mei Siu,”
Gary L. Gallia," Alessandro Olivi," Roger McLendon,” B. Ahmed Rasheed,® Stephen Keir,’
Tatiana Nikolskaya,® Yuri Nikolsky,” Dana A. Busam,® Hanna Tekleab,® Luis A. Diaz Jr.,
James Hartigan,” Doug R. Smith,” Robert L. Strausberg,® Suely Kazue Nagahashi Marie,*°
Sueli Mieko Oba Shinjo,'” Hai Yan,” Gregory ). Riggins,” Darell D. Bigner,”

Rachel Karchin,® Nick Papadopoulos,” Giovanni Parmigiani,' Bert Vogelstein, 't

Victor E. Velculescu,*t Kenneth W. Kinzler't

Point mutations* Amplificationst Homozygous deletionst
cene No.of  Fracionof  No.of  Fraction of No. of Fraction of F'a’““:i':h“;::'“““ Passenger
tumors tumors (%) tumaors tumors (%) tumors tumaors (%) alteration (%) probabilityd
CDKN2A 022 0 022 0 1122 50 50 =0.01
TP53 37/105 35 022 0 122 5 40 =0.01
EGFR 15/105 14 5/22 23 022 0 37 =0.01
PTEN 27/105 26 022 0 122 5 30 <0.01
NF1 16/105 15 022 0 022 0 15 0.04
CDK4 022 0 32 14 022 0 14 <0.01
—HEL S S 022 0 122 5 12 0.02
IDH1 12/105 11 022 0 022 0 11 =0.01
PIK3CA 10/105 10 022 0 022 0 10 0.10
PIK3R1 8/105 8 022 0 022 0 8 0.10

*Fraction of tumors with point mutations indicates the fraction of mutated GEMs out of the 105 samples in the Discovery and Prevalence Screens. CDENZA and CDK4 were not analyzed for point
mutations in the Prevalence Screen because no sequence alterations were detected in these genes in the Discovery Screen.

the number of tumors with these types of alterations in the 22 Dicovery Screen samples.

upper bound background mutation rates (12),

tFraction of tumors with amplifications and deletions indicates
fPassenger probability indicates the probability obtained vsing the average of the lower and



IDH mutations are common In
intermediate grade gliomas.

Frequency of Mutations
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Tumor signal intensity
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The normal reverse

IDH reaction: carboxylated intermediate isocitrate
occurs in 2 steps -
P —00C N //0 Step 2: C|00
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Screening human AML samples for elevated 2HG
uncovers yet another IDH neomorph.
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IDH2 R140 coordinates the same isocitrate carboxyl
as IDH1 R132 and IDH2 R172

Cytosolic IDH1 Mitochondrial IDH2

Arg 149
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Isocitrate dehydrogenase (IDH) mutations

Glucose

eEarly, somatic, monoallelic mutations in
cytosolic IDH1/2 are found in 80% of

Lactate Pyruvate

Fatty acids intermediate-grade gliomas
Acetyl-CoA T
Citrate Citrate . . ,
! i ¢ All mutations are loss-of-function for IDH1/2’s
Isocitrate Isocitrate normal conversion of isocitrate to
NAD* NADP* NADR* a-ketoglutarate.
Malate IDH2 IDH1

e All mutations are missense and specific to
residues in the active site.

NADH NADPH NADPH

o-ketoglutarate

a-ketoglutarate

*One wild-type IDH1 allele is always retained in
tumors.

Glutamine



A heterodimer between wildtype and
mutant IDH1 potentiates 2HG production
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° How does a mutation in IDH 1/2 lead to Acute Myeloid Leukemia?




IDH1/2 neomorphic mutations are mutually exclusive
with loss-of-functions TET2 mutations.

57 IDH1/2 mutant AMLs 28 TET2 mutant AMLs



o-KG-dependent histone and DNA demethylases
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IDH1 mutants induce progressive histone followed by DNA methylation
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Promoter DNA hypermethylation in IDH mutant cells

qvalue<0.01 & methylation diff. >=25 % gvalue<0.01 & methylation diff. ==25 %
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Preferential establishment of DNA hypermethylation at
PRC2/TET1 binding promoters in ESC

Hypermethylated gene list -> Broad Molecular Signatures Database (3272 gene sets)

Gene set ID P-value
H3K27me3 marked genes in ESC 3.09E-49
SUZ12 Targets in ESC 9.91E-37

EED Targets in ESC 6.71E-30

PRC2 Targets in ESC 5.37E-23

|

Bound by TET1



During embryonic development silenced chromatin is
established by the Polycomb Repressor Complex 2 (PRC 2)
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Loss of the ability to demethylate DNA
results in a block to myeloid differentiation

Multipotential hematopoletic
stem cell
(Hemocytoblast)
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2HG/citrate

Selective inhibitors of mutant IDH 2-HG production
reverse leukemia by promoting differentiation
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Enasidenib - Phase 1/2 Study Design (n=345)

Dose-escalation Phase 1 Expansion Phase 2 Expansion
n=113 n=126 n=106
Enasidenib 50-650 mg/day Enasidenib 100 mg QD Enasidenib 100 mg QD

* Advanced heme R/R AML, age 260, or any age if
malignancies with IDH2 relapsed post-BMT

mutation R/R AML, age <60, excluding pts Enasidenib

relapsed post-BMT 100 Mg QD

R/R AML

* Continuous 28 day

cycles Untreated AML, age 260, declined

standard of care
* Cumulative daily doses

of 50-650 mg

Any hematologic malignancy
ineligible for other arms

R/R AML 100 mg/day:

n=214

2>\ Memorial Sloan Kettering
Cancer Center



Differentiation Effect in the Bone Marrow
Patient Achieved CR by the End of the First Cycle

Screening Cycle 1, Day 15 Cycle 1, Day 28
44% blasts 3% blasts 2% blasts

ag Memorial Sloan Kettering
e, s Cancer Center



Efficacy of Enasidenib in R/R AML

Relapsed/Refractory AML

Enasidenib
100 mg/day
(n=214)

All patients
(N=280)

Overall response rate (ORR),” % (n/N)
[95%CI for ORR]

CR + CRIi/CRp rate, % (n/N)

38.8% (83/214)
[32.2%, 45.7%]

29.0% (62/214)

39.6% (111/280)
[33.9%, 45.6%]

27.9% (78/280)

Best response
Complete remission (CR), n (%)

42 (19.6)

53 (18.9)

[CR rate 95%ClI] [14.5%, 25.6%] [14.5%, 24.0%]
CR with incomplete count recovery (CRi/CRp), n (%) 20 (9.3) 25 (8.9)
Partial remission, n (%) 9(4.2) 17 (6.1)
Morphologic leukemia-free state, n (%) 12 (5.6) 16 (5.7)

Stable disease,™ n (%) 98 (45.8) 122 (43.6)
Progressive disease,* n (%) 19 (8.9) 26 (9.3)
Not evaluable, n (%) 3(1.4) 4 (1.4)
Time to first response, months, median (range) 1.9 (0.5-9.4) 1.9 (0.5-9.4)
Duration of response, months, median [95%ClI] 5.6 [3.8,7.4] 5.6 [4.6, 6.5]
Time to best response, months, median (range) 3.7 (0.6-14.7) 3.7 (0.5-14.7)
Time to CR, months, median (range) 3.7 (0.7-14.7) 3.8 (0.5-14.7)
Overall survival, months, median [95%Cl] 8.8[7.7,9.6] 8.8[7.8,9.9]
Event-free survival,’ months, median [95%Cl] 4.7 [3.7, 5.6] 4.6 [3.7, 5.6]

)

Memorial Sloan Kettering

Cancer Center

Stein EM, Dinardo CD, Blood 2017




Tumor Cell
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SDH and Fumarate Hydratase mutations lead to elevated levels of
succinate and result in chromatin hypermethylation
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IDH Resistance Studies

« Collected serial samples from patients on IDH2/IDH1 inhibitor
trials at MSK

* Detailed, serial genomic analysis at each timepoint

* Followed 2-HG levels including at time of clinical resistance

Andy Intlekofer, Alan Shih, Eytan Stein



Acquisition of Second Site Mutations in IDH2
at Time of Clinical Resistance
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IDH2 Resistance Mutations Occur at Inhibitor/IDH2 Dimeric Interface

Disrupted H bond

AG-221
IDH2 IDH2
Q316 | Q316’
R14OQ‘*«¥ J w R140Q’

NADPIH& &\ENADPIH

1319 1319°

Steric hindrance

* Mutations affect residues present in both members of IDH2 dimer

* Do the mutations occur in cis with the IDH2 gain-of-function allele, or in trans?

John Chodera



Conclusions

A subset of patients on IDH inhibitor therapy develop
acquired resistance with recurrent 2HG elevation

This is associated with acquisition of second-site
mutations which impair drug binding without affecting
enzymatic function->allows 2-HG production to resume in
presence of drug

These mutations can occur in trans or in cis, and are
seen with IDH2 and IDH1 inhibition

These data further validate IDH1/2 mutant enzymes as a
therapeutic target in AML



Cancer arises in adult stem cells have the capacity
to replace differentiated cells that are lost and/or damaged
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The NEW ENGLAND JOURNAL of MEDICINE

RESEARCH SUMMARY

Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma

Mellinghoff IKetal. DOI: 10.1056/NEJMoa2304194

CLINICAL PROBLEM

Gliomas, the most common malignant primary brain tu-
mor type in adults, are categorized by histologic and mo- ; o | Mutant Mutant
lecular features and by tumor grade. Almost all grade 2 ' ¢ IDH1 IDH2
gliomas have mutations in the genes encoding the meta-
bolic enzymes isocitrate dehydrogenase 1 (IDH1) or 2
(IDH?2).

U s’
,

Vorasidenib \o A )

—

CLINICAL TRIAL

Design: This phase 3, double-blind, randomized, placebo-
controlled trial tested the clinical effects of vorasidenib

— an oral brain-penetrant inhibitor of mutant IDH1 and
IDH2 enzymes — in patients with residual or recurrent s
grade 2 IDH-mutant glioma who had undergone surgery il
as their only previous treatment. ol

Progression-free Survival
HR for disease progression or death, 0.39 (95% Cl, 0.27-0.56); P<0.001

0.7
Intervention: 331 patients were assigned to receive oral 056 - - i
i . . . Placebo, . Vorasidenib,
vorasidenib (40 mg once daily) or matched placebo in 05 - : _ . -
median 11.1 mo &, median 27.7 mo

28-day cycles. The primary end point was imaging-based
progression-free survival.

04 |
S

s .

02 - 7 i I

0.l 4

Probability of
Progression-free Survival

0.0
RESULTS T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
0123456789 101112131415161718192021 22232425 262728
Efficacy: Progression-free survival was significantly lon- Months
ger with vorasidenib than with placebo.



Precision Therapy to prevent malignancy:

Cytopenias are VERY common in the elderly
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Clonal Cytopenias of Uncertain Significance (CCUS)
almost always progresses to malignancy

>
w

154 patients with
cytopenias of
unknown origin

(%)

Risk of evolution

Cumulative probability of evolution

Number of patients

Followed for 10 ;f/Jfr_‘ l o

0 2 4 6 8 10 12
yea rS Time (years) N. of mutations / patient

evolution ©

q95% of CCUS
developed a
malignancy

w ©
L

of evolution ©O

Cumulative probability of
Cumulative probability of

Malcovati et al., Blood 2017 Time (years) Time (years)

@ Memorial Sloan Kettering
@ Cancer Center



Cytopenic patients with IDH1/2 mutations
carry a high risk leukemic progression

“ n Odds ratio (95% Cl) P value

Gene i
TP53 21 47.2 (2.54-879.11) <0.001
IDH 15 28.5 (1.45-562.81) <0.001
Spliceosome 28 ; L 4 7.43 (1.71-32.22) 0.002
RUNX1 3 : 6.33 (0.08-526.46)  0.229
TET2 57 —— 5.79 (2.62-12.85) <0.001
JAK2 11 i 5.75 (0.79-41.77)  0.041
DNMT3A 103 2.61 (1.54-40.46) <0.001
ASXL1 12 : 0.61(0.16-0.4)  0.476

Desai et al., Nature Medicine 2018
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Neutropenia responding to Enasidenib
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Summary

* The IDH2 inhibitor enasidenib is well-tolerated and safe

* Patients with CCUS and IDH2 mutations almost certainly progress to
AML/MDS: excellent opportunity for chemoprevention

* The first study using targeted therapy to prevent myeloid neoplasms

Promising response observed and ongoing correlative work will

hopefully provide a foundation for larger-scale, long-term studies of
enasidenib in IDH2-mutant CCUS

/ﬂ_—j\ Memorial Sloan Kettering
w:l;;/ Cancer Center
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